
Eur. Phys. J. C (2014) 74:3152
DOI 10.1140/epjc/s10052-014-3152-4

Regular Article - Theoretical Physics

Off-diagonal deformations of kerr black holes in Einstein and
modified massive gravity and higher dimensions

Tamara Gheorghiu1,2,a, Olivia Vacaru3,b, Sergiu I. Vacaru4,5,c
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Received: 27 February 2014 / Accepted: 24 October 2014 / Published online: 23 December 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We find general parameterizations for generic
off-diagonal spacetime metrics and matter sources in gen-
eral relativity (GR) and modified gravity theories when the
field equations decouple with respect to certain types of
nonholonomic frames of reference. This allows us to con-
struct various classes of exact solutions when the coeffi-
cients of the fundamental geometric/physical objects depend
on all spacetime coordinates via corresponding classes of
generating and integration functions and/or constants. Such
(modified) spacetimes display Killing and non-Killing sym-
metries, describe nonlinear vacuum configurations and effec-
tive polarizations of cosmological and interaction constants.
Our method can be extended to higher dimensions which sim-
plifies some proofs for embedded and nonholonomically con-
strained four-dimensional configurations. We reproduce the
Kerr solution and show how to deform it nonholonomically
into new classes of generic off-diagonal solutions depend-
ing on 3–8 spacetime coordinates. Certain examples of exact
solutions are analyzed and they are determined by contri-
butions of a new type of interactions with sources in mas-
sive gravity and/or modified f(R,T) gravity. We conclude
that by considering generic off-diagonal nonlinear paramet-
ric interactions in GR it is possible to mimic various effects
in massive and/or modified gravity, or to distinguish certain
classes of “generic” modified gravity solutions which cannot
be encoded in GR.
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1 Introduction

The gravitational field equations in general relativity, GR,
and modified gravity theories, MGT, are very sophisticated
systems of nonlinear partial differential equations (PDEs).
Advanced analytic and numerical methods are necessary for
constructing exact and approximate solutions of such equa-
tions. A number of examples of exact solutions are sum-
marized in the monographs [1,2] where the coefficients of
the fundamental geometric/physical objects depend on one
and/or two coordinates in four-dimensional (4-d) spacetimes
and when the diagonalization of the metrics is possible via
coordinate transformations. There are well-known physi-
cally important exact solutions for the Schwarzschild, Kerr,
Friedman–Lemaître–Robertson–Walker (FLRW), wormhole
spacetimes etc. These classes of solutions are generated by
certain ansatzes when the Einstein equations are transformed
into certain systems of nonlinear second order ordinary equa-
tions (ODE), 2-d solitonic equations etc. Such systems of
PDEs display Killing vector symmetries which result in addi-
tional parametric symmetries [3–5].

The problem of constructing generic off-diagonal exact
solutions (which cannot be diagonalized via coordinate trans-
formations) with metric coefficients depending on three
and/or four coordinates is much more difficult. There are, in
general, six independent components of a metric tensor from
the ten components in a 4-d (pseudo-) Riemannian space-
time.1 Any such ansatz transforms the Einstein equations
into systems of nonlinear coupled PDEs which cannot be

1 Four components of the ten can be fixed to zero using coordinate
transformations, and this is related to the Bianchi identities

integrated in a general analytic form if the constructions are
performed in local coordinate frames.

In a series of works [5–9], we have shown that it is possible
to decouple the gravitational field equations and perform for-
mal analytic integrations in various theories of gravity with
metric and nonlinear, N, and linear connection structures. To
prove the decoupling property in the simplest way we have
to consider spacetime fibrations with splitting of dimensions,
2(or3) + 2 + 2 + · · · , introduce certain adapted frames of
reference, consider formal extensions/embeddings of 4-d
spacetimes into higher-dimensional ones and work with nec-
essary types of linear connections. Such an (auxiliary, in Ein-
stein gravity) adapted connection is also completely defined
in a compatible form by the metric structure and contains
a nonholonomically induced torsion field. This allows us to
decouple the gravitational field equations and generate vari-
ous classes of exact solutions in generalized/modified gravity
theories. After a class of generalized solutions has been con-
structed in explicit form, we can constrain to zero the induced
torsion fields and “extract” solutions in Einstein gravity. We
emphasize that it is important to impose the zero-torsion con-
ditions after we found a class of generalized solutions (to the
contrary, we cannot decouple the corresponding systems of
PDEs).

It should be noted here that the off-diagonal solutions con-
structed following the above described anholonomic frame
deformation method, AFDM, depend on various classes of
generating and integration functions and parameters. The
Cauchy problem can be formulated with respect to neces-
sary types of N adapted frames; it is possible to generate
various stable or unstable solutions with singularities, non-
trivial deformed horizons, stochastic behavior, etc. which
depends on the type of nonlinear couplings, prescribed sym-
metries, asymptotic and boundary conditions; see a number
of examples in [10–13] and references therein. In general, it
is not clear what physical importance (if any) these classes
of such solutions may have. For some well-defined condi-
tions, we can speculate about black hole/ellipsoid/wormhole
configurations embedded, for instance, into solitonic gravi-
tational backgrounds or to consider small ellipsoidal defor-
mations of certain “primary” spherical/cylindrical configu-
rations.

Our geometric techniques of constructing exact solutions
can be applied to four-dimensional, 4-d, (pseudo-) Rieman-
nian spacetimes with one and two Killing symmetries. For
such configurations, the well-known Kerr solution can be
generated as a particular case. Then these “primary” met-
rics can be subjected to nonholonomic deformations to “tar-
get” off-diagonal exact solutions depending on three, or four,
spacetime coordinates.

The first goal of this paper is to show how certain primary
physically important solutions depending on two coordinates
can be generalized to new classes of exact solutions in Ein-
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stein gravity and (higher-dimensional) modifications, with
zero or nonzero torsion, depending on all possible space-
time coordinates. We consider diagonal and off-diagonal
parametrizations of primary and target solutions which are
different from those in [5–8] and other works. In this way we
generate new classes of Einstein spacetimes and modifica-
tions and show that the AFDM encodes various possibilities
for generalization.

The second goal is to construct explicit examples of
exact solutions as nonholonomic deformations of the Kerr
metric determined by nontrivial sources and interactions
in massive gravity and/or modified f (R, T ) gravity; see
reviews and original results in Refs. [14–24]. For non-
Hilbert Lagrangians in gravity theories, the functionals
f depend on scalar curvature R (computed, in general,
for a linear connection with nontrivial torsion, or for the
Levi–Civita one), on various matter and effective mat-
ter sources for modified gravity theories etc. We provide
a series of exact and/or small parameter-dependent solu-
tions which for small deformations mimic rotoid Kerr–de
Sitter-like black holes/ellipsoids self-consistently embedded
into generic off-diagonal backgrounds of 4/6/8-dimensional
spacetimes. With respect to nonholonomic frames and via
the re-definition of generating and integrations functions and
coefficients of the sources, modifications of Einstein grav-
ity are modeled by effective polarized cosmological con-
stants and off-diagonal terms in the new classes of solu-
tions. For certain geometrically well-defined conditions,
various effects in massive and f -modified gravity can be
encoded into vacuum and non-vacuum, configurations (exact
solutions) with nontrivial effective cosmological constants
in GR. In some sense, we can mimic physically impor-
tant effects in modified gravity effects (for instance, accel-
eration of universe, certain dark energy and dark matter
locally anisotropic interactions, effective renormalization of
quantum gravity models; see Refs. [13,25,26]) via nonlin-
ear generic off-diagonal interactions on effective Einstein
spaces. The main question arising from such models and
solutions is whether or not we need to modify Einstein’s
gravitational theory, or to try and solve physically important
issues in modern cosmology and quantum gravity by consid-
ering only nonlinear and generic off-diagonal interactions
based on the general relativity paradigm. Necessarily addi-
tional theoretical and experimental/observational research
is required in order to analyze and solve these problems.
Such directions of research cannot be developed if we con-
sider only diagonalizable metrics (and rotating ones, like
the Kerr metric) generated by an ansatz with two Killing
symmetries.

The plan of the paper is as follows: In Sect. 2 we pro-
vide the necessary geometric preliminaries on nonholonomic
2+2+2+ . . . splittings of the spacetime dimensions in GR
and MGT. We summarize the key results on the AFDM for

constructing generic off-diagonal solutions in gravity theo-
ries depending on all spacetime coordinates in dimensions
4, 5, . . . , 8.

In Sect. 3 we prove the general decoupling property of the
(modified) Einstein equations which allows us to perform for-
mal integrations of corresponding systems of nonlinear PDE.
The geometric constructions are performed for the “simplest”
case of one Killing symmetry in 4-d and generalized to non-
Killing configurations and for higher dimensions.

Section 4 is devoted to the theory of nonholonomic
deformations of exact solutions in modified gravity theo-
ries containing the Kerr solution as a “primary” configu-
ration but with target metrics being constructed as exact
solutions in massive gravity and/or f -modified gravity. We
show how using the AFDM we can generate as a partic-
ular case the Kerr solution. Then we construct solutions
with general off-diagonal deformations of the Kerr metrics
in 4-d massive gravity, provide examples of (non-Einstein)
metrics with nonholonomically induced torsions, and study
small f -modifications of the Kerr metrics deformed by
massive gravity. A separate subsection is devoted to ellip-
soidal 4-d deformations of the Kerr metric resulting in
a target vacuum rotoid or Kerr–de Sitter configuration.
Another subsection is devoted to extra-dimensional mas-
sive off-diagonal modifications of the Kerr solutions, for
the case of 6-d spacetime with nontrivial cosmological con-
stant and for 8-d deformations which may model Finsler-like
configurations.

Finally (in Sect. 5), we provide our conclusions and spec-
ulate on the physical meaning of the exact solutions con-
structed using the AFDM for massive modified gravity the-
ories and how such effects can be modeled by nonlinear
off-diagonal interactions in Einstein gravity. Some relevant
formulas for the coefficients and sketches of the proofs are
presented in the Appendix.

