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Cuckoo optimization algorithm (COA) is one of the latest evolutionary algorithms. Finding the best optimal point, rapid
convergence, and simplicity in determining algorithm parameters are some merits of COA. In this paper, COA is applied to tuning
optimal fuzzy parameters for Sugeno-type fuzzy logic controllers (S-FLCs) which are used for liquid level control. A programmable
logic controller (PLC) is usedwith fuzzy controller. For this purpose, a liquid level control set andPLChave been assembled together.
MATLAB/Simulink program has been used to achieve the optimal parameters of the membership functions. The results show
clearly that the optimized FLC using COA has better performance compared to manually adjustments of the system parameters for
different datasets.

1. Introduction

FLC is a popular technique that has seen increasing interest in
the past decades since it has a linguistic based structure and
its performance is quite robust for nonlinear systems. Takagi-
Sugeno (T-S) fuzzy models represent fuzzy dynamic models
or fuzzy systems [1–8]. This brings a twofold advantage.
First, any model-based technique (including a nonlinear
one) can be applied to the fuzzy dynamic models. Second,
the controller itself can be considered as a fuzzy system.
Since the fuzzy model of the nonlinear process is usually
based on a set of local linear models which are smoothly
merged by the fuzzy model structure, a natural and straight-
forward approach is to design one local controller for each
local model of the process. However, FLC including some
parameters such as linguistic control rules and limits and
type of membership functions has to be tuned for a given
system. A major drawback of FLC is that the tuning process
becomes more difficult and very time consuming when
the number of the system inputs and outputs is increased.
Evolutionary algorithms regarding tuning the membership
function parameters of FLC have been studied extensively in
the literature. These studies can be divided into three groups
as genetic algorithm [9–13], PSO [14–19], and ant algorithm
[20, 21].

In many industrial processes, control of liquid level is
required. Several researchers have investigated the problem
of controlling liquid flow [22–28]. A constrained predictive
control algorithm based on feedback linearization applied to
a coupled tank apparatus is given in [29]. In [30], several
sliding mode control schemes for the coupled tanks system
and liquid level control are proposed. Fuzzy logic is as a
powerful problem-solving methodology with a great number
of applications in level control. Intelligent control including
fuzzy control [31–36], neural network control [37], and
genetic algorithms [38] has also been applied to liquid level
system.

PLCs have been commonly used in manufacturing and
industrial process applications. Main advantages of PLCs
are simplicity, flexibility, reliability, and easy system config-
uration with low cost, low maintenance, and running cost.
For this reason, complicated technology is shifted to the
PLC process control system. Furthermore, PLC-based pro-
cess control system enables easy operation and engineering
[39]. The right choice of an optimization algorithm can
be crucially important in finding the right solutions for a
given optimization problem. There exist a diverse range of
algorithms for optimization. One of the latest and most
powerful optimization algorithms is cuckoo optimization
algorithm (COA) [40, 41]. The ability of COA to find the
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best optimal point, rapid convergence, and simplicity in
determining algorithm parameters and to handle any type
of cost function for large scale problems makes it a better
tool than the traditional gradient descent algorithms, genetic
algorithm (GA) and particle swarm optimization (PSO)
algorithm [42].

In this paper, fuzzy controller (Takagi-Sugeno type) with
PLC to control of liquid level in tanks is used. According
to the characteristics of PLC, the fuzzy control is used with
PLC. We present optimization of Takagi-Sugeno-type fuzzy
regulator parameters using COA. MATLAB software is used
for designing and simulating. This paper is organized as
follows. In Section 2, systemmodel is presented. In Section 3,
the controller design based onTakagi-Sugeno system is given.
In Section 4, COA is presented. In Section 5, determination
of Takagi-Sugeno controller parameters based on COA is
considered and comparison to PSO is discussed. Finally, the
results and advantages of the method are illustrated.

2. System of Liquid Level

In this system, the flowing of water has been supplied via a
pump from a storage tank, and the flowing water rate has
been adjusted with an actuator. This actuator operates with
an electropneumatic positioner. A PLC (S7-200) has been
used to control of the liquid level system. The level of the
liquid has beenmeasured through a pressure transmitter.The
transmitted pressure data is transferred to PLC by using an
analog input module [39]. This data which is between the
ranges of 4–20mA have been converted to mBar, and this
mBar values come up to liquid level of tank in cm (0–60 cm).
The system used in this work has been shown in Figure 1.