2 Nonholonomic frames with 2 + 2 + · · · splitting

In this section, we state the geometric conventions and out-
line the formalism which are necessary for decoupling and
integrating the gravitational field equations in GR and MGTs;
see relevant details in [5–8].

2.1 Geometric preliminaries

2.1.1 Conventions

For (higher-dimensional) spacetime geometric models and
related exact solutions on a finite-dimensional (pseudo-) Rie-
mannian spacetime s V , we consider conventional splitting
of dimensions, dim V = 4 + 2s = 2 + 2 + · · · + 2 ≥
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4; s ≥ 0.2 The anholonomic frame deformation method,
AFDM, allows us to construct exact solutions with arbi-
trary signatures (±1,±1,±1, . . . ,±1) of metrics sg. Let
us establish conventions on (abstract) indices and coordi-
nates uαs = (xis , yas ), for s = 0, 1, 2, 3, . . . labeling the
oriented number of two-dimensional, 2-d, “shells” added to
a 4-d spacetime. For s = 0, we write uα = (xi , ya) and
consider such local systems of coordinates:

s = 0 : uα0 = (xi0 , ya0) = uα = (xi , ya),

s = 1 : uα1 = (xα = uα, ya1) = (xi , ya, ya1),

s = 2 : uα2 = (xα1 = uα1 , ya2) = (xi , ya, ya1 , ya2),

s = 3 : uα3 = (xα2 = uα2 , ya3) = (xi , ya, ya1 , ya2 , ya3), . . .

when indices run over the corresponding values i, j, . . . =
1, 2; a, b, . . . = 3, 4; a1, b1 · · · = 5, 6; a2, b2 · · · = 7, 8;
a3, b3 · · · = 9, 10, . . . and, for instance, i1, j1, · · · =
1, 2, 3, 4; i2, j2, . . . = 1, 2, 3, 4, 5, 6; i3, j3, · · · = 1, 2, 3, 4,
5, 6, 7, 8; . . . In brief, we shall write u = (x, y); 1u =
(u, 1 y) = (x, y, 1 y), 2u = ( 1u, 2 y) = (x, y, 1 y, 2 y), . . . .

Local frames (bases, eαs ) on s V are denoted in the form

eαs = e
αs
αs (

su)∂/∂uαs , (1)

where the partial derivatives are ∂βs := ∂/∂uβs , and indices
are underlined if it is necessary to emphasize that such val-
ues are defined with respect to a coordinate frame. In general,
the frames (1) are nonholonomic (equivalently, anholonomic,
or non-integrable), eαs eβs − eβs eαs = W γs

αsβs
eγs , where the

anholonomy coefficients W γs
αsβs

= W γs
βsαs

(u) vanish for holo-
nomic, i.e. integrable, configurations. The dual frames are
eαs = e αs

αs
( su)duαs , which can be defined from the condi-

tion eαs �eβs = δ
αs
βs

(the ’hook’ operator � corresponds to the
inner derivative and δαs

βs
is the Kronecker symbol).

The conventional 2+2+. . . splitting for a metric is written
in the form

sg =gαsβs eαs ⊗ eβs = gαsβs
duαs ⊗ duβs , s = 0, 1, 2, . . . ,

(2)

where the coefficients of the metric transform following the
rule

gαsβs = e
αs
αs e

β
s
βs

gαsβs
. (3)

2 In a similar form, we can split odd dimensions, for instance, dim V =
3+2+· · ·+2. Here it should be noted that it is not possible to elaborate
any simplified system of notations if we want to integrate in general
explicit form certain systems of PDEs related to higher-dimensional
gravitational theories. It is important to distinguish indices and coordi-
nates corresponding to higher dimensions and nonholonomically con-
strained variables.

Similar frame transformations can be considered for all ten-
sor objects. We cannot preserve a splitting of dimensions
under general frame/coordinate transformations.

2.1.2 Nonholonomic splitting with associated N
connections

To prove the general decoupling property of the Einstein
equations and generalizations/ modifications we have to con-
struct a necessary type of nonholonomic 2+2+ . . . splitting
with associated nonlinear connection (N connection) struc-
ture. Such a splitting is introduced using nonholonomic dis-
tributions:3

1. A N connection is defined by a Whitney sum

sN : T sV = hV ⊕vV ⊕ 1vV ⊕ 2vV ⊕· · ·⊕ svV, (4)

for a conventional horizontal (h) and vertical (v) “shell
by shell” splitting. We shall write boldface letters for
spaces and geometric objects enabled/adapted to the N
connection structure. This defines a local fibered structure
on sV when the coefficients of the N connection, N as

is
,

for sN = N as
is
( su)dxis ⊗ ∂/∂yas , induce a system of N

adapted local bases, with N-elongated partial derivatives,
eνs = (eis , eas ), and cobases with N adapted differentials,
eμs = (eis , eas ). On a 4-d V,

ei = ∂

∂xi
− N a

i
∂

∂ya
, ea = ∂

∂ya
, (5)

ei = dxi , ea = dya + N a
i dxi , (6)

and on s ≥ 1 shells,

eis = ∂

∂xis
− N as

is

∂

∂yas
, eas = ∂

∂yas
, (7)

eis = dxis , eas = dyas + N as
is

dxis . (8)

The N adapted operators (5) and (7) define a subclass
of general frame transformations of type (1). The corre-
sponding anholonomy relations,

[eαs , eβs ] = eαs eβs − eβs eαs = W γs
αsβs

eγs , (9)

3 In modern gravity, the so-called Arnowit–Deser–Misner (ADM) for-
malism with a 3+1 splitting is largely used; see details in [27]. It is not
possible to elaborate a technique for a general decoupling of the gravi-
tational field equations and generating off-diagonal solutions if we use
only nonholonomic frame bases determined by the “shift” and “lapse”
functions. To construct exact solutions it is more convenient to work
with a correspondingly defined non-integrable 2 + 2 + · · · splitting
[7,8].
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are completely defined by the N connection coefficients
and their partial derivatives, W bs

isas
= ∂as N bs

is
and W as

js is
=

�
as
is js
,where the curvature of the N connection is�as

is js
=

e js

(
N as

is

)
− eis

(
N as

js

)
.

2. Any metric structure sg = {gαsβs
} on sV can be written

as a distinguished metric (d-metric)4,

sg = gis js (
su) eis ⊗ e js + gasbs (

su)eas ⊗ ebs

= gi j (x) ei ⊗ e j + gab(u) ea ⊗ eb

+ ga1b1(
1u) ea1 ⊗ eb1

+ · · · .+ gasbs (
su)eas ⊗ ebs. (10)

In coordinate frames, a metric (2) is parameterized by
generic off-diagonal matrices,

g
αβ
( u) =

[
gi j + hab N a

i N b
j hae N e

j
hbe N e

i hab

]

g
α1β1

(
1u
)

=
[

g
αβ

ha1e1 N e1
β1

hb1e1 N e1
α1 ha1b1

]
,

g
α2β2

(
2u
)

=
[

g
α1β1

ha2e2 N e2
β1

hb2e2 N e2
α1 ha2b2

]
, . . .

g
αsβs

( su
) =

[
gis js + has bs N as

is
N bs

js
has es N es

js
hbses N es

is
has bs

]
.

For extra dimensions, such parameterizations are similar
to those introduced in the Kaluza–Klein theory when yas , s ≥
1, are considered as extra-dimension coordinates with cylin-
drical compactification and N es

α (
su) ∼ Aes

asα(u)y
α are for

certain (non-) Abelian gauge fields Aes
asα(u). In general,

various parameterizations can be used for warped/trapped
coordinates in brane gravity and modifications of GR; see
examples in [10–13].

2.1.3 The Levi–Civita and auxiliary N adapted connections

There is a subclass of linear connections on sV which
are adapted to the N connection splitting (4). By def-
inition, a distinguished connection, d-connection, D =
(h D; vD), 1D =( 1h D; 1vD), . . . , sD =( s−1h D; svD),
preserves under parallelism the N connection structure.5 The
coefficients

4 Geometric objects with coefficients defined with respect to N adapted
frames are called, respectively, distinguished metrics, distinguished ten-
sors etc. (in brief, d-metrics, d-tensors etc.)
5 In our works, certain left ”up” or ”low” labels are used in order to
emphasize that certain geometric objects are defined on a corresponding
shell and in terms of a fundamental geometric object. We shall omit such
labels if that does not result in ambiguities.

	αβγ = (Li
jk, La

bk; Ci
jc,Ca

bc),

	
α1
β1γ1

= (Lαβγ , La1
b1γ

; Cα
βc1
,Ca1

b1c1
),

	
α2
β2γ2

= (Lα1
β1γ1

, La2
b2γ1

; Cα1
β1c2

,Ca2
b2c2

), . . . ,

	
αs
βsγs

= (Lαs−1
βs−1γs−1

, Las
bsγs−1

; Cαs−1
βs−1cs

,Cas
bs cs
) (11)

of a d-connection sD = {Dαs
} can be computed in N adapted

form with respect to frames (5)–(8) following the equations
Dαs eβs = 	

αs
βsγs

eγs and covariant derivatives parameterized
in the form

Dα = (Di ; Da),Dα1 = ( 1 Dα; Da1),

Dα2 = ( 2 Dα1; Da2), . . . ,Dαs = ( s Dαs−1; Das ),

for h D = (Li
jk, La

bk), vD = (Ci
jc,Ca

bc),

1h D = (Lαβγ , La1
b1γ
), 1vD = (Cα

βc1
,Ca1

b1c1
),

2h D = (Lα1
β1γ1

, La2
b2γ1

), 2vD = (Cα1
β1c2

,Ca2
b2c2

), . . . ,

sh D =
(

Lαs−1
βs−1γs−1

, Las
bsγs−1

)
, svD =

(
Cαs−1
βs−1cs

,Cas
bs cs

)
.

Such coefficients can be computed with respect to mixed
subsets of coordinates and/or N adapted frames on different
shells. It is possible always to consider such frame transfor-
mations when all shell frames are N adapted and

1 Dα = Dα, 2 Dα1 = Dα1 , . . .
s Dαs−1 = Dαs−1 .

To perform computations in N adapted-shell form we can
consider a differential connection 1-form 	

αs
βs

= 	
αs
βsγs

eγs

and elaborate a differential form calculus with respect to skew
symmetric tensor products of N adapted frames (5)–(8). For
instance, the torsion T αs = {Tαs

βsγs
} and curvature Rαs

βs
=

{Rαs
βsγsδs

} d-tensors of sD can be computed, respectively,

T αs := sDeαs = deαs + 	
αs
βs

∧ eβs (12)

Rαs
βs

:= sD	αs
βs

= d	αs
βs

− 	
γs
βs

∧ 	αs
γs

= Rαs
βsγsδs

eγs ∧ eδs ; (13)

see Refs. [8] for explicit calculation of the coefficients
Rαs
βsγsδs

in higher dimensions.
For any (pseudo-) Riemannian metric sg, we can con-

struct in standard form the Levi–Civita connection (LC-
connection), s∇ = { �	

αs
βsγs

}, which is completely defined
by the metric coefficients following two conditions: This lin-
ear connection is metric compatible, s∇( sg) = 0, and with
zero torsion, �T αs = 0 (see (12) for sD → s∇). Such a
linear connection is not a d-connection because it does not
preserve under general coordinate transformations a N con-
nection splitting.

To elaborate a covariant differential calculus adapted to
decomposition (4) we have to introduce a different type of
linear connection. This is the canonical d-connection sD̂
which is completely and uniquely defined by a (pseudo-)
Riemannian metric sg (11) for a chosen sN = {N as

is
} if and

only if sD̂( sg) = 0 and the horizontal and vertical torsions
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are zero, i.e. hT̂ = {T̂i
jk} = 0, vT̂ = {T̂a

bc} = 0, 1vT̂ =
{T̂a1

b1c1
} = 0, . . . , svT̂ = {T̂as

bs cs
} = 0. We can check by

straightforward computations that such conditions are sat-
isfied by sD̂ = {	̂γs

αsβs
} with coefficients (11) computed

recurrently,

L̂i
jk = 1

2
gir (ek g jr + e j gkr − er g jk

)
,

L̂a
bk = eb(N

a
k )+ 1

2
hac

(
ekhbc − hdc eb N d

k − hdb ec N d
k

)
,

Ĉi
jc = 1

2
gikecg jk, Ĉa

bc = 1

2
had (echbd + echcd − ed hbc) ,

L̂αβγ = 1

2
gατ

(
eγ gβτ + eβgγ τ − eτ gβγ

)
,

L̂a1
b1γ

= eb1(N
a1
γ )+ 1

2
ha1c1

×
(

eγ hb1c1 − hd1c1 eb1 N d1
γ − hd1b1 ec1 N d1

γ

)
,

Ĉα
βc1

= 1

2
gατ ec1 gβτ , Ĉa1

b1c1
= 1

2
ha1d1

× (ec1 hb1d1 + ec1 hc1d1 − ed1 hb1c1

)
,

. . .

L̂αs−1
βs−1γs−1

= 1

2
gαs−1τs−1

(
eγs−1 gβs−1τs−1

+eβs−1 gγs−1τs−1 − eτs−1 gβs−1γs−1

)
,

L̂as
bsγs−1

= ebs (N
as
γs−1

)+ 1

2
hascs

(
eγs−1 hbscs − hds cs ebs N ds

γs−1

−hds bs ecs N ds
γs−1

)
,

Ĉαs−1
βs−1cs

= 1

2
gαs−1τs−1 ecs gβs−1τs−1 , Ĉas

bs cs
= 1

2
has ds

× (ecs hbsds + ecs hcs ds − eds hbs cs

)
. (14)

The torsion d-tensor (12) of sD̂ is completely defined by
sg (11) for any chosen sN = {N as

is
} if the above coefficients

(14) are introduced “shell by shell” into the formulas

T̂ i
jk = L̂i

jk − L̂i
k j , T̂ i

ja = Ĉi
jb, T̂ a

ji = −�a
ji , T̂ c

a j

= L̂c
a j − ea(N

c
j ), T̂ a

bc = Ĉa
bc − Ĉa

cb,

. . . . (15)

T̂ αs
βsγs

= L̂αs
βsγs

− L̂αs
γsβs

, T̂ αs
βs bs

= Ĉαs
βs bs

, T̂ as
βsγs

= �
as
γsβs

.

The N adapted formulas (14) and (15) show that any coef-
ficient for such objects computed in 4-d can be similarly
extended shell by shell by any value s = 1, 2, . . . . redefin-
ing correspondingly the h- and v-indices. Hereafter, we shall
present coordinate formulas only for s = 0, omitting the
label s, i.e. with α = (i, a), or for some arbitrary coeffi-
cients αs = (is, as) if that will not result in ambiguities.

Because both linear connections s∇ and sD̂ are defined
by the same metric structure, we can compute a canonical
distortion relation,

s∇ = sD̂ + sẐ, (16)

where the distorting tensor sẐ = { Ẑ
αs
βsγs

} is uniquely

defined by the same metric sg (11). The values Ẑ
αs
βsγs

are
algebraic combinations of T̂ αs

βsγs
and vanish for zero torsion.

For instance, the GR theory in 4-d can be formulated equiv-
alently using the connection ∇ and/or D̂ if the distorting
relation (16) is used [5,7]. The nonholonomic variables ( sg
(10), sN, sD̂) are equivalent to standard ones ( sg (2), s∇).
Here we note that s∇ and sD̂ are not tensor objects and
such connections are subjected to different rules of coordi-
nate transformations. It is possible to consider frame trans-
formations with certain sN = {N as

is
} when the conditions

�	
γs
αsβs

= 	̂
γs
αsβs

are satisfied with respect to some N adapted

frames (5)–(8) even, in general, where we have s∇ 
= sD̂ and
the corresponding curvature tensors, � R

αs
βsγsδs


= R̂αs
βsγsδs

.

2.2 The Einstein equations in N adapted variables

An important motivation to use the linear connection sD̂ is
that the Einstein equations written in variables ( sg , sN, sD̂)
decouple with respect to N adapted frames of reference,
which gives us the possibility to construct very general
classes of solutions; see proofs and examples in [5–8,10–
13]. We cannot “see” a general decoupling property for such
nonlinear systems of PDE if we work from the very beginning
with s∇, for instance, in coordinate frames or with respect
to arbitrary nonholonomic ones: The condition of zero tor-
sion, �T αs = 0 states “strong coupling” conditions between
various tensor coefficients in the Einstein equations and does
not allow one to decouple the equations.6

The main idea of the “anholonomic frame deforma-
tion method”, AFDM, is to use the data ( sg , sN, sD̂)
in order to decouple certain gravitational and matter field
equations, then to solve them in very general off-diagonal
form, with a possible dependence on all coordinates, and
generate exact solutions with nontrivial nonholonomically
induced torsion. Such integral varieties of solutions depend
on a number of arbitrary generating and integration func-
tions and possible symmetry parameters. This geometric
approach can be applied for constructing exact solutions in
various modified gravity theories with nonlinear effective
Lagrangians and nontrivial torsion. Nevertheless, we can
extract “integral subvarieties” of solutions in GR if at the
end (after a class of “generalized” solutions was constructed)
we impose, additionally, the condition of zero torsion (15).
This constrains the set of admissible generating/integration
functions but also results in generic off-diagonal solutions

6 The condition of decoupling a system of equations to contain, for
instance, only partial derivatives on a coordinate is different from that
of a separation of variables for a function.
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depending on all coordinates. We can impose certain sym-
metry/asymptotic/boundary/Cauchy conditions in order to
determine certain geometrically/physically important off-
diagonal configurations. Following additional assumptions,
this can be related to small parametric off-diagonal, solitonic
or other types of deformations of well-known solutions in
GR. The goal of this work is to study possible nonholonomic
transformations of the Kerr and several wormhole metrics
into off-diagonal (4-d or higher-dimensional) exact solutions.

The Ricci d-tensor Ric = {Rαsβs := Rτs
αsβsτs

} of a d-
connection sD is introduced via a respective contracting of
coefficients of the curvature tensor (13). The explicit formu-
las for the h-/v-components,

Rαsβs = {
Ris js := Rks

is js ks
,

Ri1a1 := −Rk1
i1k1a1

, . . . , Rasis := Rbs
as is bs

}
,

(17)

are direct recurrent s-modifications of those derived in Refs.
[5–8] (we do not repeat such details in this article). Contract-
ing such values with the inverse d-metric, with coefficients
computed for the inverse matrix of sg (10), we define and
compute the scalar curvature of sD,

s R := gαsβs Rαsβs = gis js Ris js + hasbs Ras bs

= R + S + 1S + · · · + s S, (18)

with respective h- and v-components of the scalar curva-
ture, R = gi j Ri j , S = hab Rab,

1S = ha1b1 Ra1b1, . . . ,
s S = hasbs Ras bs .

The Einstein d-tensor sE = {Eαsβs } for any data
( sg, sN, sD) can be defined in standard form,

Eαsβs := Rαsβs − 1

2
gαsβs

s R. (19)

It should be noted that sD( sE) 
= 0 and the d-tensor
Rαsβs is not symmetric for a general sD. Nevertheless, we
can always compute, for instance, sD̂( s Ê) as a unique dis-
tortion relation determined by (16). This is a consequence of
the nonholonomic splitting structure (4). It is similar to non-
holonomic mechanics when the conservation laws became
more sophisticated when we impose certain non-integrable
constraints on the dynamical equations.