The system model can be represented by the following
differential equation:

𝑑ℎ (𝑡)

𝑑𝑡
=
−𝑐√2𝑔ℎ (𝑡)

𝐴 (ℎ (𝑡))
+
1

𝐴 (ℎ (𝑡))
𝑢 (𝑡) , (1)

where 𝑢(𝑡) is the input flow (control input), which can be
positive or negative; that is, it can both pull liquid out of
the tank and put it in, ℎ(𝑡) is the liquid level (the output
of the plant), 𝐴(ℎ(𝑡)) is the cross-sectional area of the tank,
𝑔 = 9.8m/s is gravity, and 𝑐 is the known cross-sectional area
of the output pipe [43]. The block diagram of the water tank
which is obtained by (1) is shown in Figure 2.

3. Controller Design

Fuzzy parameters of the membership functions have been
determined using MATLAB/Simulink program. Triangular-
shaped built-in membership functions have been used in
the Sugeno-type fuzzy algorithm. This fuzzy controller has
two input variables: 𝑒(𝑡) is the error which is the difference
between set value and process value and 𝑑𝑒(𝑡)/𝑑𝑡 is the
differential of 𝑒(𝑡) and an output variable which is the control
signal of the actuator [39]. Output variable (stimulus control
signal) includes two acts that increase and decrease. Output
membership functions have three parameters. Linear-type
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Figure 1: Schematic diagram of the liquid level control system.
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output membership functions have been used in fuzzy rule
base which has four fuzzy rules. Fuzzy rules are as follows

(i) if 𝑒 is positive and 𝑑𝑒 is positive then output is
increased.

(ii) if 𝑒 is positive and 𝑑𝑒 is negative, then output is
increased.

(iii) if 𝑒 is negative and 𝑑𝑒 is positive, then output is
decreased.

(iv) if 𝑒 is negative and 𝑑𝑒 is negative, then output is
decreased.

The final output of the system is the weighted average of all
outputs, which is computed by

𝑌 =
∑
𝑛

𝑖=1
𝜇𝑖𝑚𝑓𝑖

∑
𝑛

𝑖=1
𝜇
𝑖

, (2)

where 𝜇
𝑖
compute from if part and𝑚𝑓

𝑖
is outputmembership

function of the 𝑖th fuzzy rule.
The fuzzy controller output is applied to the actuator

in order to control of water level. Then, the required flow
of water has been adjusted to obtain the desired level. The
flowchart of PLC program is shown in Figure 3. Simulation of
the control system is realized inMATLAB/Simulink, which is
shown in Figure 4.

4. Cuckoo Optimization Algorithm (COA)

COA is inspired by the life of a bird family which is called
cuckoo. Special lifestyle of these birds and their characteris-
tics in egg laying and breeding has been the basic motivation
for development of this new evolutionary optimization algo-
rithm.The cuckoo population, in different societies, is in two
types: mature cuckoos and eggs. The effort to survive among
cuckoos constitutes the basis of COA. During the survival
competition, some of the cuckoos or their eggs demise. The
survived cuckoo societies immigrate to a better environment
and start reproducing and laying eggs. Cuckoos’ survival
effort hopefully converges to a state in which there is only
one cuckoo society, all with the same profit values. Figure 5
depicts flowchart of COA [44].

Like other evolutionary algorithms, the COA starts with
an initial population of cuckoos. These initial cuckoos have
some eggs to lay in some host birds’ nests. Some of these
eggs which are more similar to the most bird’s eggs have the
opportunity to grow up and become a mature cuckoo. Other
eggs are detected by host birds and are killed. The grown
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Figure 5: Flowchart of COA.

eggs reveal the suitability of the nests in that area. The more
eggs survive in an area, the more profit is gained in that
area. Hence, the position in which more eggs survive will
be the term that COA is going to optimize. Cuckoos search
for the most suitable area to lay eggs in order to maximize
their eggs survival rate. After the remained eggs grow and
turn into a mature cuckoo, they make some societies. Each
society has its habitat region to live in. The best habitat of
all societies will be the destination for the cuckoos in other
societies. Considering the number of eggs each cuckoo has
and also the cuckoo’s distance to the goal point (best habitat),
some egg laying radii are dedicated to it.Then they immigrate
toward this best habitat.Theywill inhabit somewhere near the
best habitat. Then, cuckoo starts to lay eggs in some random
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Figure 6: Diagram of the cost function reduction.
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Figure 7: A view of the oscilloscope screen without optimization
(level set: 30, 40, 50 cm).

nests inside her egg laying radius.This process continues until
the best position with maximum profit value is obtained and
most of the cuckoo population is gathered around the same
position. More details regarding the COA can be found in
[44].