The Einstein equations for a metric gβsγs can be postu-
lated in standard form using the LC-connection s∇ (with
corresponding Ricci tensor, � Rαsβs , curvature scalar, s

�
R,

and Einstein tensor, �Eαsβs ),

�Eαsβs := � Rαsβs − 1

2
gαsβs

s
�
R = � �Tαsβs , (20)

where � is the gravitational constant and �Tαsβs is the stress–
energy tensor for matter fields. In 4-d, there are well-defined
geometric/variational and physically motivated procedures
of constructing �Tαsβs . Such values can be similarly (at
least geometrically) re-defined with respect to N adapted

frames using the distorting relations (16) and introducing
extra dimensions.7

The gravitational field equations (20) can be rewrit-
ten equivalently in N adapted form for the canonical d-
connection sD̂,

sR̂ βsδs − 1

2
gβsδs

s R = ϒβsδs , (21)

L̂cs
as js

= eas (N
cs
js
), Ĉis

js bs
= 0, �as

js is
= 0, (22)

where the sources ϒβsδs are formally defined in GR but for
extra dimensions when ϒβsδs → �Tβsδs for sD̂ → s∇. The
solutions of (21) are found with nonholonomically induced
torsion (12). If the conditions (22) are satisfied, the d-torsion
coefficients (15) are zero and we get the LC-connection, i.e.
it is possible to “extract” solutions of the standard Einstein
equations. The decoupling property can be proved in explicit
form working with sD̂ and nonholonomic torsion config-
urations. Having constructed certain classes of solutions in
explicit form, with nonholonomically induced torsions and
depending on various sets of integration and generating func-
tions and parameters, we can “extract” solutions for s∇
imposing at the end additional constraints resulting in zero
torsion.

2.3 Nonholonomic massive f (R, T ) gravity and extra
dimensions

We shall consider modified gravity theories constructed on
dimension shells derived for the action

S = 1

16π

∫
δ4+2su

√|gαsβs |[ f ( s R, s T )− μ2
g

4
U

×(gμsνs ,Kαsβs )+ m L]. (23)

This generalizes to nonholonomic variables the modified
f (R, T ) gravity; see reviews in [14–17], and the ghost-
free massive gravity (by de Rham, Gabadadze, and Tolley,
dRGT) [18–20]. Nontrivial mass terms allow us to solve cer-
tain problems of the bimetric theory by Hassan and Rosen,
[21,22], with connections to a variety of recent research
in black hole physics and modern cosmology [23,24], and
this allows us to model solutions of (23) in various theo-
ries with generalized Finsler branes, stochastic processes,
Clifford and phase variables, fractional derivatives etc.; see
details in Refs. [25,28–32,34]. For instance, yas -coordinates
can be treated as “velocity/momentum” variables, to model
stochastic and fractional processes, or to be considered as
“standard” extra-dimensional ones. In this paper, we shall
use the units h̄ = c = 1 and the Planck mass MPl is defined
M2

Pl = 1/8πG via 4-d Newton constant G and similar units
will be considered for higher dimensions. We write δ4+2su

7 We do not need additional field equations for torsion fields like in
Einstein–Cartan, gauge or string gravity theories.
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instead of d4+2su because N-elongated differentials are used
(5) and consider the constant μg as the mass parameter for
gravity (for simplicity, massive gravity theories will be stud-
ied for 4-d spacetimes). The geometric and physical mean-
ing of the values contained in this formula will be explained
below.

The Lagrangian density m L in action (23) is used for
computing the stress–energy tensor of matter. On nonholo-
nomic manifolds/bundles such variations can be considered
in N adapted form, using the operators (5) and (6), on inverse
the metric d-tensor (10). For all shells, we can compute

Tαsβs = − 2√|gμs νs |
δ(
√|gμsνs | m L)

δgαsβs , when the trace is (by defi-

nition) s T := gαsβs Tαsβs . The functional f ( s R, s T ) mod-
ifies the standard Einstein–Hilbert Lagrangian (with a scalar
curvature R usually taken for the Levi–Civita connection ∇)
to that for the modified f -gravity in various dimensions but
with dependence on s R and T . For various applications in
modern cosmology, we can assume that

Tαsβs = (ρ + p)vαs vβs − pgαsβs , (24)

for the approximation of perfect fluid matter with the energy
density ρ and the pressure p. The four-velocity vαs is sub-
jected to the conditions vαs vαs = 1 and vαs D̂βs vαs = 0, for
m L = −p in a corresponding local N adapted frame. For

simplicity, we can parameterize

f ( s R, s T ) = 1 f ( s R)+ 2 f ( s T ) (25)

and denote 1 F( s R) := ∂ 1 f ( s R)/∂ s R and 2 F( s T ) :=
∂ 2 f ( s T )/∂ s T .

A mass term with “gravitational mass” μg and potential

U/4 = −12 + 6[√S]+[S]−[√S]2 + α3{18[√S]
− 6[√S]2 + [√S]3 + 2[S3/2] − 3[S]([√S] − 2)

− 24} + α4{[
√

S](24 − 12[√S] − [√S]3) (26)

− 12[√S][S] + 2[√S]2(3[S] + 2[√S])
+ 3[S](4 − [S])− 8[S3/2](√S − 1)+ 6[S2] − 24}

is considered in (23) in addition to the usual f -gravity term
(in particular, to the Einstein–Hilbert one). The trace of a shell
extended matrix S = (Sμsνs ) is denoted by [S] := Sνs

νs . We
understand the square root of such a matrix,

√
S = (

√
Sνs
μs
),

to be a matrix for which
√

Sνs
αs

√
Sαs
μs

= Sνs
μs and α3 and

α4 are free parameters. We use such constants which trans-
form U into the standard 4-d one for s = 0. In [19,20], see
additional arguments in [35], such a nonlinearly extended
Fierz–Pauli type potential was shown to result in a theory
of massive gravity which is seem to be free from ghost-
like degrees of freedom (it takes a special form of total
derivative in the absence of dynamics). We emphasize that

the potential generating matrix S is constructed in a special
form, which results in a d-tensor with shell decomposition,
Kνs
μs = δ

νs
μs − √

Sνs
μs
, characterizing metric fluctuations

away from a fiducial (flat) 4-d spacetime and possible extra
dimensions, or velocity/momentum type variables.

In 4-d, the coefficients

Sνμ = gναηνμeαsνeμsμ, (27)

with the Minkowski metric ηνμ = diag(1, 1, 1,−1), are
generated by introducing four scalar Stükelberg fields sν,
which is necessary for restoring the diffeomorphism invari-
ance. Using N adapted shell extended values gνsαs and eαs we
can always transform a tensor Sμν into a shell distinguished
d-tensor Sμsνs characterizing nonholonomically constrained
fluctuations. This is possible for the values Kνs

μs ,Sνs
μs ,

√
Sνs
μs

etc. even shell extended sνs transforms as scalar fields under
coordinate and frame transformations.

For simplicity, we can consider 4-d variations of the action
(23) in N adapted form for the coefficients of d-metric gνα
(10). The corresponding generalized/effective Einstein equa-
tions for the f -modified massive gravity are

Êαβ = ϒβδ, (28)

where the source encodes three terms of a different nature,

ϒβδ = e f η G Tβδ + e f Tβδ + μ2
g

K Tβδ. (29)

The first component is determined by the usual matter
fields with energy momentum Tβδ tensor but with effec-
tive polarization of the gravitational constant e f η = [1 +
2 F/8π ]/ 1 F. The second term is for the f -modifications of
the energy–momentum tensor,

e f Tβδ =
[

1

2

(
1 f − 1 F R̂ + 2p 2 F + 2 f

)
gβδ

− (gβδ D̂αD̂α − D̂βD̂δ
) 1 F

]
/ 1 F. (30)

The mass gravity contribution, i.e. the third term in the
source is computed as a dimensionless effective stress–
energy tensor

K Tαβ := 1

4
√|gμν |

δ(
√|gμν | U)
δgαβ

= − 1

12
{ Ugαβ/4 − 2Sαβ + 2([√S] − 3)

√
Sαβ

+α3[3(−6 + 4[√S] + [√S]2 − [S])√Sαβ
+ 6([√S] − 2)Sαβ − S3/2

αβ ]
−α4[24

(
S2
αβ − ([√S] − 1)S3/2

αβ

)
]

+12(2 − 2[√S] − [S] + [√S]2)Sαβ

123



Eur. Phys. J. C (2014) 74 :3152 Page 9 of 27 3152

+(24 − 24[√S] + 12[√S]2 − [√S]3 − 12[S]
+12[S][√S] − 8[S3/2])√Sαβ}.

The value K Tαβ encodes bi-metric configurations when
the second (fiducial) d-metric fαμ = ηνμeαsνeμsμ is deter-
mined by the St ükelberg fields sν . The potential U (26)
defines interactions between gμν and fμν via

√
Sνμ =√

gνμfαν and Sνμ := gνμfαν. We can construct exact solu-
tions in explicit form and study bi-metric gravity models
with K Tαβ = λ(xk) gαβ, which can be generated by such
configurations of sν when gμν = ι2(xk)fμν with a possible
nontrivial conformal factor ι2. Such nonholonomic configu-
rations allow us to compute, using (27), the diagonal matri-
ces Sνμ := ι−2δνμ. We can express the effective polarized
anisotropic constant encoding the contributions of sν as a
functional λ[ι2(xk)].

The theories with gravitational field equations (28) are
similar to the Einstein one but for a different metric compat-
ible linear connection, D̂, and with a nonlinear “gravitation-
ally polarized” coupling in the effective source ϒβδ (29). In
the next sections, we shall prove that such nonlinear systems
of PDE can be integrated in general forms for any N adapted
parameterizations

ϒ
β
δ = diag[ϒα : ϒ1

1 = ϒ2
2 = ϒ(xk, y3);ϒ3

3 = ϒ4
4

= vϒ(xk)]. (31)

In particular, we can consider

ϒ = vϒ = � = const, (32)

for an effective cosmological constant�; see details in [5–9].
It should be noted that D̂δ 1 F|ϒ=� = 0 in (30) if we prescribe
a functional dependence on R̂ = const (we have to choose
particular types of N coefficients and respective canonical
d-connection structure). For certain general distributions of
the matter fields and effective matter, we can prescribe such
values for (32) with Tβδ = Ť (xk)gβδ and s R = �̂ in (31);
then we can write

ϒ = �̃+ λ̃, for λ̃ = μ2
g λ(x

k),

�̃ = e f η G Ť (xk)+ 1

2
( 1 f (�̂)− �̂ 1 F(�̂)

+ 2p 2 F(Ť )+ 2 f (Ť )),
e f η = [1 + 2 F(Ť )/8π ]/ 1 F(�̂). (33)

In general, any term may depend on coordinates xi but via
a re-definition of the generating functions they can be trans-
formed into certain effective constants. Prescribing the val-
ues �̂, Ť , λ, p and the functionals 1 f and 2 f, we describe
a nonholonomically constrained matter and effective matter
fields dynamics with respect to N adapted frames.

All the above constructions can be extended to extra shells
s = 1, 2, . . . via a formal re-definition of indices for higher

dimension. Under very general assumptions, the effective
source can be parameterized in the form

ϒ
βs
δs

= ( s�̃+ s λ̃)δ
βs
δs
. (34)

This formal diagonal form is fixed with respect to N
adapted frames and (see next section) for corresponding re-
definition of certain generation functions. Such ( s�̃+ s λ̃)-
terms encode via nonholonomic constraints and the canoni-
cal d-connection sD̂ a variety of physically important infor-
mation on modifications of the GR theory by modifications
in f -functional and/or massive gravity theories of various
dimensions. LC-configurations can be extracted in all such
types of theories by imposing additional constraints when
D̂T =0 → ∇.

3 Decoupling and integration of (modified) Einstein
equations

In this section, we show how the gravitational field equations
( 21) with possible constraints (22), or (20 ), can be formally
integrated in very general forms for generic off-diagonal met-
rics with coefficients depending on all spacetime coordinates.

3.1 Off-diagonal configurations with Killing symmetries

In the simplest form, the decoupling property can be proven
for certain ansatz with at least one Killing symmetry.

3.1.1 Ansatz for metrics, N connections, and gravitational
polarizations

Let us consider metrics of type (10) which via frame trans-
formations (3) (for N adapted transformations, gαsβs =
e
α′

s
αs e

β ′
s
βs

gα′
sβ

′
s
) can be parameterized in the form8

s
K g = gi (x

k)dxi ⊗ dxi + ha(x
k, y4)ea ⊗ eb

+ha1(u
α, y6) ea1 ⊗ ea1 + ha2(u

α1 , y8)

×ea2 ⊗ eb2 + . . . .+ has ( uαs−1 , yas )eas ⊗ eas , (35)

where

ea = dya + N a
i dxi , for N 3

i = ni (x
k, y4),

N 4
i = wi (x

k, y4);
ea1 = dya1 + N a1

α duα, for N 5
α = 1nα(u

β, y6),

N 6
α =1 wα(u

β, y6);
ea2 = dya2 + N a2

α1
duα1 , for N 7

α1
= 2nα1(u

β1 , y8),

N 8
α1

= 2wα(u
β1 , y8);

. . . .

8 In our former works, we used a quite different system of notation.
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gα1β1 =

g1 + (n1)
2h3 + (w1)

2h4
+( 1n1)2h5 + ( 1w1)

2h6

n1n2h3 +w1w2h4+
1n1

1n2h5 + 1w1
1w2h6

n1h3+
1n1

1n3h5 + 1w1
1w3h6

w1h4+
1n1

1n4h5 + 1w1
1w4h6

1n1h5
1w1h6

n1n2h3 + w1w2h4+
1n1

1n2h5 + 1w1
1w2h6

g2 + (n2)
2h3 + (w2)

2h4
+( 1n2)2h5 + ( 1w2)

2h6

n2h3+
1n2

1n3h5 + 1w2
1w3h6

w2h4+
1n2

1n4h5 + 1w2
1w4h6

1n2h5
1w2h6

n1h3+
1n1

1n3h5 + 1w1
1w3h6

n2h3+
1n2

1n3h5 + 1w2
1w3h6

h3 + ( 1n3)
2h5 + ( 1w3)

2h6 1n3
1n4h5 + 1w3

1w4h6
1n3h5

1w3h6

w1h4+
1n1

1n4h5 + 1w1
1w4h6

w2h4+
1n2

1n4h5 + 1w2
1w4h6

1n3
1n4h5 + 1w3

1w4h6 h4 + ( 1n4)
2h5 + ( 1w4)

2h6
1n4h5

1w4h6

1n1h5
1n2h5

1n3h5
1n4h5 h5 0

1w1h6
1w2h6

1w3h6
1w4h6 0 h6

Fig. 1 Generic off-diagonal metrics with respect to coordinate frames in 6-d spaces

eas = dyas + N as
αs−1

duαs−1 , for N 4+2s−1
αs−1

= snα1(u
βs−1 , y4+2s),

N 4+2s
α1

= swα(u
βs−1 , y4+2s).

Such ansatz contains a Killing vector ∂/∂ys−1 because
the coordinate ys−1 is not contained in the coefficients of
such metrics. With respect to coordinate frames, for instance,
in dim sV = 6; s = 1, uα1 = (x1, x2, y3, y4, y5, y6),

the metrics (35) are written in a form similar to that in
Fig. 1.

We note that nonholonomic 2+2+· · · parameterizations
of type (11) prescribe certain algebraic symmetries of met-
rics both with respect to N adapted and/or coordinate frames.
For instance, a splitting 3 + 3 + 3 + · · · may contain more
complex topological configurations but to integrate the Ein-
stein gravitational equations in such cases is not possible for
a general “non-Killing” ansatz.

In a more general context, a d-metric (35) can be a result
of nonholonomic deformations of some “primary” geomet-
ric/physical data into certain “target” data,

[ primary ]( s◦g, s◦N, s◦D̂) → [ target ]( s
ηg = sg, s

ηN = sN,
s
ηD̂ = sD̂).

In this work we shall consider that the values labeled by
“◦′′ may or may not define exact solutions in a gravity theory.
The metrics with “η” will be constrained always to define a
solution of gravitational field equations (21), or (20). For
simplicity, we shall use prime ansatz of type

s◦g = g̊i (x
k)dxi ⊗ dxi + h̊a(x

k, y4)e̊a ⊗ e̊b

+εa1 dya1 ⊗ dya1 + · · · + εas dyas ⊗ dyas ,

e̊a = dya + N̊ a
i (x

k, y4)dxi , with N̊ 3
i = n̊i , N̊ 4

i = ẘi ,

(36)

where the constants εas take values +1 and/or −1 which
depends on the signature of the higher-dimensional space-
time and on (g̊i , h̊a; N̊ a

i ). Such an ansatz may define, for
instance, a Kerr black hole (or a wormhole) solution trivially
embedded into a 4+2s spacetime if the corresponding values
of the coefficients are constructed respectively for different
type solutions of the gravitational field equations. We choose
the target metric ansatz (35) as

gαs = ηαs (u
βs )g̊αs ; N as

is
= ηN as

is
(uβs−1 , y4+2s)

ni = η3
i n̊i , wi = η4

i ẘi , not summation on i; (37)

with so-called gravitational “polarization” functions and
extra-dimensional N coefficients, ηαs , η

a
i and ηN as

is
. In order

to consider the limits

( s
ηg, s

ηN, s
ηD̂) → ( s◦g, s◦N, s◦D̂), for ε → 0,

depending on a small parameter ε, 0 ≤ ε � 1, we shall
introduce “small” polarizations of type η = 1+εχ(u...) and

ηN as
is

= εnas
is
(u...).

It should be noted that if a target d-metric (35) is gener-
ated by a nonholonomic deformation with nontrivial η-, or
χ -functions, it contains both “old” geometric/physical infor-
mation on a prime metric (36) and additional data for a new
class of exact solutions.
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3.1.2 Ricci d-tensors and N adapted sources

Let us consider an ansatz (35) with ∂4ha 
= 0, ∂6ha1 
=
0, . . . , ∂2shas 
= 0,9 when the partial derivatives are denoted,
for instance, ∂1h = ∂h/∂x1, ∂4h = ∂h/∂y4, and ∂44h =
∂2h/∂y4∂y4. A tedious computation of the coefficients of the
canonical d-connection 	̂γs

αsβs
(14) and then of corresponding

nontrivial coefficients of the Ricci d-tensor Rαsβs (17); see
similar details in [5–8], results in such nontrivial values:

R̂1
1 = R̂2

2 = − 1

2g1g2

[
∂11g2 − (∂1g1)(∂1g2)

2g1
− (∂1g2)

2

2g2

+ ∂22g1 − (∂2g1)(∂2g2)

2g2
− (∂2g1)

2

2g1

]
, (38)

R̂3
3 = R̂4

4 = − 1

2h3h4

[
∂44h3 − (∂4h3)

2

2h3
− (∂4h3)(∂4h4)

2h4

]
,

(39)

R̂3k = h3

2h4
∂44nk +

(
h3

h4
∂4h4 − 3

2
∂4h3

)
∂4nk

2h4
, (40)

R̂4k = wk

2h3

[
∂44h3 − (∂4h3)

2

2h3
− (∂4h3)(∂4h4)

2h4

]

+∂4h3

4h3

(
∂kh3

h3
+ ∂kh4

h4

)
− ∂k (∂4h3)

2h3
, (41)

and, on shells s = 1, 2, . . . ,

R̂5
5 = R̂6

6 = − 1

2h5h6

[
∂66h5 − (∂6h5)

2

2h5
− (∂6h5)(∂6h6)

2h6

]
,

(42)

R̂5τ = h5

2h6
∂66

1nτ +
(

h5

h6
∂6h6 − 3

2
∂6h5

)
∂6

1nτ
2h6

, (43)

R̂6τ =
1wτ

2h5

[
∂66h5 − (∂6h5)

2

2h5
− (∂6h5) (∂6h6)

2h6

]
(44)

+∂6h5

4h5

(
∂τh5

h5
+ ∂τh6

h6

)
− ∂τ (∂6h5)

2h5
,

when τ = 1, 2, 3, 4;

R̂7
7 = R̂8

8 = − 1

2h7h8

[
∂88h7 − (∂8h7)

2

2h7
− (∂8h7)(∂8h8)

2h6

]
,

R̂7τ = h7

2h8
∂88

2nτ1 +
(

h7

h8
∂8h8 − 3

2
∂8h7

)
∂8

2nτ1

2h7
,

9 we can construct more special classes of solutions if such conditions
are not satisfied; for simplicity, we suppose that via frame transforma-
tions it is always possible to introduce necessary type parameterizations
for d-metrics.