5. Fuzzy Controller and COA Parameters

Output membership functions parameters of Sugeno fuzzy
controller included 6 parameters, that is, three parameters
related to the increase and three parameters related to
the decrease. These parameters are determined using COA.
Interval variables of the controller parameters are selected in
the range of −10 to 500. In Table 1, the parameters of COA are
presented.

We define a cost function according to (3) as

Cost = sse (𝑦 − �̂�) + 100 ×Overshoot, (3)

Table 1: Values of COA parameters.

Number of optimization variables 6
Number of initial population 5
Minimum number of eggs for each cuckoo 2
Maximum number of eggs for each cuckoo 3
Maximum iterations of the cuckoo algorithm 100
Number of clusters that we want to make 2
Maximum number of cuckoos 8
Population variance 1𝑒 − 3

where sse is sum squared error performance function, 𝑦 is
reference step input and �̂� is output of the Simulink model.
Cost function received COA maximum population matrix,
and then set the parameters of controller. After setting, the
parameters of the controller are called the simulink model
and output is shown using the scope in Simulink. Figure 6
shows diagram of the reduction of the cost function.

6. Simulation Results

In Figures 7 and 8, the simulation results without COA are
shown.The level has been set to 30 cm at 𝑡 = 0 s and 40 cm at
𝑡 = 10 s and then the level has been set to 50 cm at 𝑡 = 20 s.

In Figures 9, 10, and 11, the simulation results using COA
and PSO are shown.

Table 2 shows the values of the optimal output member-
ship functions parameters of Sugeno fuzzy controller using
COA and PSO algorithm.

Comparison between the control results obtained from
FLC (manually adjustments) and optimized FLC clearly
shows that optimized FLC has more accurate and acceptable
results rather than manually adjustments of the system
parameters for different datasets. The results show that tuned
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Table 2: Optimal parameters values of fuzzy controller.
Level set: 30 cm Level set: 40 cm Level set: 50 cm

Using COA Using PSO Using COA Using PSO Using COA Using PSO

Best parameters to decrease
138.6451 500 313.1306 500 407.4101 500
−9.3154 −10 −7.5503 −10 −5.8901 −10

30.4182 106.9814 48.0356 −10 54.4692 135.3138

Best parameters to increase
179.0782 500 126.3613 500 274.8582 500
−5.1364 −10 −6.1710 −10 −7.0941 −7.016766

66.5813 −10 63.9597 121.9906 70.7508 −10
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controller using COA is better and even superior to tuned
controller using PSO.

7. Conclusion

In this paper, an efficient and effective tuning approach-based
COA is presented to obtain the optimal Sugeno fuzzy con-
troller parameters for control liquid level. Despite the fuzzy
controller, the controller is ideal for liquid level control, and
the results show that it can improve the performance of fuzzy
controller by optimizing the parameters. Simulation results
show clearly that the optimized controller parameters have
better performance compared with manually adjustments
of the system parameters for different datasets and COA
could demonstrate its capability to tune up fuzzy controller
parameters promptly with uppermost level of accuracy.
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systems and control,” Fuzzy Sets and Systems, vol. 156, no. 3, pp.
432–444, 2005.

[3] M. Chadli and H.R. Karimi, “Robust observer design for
unknown inputs Takagi-Sugeno models,” IEEE Transactions on
Fuzzy Systems, vol. 21, no. 1, pp. 158–164, 2013.

[4] M. Chadli and T-M Guerra, “LMI solution for robust static
output feedback control of Takagi-Sugeno fuzzy models,” IEEE
Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1160–1165, 2012.

[5] S. Aouaouda, M. Chadli, M.T. Khadir, and T. Bouarar, “Robust
fault tolerant tracking controller design for unknown inputs T-S
modelswith unmeasurable premise variables,” Journal of Process
Control, vol. 22, no. 5, pp. 861–872, 2012.

[6] M. Chadli, S. Aouaouda, H.R. Karimi, and P. Shi, “Robust fault
tolerant tracking controller design for a VTOL aircraft,” Journal
of the Franklin Institute, 2012.