R̂8τ1 =
2wτ1

2h7

[
∂88h7 − (∂8h7)

2

2h7
− (∂8h7)(∂8h8)

2h8

]

+∂8h7

4h7

(
∂τ1 h7

h7
+ ∂τ1 h8

h8

)
− ∂τ1(∂8h7)

2h7
, (45)

when τ1 = 1, 2, 3, 4, 5, 6. Similar formulas can be written
recurrently for arbitrary finite extra dimensions.

Using the above formulas, we can compute the Ricci scalar
(18) for sD̂ (for simplicity, we consider s = 1), s R̂ =
2(R̂1

1 + R̂3
3 + R̂5

5). There are certain N adapted symmetries
of the Einstein d-tensor (19) for the ansatz (35), Ê1

1 = Ê2
2 =

−(R̂3
3 + R̂5

5), Ê3
3 = Ê4

4 = −(R̂1
1 + R̂5

5), Ê5
5 = Ê6

6 = −(R̂1
1 +

R̂3
3). In a similar form, we find symmetries for s = 2 :

Ê1
1 = Ê2

2 = −(R̂3
3 + R̂5

5 + R̂7
7), Ê3

3 = Ê4
4

= −(R̂1
1 + R̂5

5 + R̂7
7),

Ê5
5 = Ê6

6 = −(R̂1
1 + R̂3

3 + R̂7
7), Ê7

7 = Ê8
8

= −(R̂1
1 + R̂3

3 + R̂5
5).

We search for solutions of the nonholonomic Einstein
equations (38 )–(45) with nontrivial�-sources written in the
form

R̂1
1 = R̂2

2 = −�(xk), R̂3
3 = R̂4

4 = − v�(xk, y4),

R̂5
5 = R̂6

6 = − v
1�(u

β, y6), R̂7
7 = R̂8

8 = − v
2�(u

β1 , y8).

(46)

Similar equations can be written recurrently for arbitrary
finite extra dimensions. This constrains us to define such N
adapted frame transformations when the sources ϒβsδs in
(21) are parameterized

ϒ1
1 = ϒ2

2 = v�+ v
1�+ v

2�,ϒ
3
3 = ϒ4

4 =�+ v
1�+ v

2�,

ϒ5
5 = ϒ6

6 = �+ v�+ v
2�,ϒ

7
7 = ϒ8

8 = �+ v�+ v
1�.

For certain models of extra-dimensional gravity, we can
write v

1� = v
2� = ◦� = const.Re-defining the generating

functions (see below) for non-vacuum configurations, we can
always introduce such effective sources.

3.1.3 Decoupling of gravitational field equations

Introducing the ansatz (35) for gi (xk) = εi eψ(x
k ) with

nonzero ∂4φ, ∂4ha, ∂6
1φ, ∂6ha1, ∂8

2φ, ∂8ha2 , . . . in (38)–
(45) with respective sources, we obtain this system of PDEs:

ε1∂11ψ + ε2∂22ψ = 2�(xk), (47)

(∂4φ)(∂4h3) = 2h3h4
v�(xk, y4), (48)

∂44ni + γ ∂4ni = 0, (49)

βwi − αi = 0, (50)

(∂6
1φ)(∂6h5) = 2h5h6

v
1�(u

β, y6), (51)

∂66
1nτ + 1γ ∂6

1nτ = 0, (52)
1β 1wτ − 1ατ = 0, (53)
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(∂6
2φ)(∂6h7) = 2h7h8

v
2�(u

β1 , y8),

∂88
2nτ1 + 2γ ∂8

2nτ1 = 0,
2β 2wτ1 − 2ατ1 = 0, (54)

(similar equations can be written recurrently for arbitrary
finite extra dimensions),

where the coefficients are defined, respectively, by

φ = ln

∣∣∣∣
∂4h3√|h3h4|

∣∣∣∣ , (55)

γ := ∂4(ln
|h3|3/2
|h4| ), αi = ∂4h3

2h3
∂iφ, β = ∂4h3

2h3
∂4φ, (56)

1φ = ln

∣∣∣∣
∂6h5√|h5h6|

∣∣∣∣ , (57)

1γ := ∂6(ln
|h5|3/2
|h6| ), 1ατ = ∂6h5

2h5
∂τ

1φ,

1β = ∂6h5

2h5
∂τ

1φ, (58)

2φ = ln

∣∣∣∣
∂8h7√|h7h8|

∣∣∣∣ ,

2γ := ∂8(ln
|h7|3/2
|h8| ), 2ατ1 = ∂8h7

2h7
∂τ1

2φ,

2β = ∂8h7

2h7
∂τ1

2φ,

and similarly for extra shells.
Equations (47)–(54) reflect a very important decoupling

property of the (generalized) Einstein equations with respect
to the corresponding N adapted frames. In explicit form,
such formulas can be obtained for metrics with at least one
Killing symmetry (the constructions can be generalized for
non-Killing configurations). Let us explain in brief the decou-
pling property for 4-d configurations following such steps:

1. Equation (47) is just a 2-d Laplace, or d’Alembert one
(depending on prescribed signature), which can be solved
for any value �(xk).

2. Equation (48) contains only the partial derivative ∂4 and
is related to the formula for the coefficient (55) for the
values h3(xi , y4), h4(xi , y4) and φ(xi , y4) and source
v�(xk, y4). Prescribing any two such functions, we can
define (by integrating with respect to y4) the other two
such functions.

3. Using h3 and φ in the previous point, we can compute
the coefficients αi and β, see (56), which allows us to
define ni from the algebraic equations (49).

4. Having computed the coefficient γ (56), the N connection
coefficientswi can be defined after two integrations with
respect to y4 in (50).

The procedure 2–4 can be repeated step by step on the
other shells for higher dimensions. We have to add the cor-
responding dependencies on the extra-dimensional coordi-
nates and additional partial derivatives. For instance, (51)
and (57) with partial derivative ∂6 involve the functions
h5(xi , ya, y6), h6(xi , ya, y6) and 1φ(xi , ya, y6) and the
source v

1�(u
β, y6).We can compute any two such functions

integrating with respect to y6 if the two other ones are pre-
scribed. In a similar form, we follow the steps in points 3 and
4 with 1ατ ,

1β, 1γ, see (58), and compute the higher order
N connection coefficients 1nτ and 1wτ .

3.1.4 Integration of (modified) Einstein equations by
generating functions and effective sources

The system of nonlinear PDEs (47)–(54) can be integrated
in general form for any finite dimension dim sV ≥ 4.
4-d non-vacuum configurations:

The coefficients gi = εi eψ(x
k ) are defined by solutions of

the corresponding Laplace/d’Alembert equation (47).
We can solve (48) and (55) for any ∂4φ 
= 0, ha 
= 0 and

v� 
= 0 if we re-write the equations as

h3h4 = (∂4φ)(∂4h3)/2
v� and |h3h4| = (∂4h3)

2e−2φ,

(59)

for any nontrivial source v�. Inserting the first equation into
the second one, we find

|∂4h3| = ∂4(e−2φ)

4| v�| = ∂4[�2]
2| v�| , (60)

for � := eφ . This formula can be integrated with respect to
y4, which results in

h3[�, v�] = 0h3(x
k)+ ε3ε4

4

∫
dy4 ∂4(�

2)

v�
,

where 0h3 = 0h3(xk) is an integration function and ε3, ε4 =
±1. To find h4 we can use the first equation (59) and write

h4[�, v�] = (∂4φ)

v�
∂4(ln

√|h3|) = 1

2 v�

∂4�

�

∂4h3

h3
. (61)

These formulas for ha can be simplified if we introduce an
“effective” cosmological constant �̃ = const 
= 0 and re-

define the generating function � → �̃, for which ∂4[�2]
v�

=
∂4[�̃2]
�̃
, i.e.

�2 = �̃−1
∫

dy4( v�)∂4(�̃
2) and

�̃2 = �̃

∫
dy4( v�)−1∂4(�

2). (62)
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Introducing the integration function 0h3(xk) and ε3 and
ε4 in � and, respectively, in v�, we can express

h3[�̃, �̃] = �̃2

4�̃
and h4[�̃, �̃] = (∂4�̃)

2

�
, (63)

where� = ∫
dy4( v�)∂4(�̃

2).We can work for convenience
with two couples of generating data, (�, v�) and (�̃, �̃),
related by (62).

Using the values ha (63), we compute the coefficients
αi , β and γ from (56). The resulting solutions for N coeffi-
cients can be expressed recurrently,

nk = 1nk + 2nk

∫
dy4h4/(

√|h3|)3 = 1nk

+ 2ñk

∫
dy4(∂4�̃)

2/�̃3�,

wi = ∂iφ/∂4φ = ∂i�/∂4�, (64)

where 1nk(xi ) and 2nk(xi ), or 2ñk(xi ) = 8 2nk(xi )|�̃|3/2,
are integration functions. The quadratic line elements deter-
mined by the coefficients (63)–(64) are parameterized in the
form

ds2
4d K = gαβ(x

k, y4)duαduβ = εi e
ψ(xk )(dxi )2

+ �̃
2

4�̃

[
dy3 +

(
1nk +2 ñk

∫
dy4 (∂4�̃)

2

�̃3�

)
dxk

]2

+ (∂4�̃)
2

�

[
dy4 + ∂i�

∂4�
dxi
]2

. (65)

This line element defines a family of generic off-diagonal
solutions with Killing symmetry in ∂/∂y3 of the 4-d Einstein
equation (46) for the canonical d-connection D̂ (the label
4d K is for “nonholonomic 4-d Killing solutions). We can
verify by straightforward computations of the corresponding
anholonomy coefficients W γ

αβ in (9) that such values are not
zero if an arbitrary generating functionφ and integration ones
( 0ha,1 nk , and 2nk) are considered.

4-d vacuum configurations:
The limits to the off-diagonal solutions with � = v� = 0

cannot be smooth because, for instance, we have multiples of
( v�)−1 in the coefficients of (65). For the ansatz (35), we can
analyze solutions when the nontrivial coefficients of the Ricci
d-tensor (38)–(45) are zero. The first equation is a typical
example of a 2-d wave, or Laplace, equation. We can express
such solutions in a similar form gi = εi eψ(x

k ,�=0)(dxi )2.

There are three classes of off-diagonal metrics which
result in zero coefficients (39)–(45).

• In the first case, we can impose the condition ∂4h3 =
0, h3 
= 0, which results only in one nontrivial equation
(derived from (40)),

∂44nk + ∂4nk ∂4 ln |h4| = 0,

where h4(xi , y4) 
= 0 and wk(xi , y4) are arbitrary func-
tions. If ∂4h4 = 0, we must take ∂44nk = 0. For
∂4h4 
= 0, we get

nk = 1nk + 2nk

∫
dy4/h4 (66)

with integration functions 1nk(xi ) and 2nk(xi ). The
corresponding quadratic line element is of the type

ds2
v1 = εi e

ψ(xk ,�=0)(dxi )2 + 0h3(x
k)[dy3 + ( 1nk(x

i )

+ 2nk(x
i )

∫
dy4/h4)dxi ]2 + h4(x

i , y4)

×[dy4 + wi (x
k, y4)dxi ]2. (67)

• In the second case, ∂4h3 
= 0 and ∂4h4 
= 0. We
can solve (39) and/or (48) in a self-consistent form for
v� = 0 if ∂4φ = 0 for coefficients (55) and (56). For
φ = φ0 = const, we can consider arbitrary functions
wi (xk, y4) because β = αi = 0 for such configurations.
The condition (55) is satisfied by any

h4 = 0h4(x
k)(∂4

√|h3|)2, (68)

where 0h3(xk) is an integration function and h3(xk, y4)

is any generating function. The coefficients nk can be
found from (40); see (66). Such a family of vacuum met-
rics is described by

ds2
v2 = εi e

ψ(xk ,�=0)(dxi )2 + h3(x
i , y4)[dy3

+( 1nk(x
i )+ 2nk(x

i )

∫
dy4/h4)dxi ]2

+ 0h4(x
k)(∂4

√|h3|)2[dy4 + wi (x
k, y4)dxi ]2.

(69)

• In the third case, ∂4h3 
= 0 but ∂4h4 = 0. Equation

(39) transforms into ∂44h3 − (∂4h3)
2

2h3
= 0, when the gen-

eral solution is h3(xk, y4) = [
c1(xk)+ c2(xk)y4

]2
, with

generating functions c1(xk), c2(xk), and h4 = 0h4(xk).

For φ = φ0 = const,we can take any valueswi (xk, y4),
because β = αi = 0. The coefficients ni are found from
(40) and/or, equivalently, from (49) with γ = 3

2∂4|h3|.
We obtain

ni = 1ni (x
k)+ 2ni (x

k)

∫
dy4|h3|−3/2 = 1ni (x

k)

+ 2ñi (x
k)
[
c1(x

k)+ c2(x
k)y4

]−2
,
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with integration functions 1ni (xk) and 2ni (xk), or the
re-defined 2ñi = − 2ni/2c2. The quadratic line element
for this class of solutions for vacuum metrics is described
by

ds2
v3 = εi e

ψ(xk ,�=0)(dxi )2 +
[
c1(x

k)+ c2(x
k)y4

]2

×[dy3 + ( 1ni (x
k)+ 2ñi (x

k)

×
[
c1(x

k)+ c2(x
k)y4

]−2
)dxi ]2

+ 0h4(x
k)[dy4 + wi (x

k, y4)dxi ]2. (70)

Finally, we note that such solutions have nontrivial
induced torsions (15).

Extra-dimensional non-vacuum solutions:
The solutions for higher dimensions can be constructed

in a certain fashion, similar to the 4-d ones, using new
classes of generating and integration functions with depen-
dencies on extra-dimensional coordinates. For instance, we
can generate solutions of the system (51)–(53) with coef-
ficients (57) and (58) following a formal analogy when
∂4 → ∂6, φ(xk, y4) → 1φ(uτ , y6), v�(xk, y4) →
v
1�(u

τ , y6) . . . and associated values 1�̃(uτ , y6) and 1�̃

as we considered in the previous paragraph.
The extra-dimensional coefficients are computed by

h5[ 1�̃, 1�̃] =
1�̃2

4 1�̃
and h6[ 1�̃] = (∂6

1�̃)2

1�
,

for 1� = ∫
dy6( v1�)∂6(

1�̃2) and, for N coefficients,

1nτ = 1
1nτ + 1

2nτ

∫
dy6h6/(

√|h5|)3 = 1
1nk

+ 1
2ñk

∫
dy6(∂6

1�̃)2/( 1�̃)3 1�,

1wτ = ∂τ
1φ/∂6

1φ = ∂τ
1�/∂6

1�,

where 0ha1 = 0ha1(u
τ ), 1

1nk(uτ ) and 1
2nk(uτ ), are inte-

gration functions.
A general class of quadratic line elements in 6-d space-

times can be parameterized in the form

ds2
6d K = ds2

4dK +
1�̃2

4 1�̃

×
[

dy5+
(

1
1nk + 1

2ñk

∫
dy6 (∂6

1�̃)2

( 1�̃)3 1�

)
duτ

]2

+ (∂6
1�̃)2

1�

[
dy6 + ∂τ

1�

∂6
1�

duτ
]2

, (71)

where ds2
4d K is given by (65) and τ = 1, 2, 3, 4. This

quadratic line element has a Killing symmetry in ∂5 (in N
adapted frames, the metric does not depend on y5).

Extending the constructions to the shell s = 2 with
∂6 → ∂8,

1φ(uτ , y6) → 2φ(uτ1, y8), v
1�(u

τ , y6) →
v
2�(u

τ1 , y8) . . . , 2�̃(uτ1 , y8), 2�̃, where τ1 = 1, 2, . . . ,
5, 6, we generate off-diagonal solutions in 8-d gravity,

ds2
8d K = ds2

6d K +
2�̃2

4 2�̃

×
[

dy7 +
(

2
1nk + 2

2ñk

∫
dy8 (∂8

2�̃)2

( 2�̃)3 2�

)
duτ1

]2

+ (∂8
2�̃)2

2�

[
dy8 + ∂τ1

2�

∂8
2�

duτ1

]2

, (72)

where ds2
6d K is given by (71), 2� = ∫

dy8( v2�)∂8(
2�̃2),

and the corresponding integration/generating functions are
0ha2(u

τ1); a2 = 7, 8; 1nτ1(u
τ1), and 2nτ1(u

τ1).
Using 2 + 2 + . . . symmetries of off-diagonal parameter-

izations (36), we can construct exact solutions for arbitrary
finite dimension of the extra-dimensional spacetime sV.

Extra-dimensional vacuum solutions: The off-diagonal
solutions (65), (71), (72),. . . have been constructed for non-
trivial sources v�(xk, y4), v

1�(u
τ , y6), v

2�(u
τ , y8), . . .

In a similar manner, we can generate vacuum configurations
with effective zero cosmological constants by extending to
higher dimensions the 4-d vacuum metrics of type ds2

v1 (67),
ds2
v2 (69), ds2

v3 (70) etc. It is possible to generate solutions
when the sources for (46) are zero on some shells and nonzero
for other ones.

We provide here an example of a quadratic line element for
6-d gravity derived as a s = 1 generalization of (69). For such
solutions, ∂4ha 
= 0, ∂6ha1 
= 0, . . . and φ = φ0 = const,
1φ = 1φ0 = const, . . .

ds2
v2s3 = εi e

ψ(xk ,�=0)(dxi )2 + h3(x
i , y4)[dy3

+
(

1nk(x
i )+ 2nk(x

i )

∫
dy4/h4

)
dxi ]2

+ 0h4(x
k)(∂4

√|h3|)2[dy4

+wi (x
k, y4)dxi ]2 + h5(u

τ , y6)[dy5

+
(

1
1nλ(u

τ )+ 1
2nλ(u

τ )

∫
dy6/h6

)
duλ]2

+ 0h6(u
τ )(∂6

√|h5|)2[dy6 + 1wλ(u
τ , y6)duλ]2,

(73)

where 0h3(xk), 0h5(uτ ), 1nk(xi ), 2nk(xi ), 1
1nλ(uτ ),

1
2nλ(uτ ) are integration functions. The values h4(xk, y4) and
h6(uτ , y6) are any generating functions. We can consider
arbitrary functions wi (xk, y4) and 1wλ(uτ , y6) because,
respectively, β = αi = 0 and 1β = 1ατ = 0 for such
configurations; see (55), (56) and (57), and (58).
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3.1.5 Coefficients of metrics as generating functions

For nontrivial sources v�(xk, y4), v1�(u
τ , y6), v2�(u

τ , y8),

. . . , we can prescribe, respectively, h3, h5, and h7 (with
nonzero ∂4h3, ∂6h5, and ∂8h7) as generating functions. Let
us perform such constructions in explicit form for s = 0.
Using (60), we find (up to an integration function depending
on xi ) that

�2 = 2ε�

∫
dy4 v� ∂4h3, (74)

where ε� = ±1 in order to have�2 > 0. Inserting this value
into (61), we express h4 in terms of v� and h3,

h4[ v�, h3] = ε4(∂4h3)
2/2 v�h3

∫
dy4( v�h3), ε4 = ±1.