[7] H.R. Karimi and M. Chadli, “Robust observer design for
Takagi-Sugeno fuzzy systems with mixed neutral and discrete
delays and unknown inputs,” Mathematical Problems in Engi-
neering, vol. 2012, Article ID 635709, 13 pages, 2012.

[8] D. Saifia, M. Chadli, S. Labiod, and T-M. Guerra, “Robust
𝐻
∞

static output feedback stabilization of T-S fuzzy systems
subject to actuator saturation,” International Journal of Control,
Automation and Systems, vol. 10, no. 3, pp. 613–622, 2012.

[9] Y.-C. Chiou and L. W. Lan, “Genetic fuzzy logic controller:
an iterative evolution algorithm with new encoding method,”
Fuzzy Sets and Systems, vol. 152, no. 3, pp. 617–635, 2005.

[10] G. Leng, T. M. McGinnity, and G. Prasad, “Design for self-
organizing fuzzy neural networks based on genetic algorithms,”
IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 755–765,
2006.

[11] S. M. Homayouni, T. S. Hong, and N. Ismail, “Development of
genetic fuzzy logic controllers for complex production systems,”
Computers and Industrial Engineering, vol. 57, no. 4, pp. 1247–
1257, 2009.

[12] D. Meng and Z. Pei, “Extracting linguistic rules from data sets
using fuzzy logic and genetic algorithms,”Neurocomputing, vol.
78, pp. 48–54, 2012.

[13] M.Montazeri-Gh andA. Safari, “Tuning of fuzzy fuel controller
for aero-engine thrust regulation and safety considerations
using genetic algorithm,”Aerospace Science and Technology, vol.
15, no. 3, pp. 183–192, 2011.

[14] M. A. Shoorehdeli, M. Teshnehlab, and A. K. Sedigh, “Novel
hybrid learning algorithms for tuning ANFIS parameters using
adaptiveweighted PSO,” inProceedings of the IEEE International
Conference on Fuzzy Systems, (FUZZ-IEEE ’07), London, UK,
July 2007.

[15] A. Chatterjee and K. Watanabe, “An optimized Takagi-Sugeno
type neuro-fuzzy system for modeling robot manipulators,”
Neural Computing and Applications, vol. 15, no. 1, pp. 55–61,
2006.

[16] D. Parrott and X. Li, “Locating and tracking multiple dynamic
optima by a particle swarm model using speciation,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 4, pp.
440–458, 2006.

[17] V. Mukherjee and S. P. Ghoshal, “Intelligent particle swarm
optimized fuzzy PID controller for AVR system,” Electric Power
Systems Research, vol. 77, no. 12, pp. 1689–1698, 2007.

[18] A. D. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi,
“A particle-swarm-optimized fuzzy-neural network for voice-
controlled robot systems,” IEEE Transactions on Industrial
Electronics, vol. 52, no. 6, pp. 1478–1489, 2005.

[19] C. C.Wong, H. Y.Wang, and S. A. Li, “PSO-basedmotion fuzzy
controller design for mobile robots,” International Journal of
Fuzzy Systems, vol. 10, no. 1, pp. 284–292, 2008.

[20] C. F. Juang andC. Lo, “Fuzzy systems design by clustering-aided
ant colony optimization for plant control,” International Journal
of General Systems, vol. 36, no. 6, pp. 623–641, 2007.

[21] C. F. Juang and C. Lo, “Zero-order TSK-type fuzzy system
learning using a two-phase swarm intelligence algorithm,”
Fuzzy Sets and Systems, vol. 159, no. 21, pp. 2910–2926, 2008.

[22] M. K. Khan and S. K. Spurgeon, “Robust MIMO water level
control in interconnected twin-tanks using second order sliding
mode control,” Control Engineering Practice, vol. 14, no. 4, pp.
375–386, 2006.

[23] H. Pan, H.Wong, V. Kapila, andM. S. de Queiroz, “Experimen-
tal validation of a nonlinear backstepping liquid level controller



Journal of Engineering 7

for a state coupled two tank system,” Control Engineering
Practice, vol. 13, no. 1, pp. 27–40, 2005.

[24] A. Visioli, “A new design for a PID plus feedforward controller,”
Journal of Process Control, vol. 14, no. 4, pp. 457–463, 2004.