The N connection coefficients are computed following the
formulas in (64) with�[ v�, h3] expressed in the form (74),

wi [ v�, h3] = ∂i�

∂4�
= ∂i�

2

∂4�2 =
∫

dy4∂i | v�∂4h3|
| v�∂4h3| ,

nk[ v�, h3] = 1nk + 2nk

×
∫

dy4 (∂4h3)
2

v�(
√|h3|)5

∫ y4

0 dy4′
( v�h3)

,

where ε4/2 is included in n2.

We can use for s = 1 and s = 2 certain formulas similar
to (74),

1�2 = 2ε 1�

∫
dy6 v

1� ∂6h5 and 2�2 = 2ε 2�

∫
dy8 v

2� ∂8h7, ε 1� = ±1, ε 2� = ±2.

The solutions (65), (71), and (72) are respectively re-
parameterized as

ds2
4d K = εi e

ψ(xk )(dxi )2 + h3

[
dy3 +

(
1nk + 2nk

∫
dy4

× (∂4h3)
2

v�(
√|h3|)5

∫ y4

0 dy4′
( v�h3)

)
dxk

]2

+ε4
(∂4h3)

2

2 v�h3
∫

dy4( v�h3)

×
[

dy4 +
∫

dy4∂i | v�∂4h3|
| v�∂4h3| dxi

]2

,

ds2
6d K = ds2

4d K + h5

[
dy5 +

(
1
1nτ + 1

2nτ

∫
dy6

× (∂6h5)
2

v
1�(

√|h5|)5
∫ y6

0 dy6′
( v1�h5)

)
duτ

]2

+ ε6
(∂6h5)

2

2 v
1�h5

∫
dy6( v1�h5)

×
[

dy6 +
∫

dy6∂τ | v1�∂6h5|
| v1�∂6h5| duτ

]2

,

and

ds2
8d K = ds2

6d K + h7

[
dy7 +

(
2
1nτ1 + 2

2nτ1

∫
dy8

× (∂8h7)
2

v
2�(

√|h7|)5
∫ y8

0 dy8′
( v2�h7)

)
duτ1

]2

+ ε8
(∂8h7)

2

2 v
2�h7

∫
dy8( v2�h7)

×
[

dy8 +
∫

dy8∂τ1 | v2�∂8h7|
| v2�∂8h7| duτ1

]2

.

We can introduce effective cosmological constants via
a re-definition of the generating functions of the type (62)
when (�, v�) → (�̃, �̃), ( 1�, v1�) → ( 1�̃, 1�̃) and
( 2�, v2�) → ( 2�̃, 2�̃). For such parameterizations, the
coefficients of the metrics depend explicitly on �̃, 1�̃ and
2�̃. Finally, we note that such formulas can be similarly gen-
eralized for higher dimensions with shells s = 3, 4, . . . .

3.1.6 The Levi–Civita conditions

All solutions constructed in previous sections define certain
subclasses of generic off-diagonal metrics (35) for canonical
d-connections sD̂ and nontrivial nonholonomically induced
d-torsion coefficients T̂γs

αsβs
(15). Such a torsion vanishes

for a subclass of nonholonomic distributions with necessary
types of parameterizations of the generating and integra-
tion functions and sources. In explicit form, we construct
LC-configurations by imposing additional constraints, shell
by shell, on the d-metric and N connection coefficients. By
straightforward computations (see the details in Refs. [5–8]
and Appendix 1), we can verify that if in N adapted frames

for s = 0 : ∂4wi = ei ln
√| h4|, ei ln

√| h3| = 0,

∂iw j = ∂ jwi and ∂4ni = 0;
s = 1 : ∂6

1wα = 1eα ln
√| h6|, 1eα ln

√| h5| = 0,

∂α
1wβ = ∂β

1wα and ∂6
1nγ = 0; (75)

s = 2 : ∂8
2wα1 = 2eα1 ln

√| h8|, 2eα1 ln
√| h7| = 0,

∂α1
2wβ1 = ∂β1

2wα1 and ∂8
2nγ1 = 0

(similar equations can be written recurrently for arbitrary
finite extra dimensions), then the torsion coefficients become
zero. For the n-coefficients, such conditions are satisfied if

2nk(xi ) = 0 and ∂i 1n j (xk) = ∂ j 1ni (xk); 1
2nα(uβ) =

0 and ∂γ
1
1nτ (uβ) = ∂τ

1
1nγ (uβ); 2

2nα1(u
β1) = 0 and
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∂γ1
2
1nτ1(u

β1) = ∂τ1
2
1nγ1(u

β1) etc. The explicit form of the
solutions of the constraints on wk derived from (75) depend
on the class of vacuum or non-vacuum metrics we try to
construct.

Let us show how we can satisfy the LC-conditions (75)
for s = 0. We note that such nonholonomic constraints can-
not be solved in explicit form for arbitrary data (�, v�),

or (�̃, �̃), and all types of nonzero integration functions

1n j (xk) and 2nk(xi ) = 0. Nevertheless, certain general
classes of solutions can be written in explicit form if via coor-
dinate and frame transformations we can fix 2nk(xi ) = 0 and

1n j (xk) = ∂ j n(xk) for a function n(xk). Then we use the
property that

ei� = (∂i − wi∂4)� ≡ 0

for any � if wi = ∂i�/∂4�; see (64). For any functional
H [�], one has the equality

ei H = (∂i − wi∂4)H = ∂H

∂�
(∂i − wi∂4)� ≡ 0.

We can restrict our construction to a subclass of generating
data (�, v�) and (�̃, �̃), which are related via (62) when
H = �̃[�] is a functional which allows us to generate LC-
configurations in explicit form. Using h3[�̃] = �̃2/4�̃ (63)
for H = �̃ = ln

√| h3|, we satisfy the second condition,
ei ln

√| h3| = 0, in (75) for s = 0.
In the second step, we solve firstly the condition in (75),

for s = 0. Taking the derivative ∂4 of wi = ∂i�/∂4� (64),
we obtain

∂4wi = (∂4∂i�)(∂4�)− (∂i�)∂4∂4�

(∂4�)2

= ∂4∂i�

∂4�
− ∂i�

∂4�

∂4∂4�

∂4�
. (76)

If � = �̌, for which

∂4∂i �̌ = ∂i∂4�̌, (77)

and using (76), then we compute ∂4wi = ei ln |∂4�|. For
h4[�, v�] (61), ei ln

√| h4| = ei [ln |∂4�| − ln
√| v�|],

where we used the conditions (77) and the property ei �̌ = 0.
Using the last two formulas, we obtain ∂4wi = ei ln

√| h4|
if ei ln

√| v�| = 0. This is possible for v� = const, or if
v� can be expressed as a functional v�(xi , y4) = v�[�̌].

Finally, we note that the third condition for s = 0, ∂iw j =
∂ jwi , see (75), holds for any Ǎ = Ǎ(xk, y4) for whichwi =
w̌i = ∂i �̌/∂4�̌ = ∂i Ǎ.

Following similar considerations for other shells’ gener-
ating functions,

s = 1 : 1� = 1�̌(uτ , y6), ∂6∂τ
1�̌ = ∂τ ∂6

1�̌;
∂α

1�̌/∂6
1�̌ = ∂α

1 Ǎ; 1
1nτ = ∂τ

1n(uβ);
s = 2 : 2� = 2�̌(uτ1 , y8), ∂8∂τ1

2�̌ = ∂τ1∂8
2�̌;

∂α1
2�̌/∂8

2�̌ = ∂α2
2 Ǎ; 2

1nτ1 = ∂τ1
2n(uβ1);

(78)

(similar formulas can be written recurrently for arbitrary
extra shells), we can construct quadratic line elements for
the LC-configurations

ds2
8d K = εi e

ψ(xk )(dxi )2 + (�̃[�̌])2
4�̃

[
dy3 + (∂i n)dxi

]2

+ (∂4�̃[�̌])2
�(�̃[�̌])

[
dy4 + (∂i Ǎ)dxi

]2

+ (
1�̃[ 1�̌])2

4 1�̃

[
dy5 + (∂τ

1n)duτ
]2

+ (∂6
1�̃[ 1�̌])2

1�( 1�̃[ 1�̌])
[
dy6 + (∂τ

1 Ǎ)duτ
]2

+ (
2�̃[ 2�̌])2

4 2�̃

[
dy7 + (∂τ1

2n)duτ1
]2

+ (∂8
2�̃[ 2�̌])2

2�( 2�̃[ 2�̌])
[
dy8 + (∂τ1

2 Ǎ)duτ1
]2
. (79)

In these formulas, the generating functions are functionals of
“inverse hat” values, when

�̌2 = �̃−1
∫

dy4( v�)∂4(�̃
2)and �̃2

= �̃

∫
dy4( v�)−1∂4(�̌

2);
1�̌2 = ( 1�̃)−1

∫
dy6( v1�)∂6(

1�̃2)and 1�̃2

= 1�̃

∫
dy6( v1�)

−1∂6(
1�̌2);

2�̌2 = ( 2�̃)−1
∫

dy8( v2�)∂8(
2