[25] D. J. Murray-Smith, J. Kocijan, and M. Gong, “A signal convo-
lutionmethod for estimation of controller parameter sensitivity
functions for tuning of feedback control systems by an iterative
process,” Control Engineering Practice, vol. 11, no. 9, pp. 1087–
1094, 2003.

[26] K. K. Tan, S. Huang, and R. Ferdous, “Robust self-tuning PID
controller for nonlinear systems,” Journal of Process Control, vol.
12, no. 7, pp. 753–761, 2002.

[27] K.-L. Wu, C.-C. Yu, and Y.-C. Cheng, “A two degree of freedom
level control,” Journal of Process Control, vol. 11, pp. 311–319, 2001.

[28] K. E. Kwok,M. C. Ping, and P. Li, “Model-based augmented PID
algorithm,” Journal of Process Control, vol. 10, no. 1, pp. 9–18,
2000.

[29] N. K. Poulsen, B. Kouvaritakis, and M. Cannon, “Constrained
predictive control and its application to a coupled-tanks appara-
tus,” International Journal of Control, vol. 74, no. 6, pp. 552–564,
2001.

[30] N. B. Almutairi and M. Zribi, “Sliding mode control of coupled
tanks,”Mechatronics, vol. 16, no. 7, pp. 427–441, 2006.

[31] T.Niimura andR. Yokoyama, “Water level control of small-scale
hydro-generating units by fuzzy logic,” in Proceedings of the
IEEE International Conference on Systems,Man andCybernetics,
pp. 2483–2487, October 1995.

[32] P. Korba, R. Babuska, H.B. Verbruggen, and P.M. Frank, “Fuzzy
gain scheduling: controller and observer design based on
Lyapunovmethod and convex optimization,” IEEE Transactions
on Fuzzy Systems, vol. 11, pp. 285–298, 2003.

[33] I. Rojas, M. Anguita, H. Pomares, and A. Prieto, “Analysis and
electronic implementation of a fuzzy system for the control
of a liquid tank,” in Proceedings of the 6th IEEE International
Conference on Fussy Systems, pp. 1541–1547, July 1997.

[34] S. H. Ghwanmeh, K. O. Jones, and D. Williams, “On-line
performance evaluation of a self-learning fuzzy logic controller
applied to non-linear processes,” in Proceedings of the 5th
IEEE International Conference on Fuzzy Systems, pp. 394–399,
September 1996.

[35] J.S. Saini and Y.P. Singh, “Use of causal knowledge in a real-
time fuzzy logic controller,” IEEE Transactions on Industry
Applications, vol. 35, pp. 554–560, 1999.

[36] P. Korba and P. M. Frank, “Applied optimization-based gain-
scheduled fuzzy control,” in Proceedings of the American Control
Conference, vol. 5, pp. 3383–3387, Chicago, Ill, USA, June 2000.

[37] J. T. Evans, J. B. Gomm, D.Williams, and P. J. G. Lisboa, “Imple-
mentation and performance evaluation of an on-line neural
network control scheme,” in Proceedings of the International
Conference on Control (Control ’94), vol. 1, pp. 629–633, March
1994.

[38] K. C.Ng, Y. Li, D. J.Murray-Smith, andK. C. Sharman, “Genetic
algorithms applied to fuzzy sliding mode controller design,”
in Proceedings of the 1st IEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems: Innovations and
Applications (GALESIA ’95), pp. 220–225, September 1995.

[39] Z. Aydogmus, “Implementation of a fuzzy-based level control
using SCADA,” Expert Systems with Applications, vol. 36, no. 3,
pp. 6593–6597, 2009.

[40] X.-S. Yang and S. Deb, “Multiobjective cuckoo search for design
optimization,” Computers and Operations Research, 2011.

[41] S. Walton, O. Hassan, K. Morgan, and M. R. Brown, “Modified
cuckoo search: a new gradient free optimization algorithm
Chaos,” Solutions & Fractals, vol. 44, pp. 710–718, 2011.

[42] A. Aghaei and S. Azadi, “Optimizing Azadi Controller with
COA,” International Journal of Computer Applications, vol. 61,
no. 8, 2013.

[43] K. M. Passino and S. Yurkovich, Fuzzy Control, AddisonWesley
Longman, Menlo Park, Calif, USA, 1998.

[44] R. Rajabioun, “Cuckoo optimization algorithm,” Applied Soft
Computing Journal, vol. 11, no. 8, pp. 5508–5518, 2011.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


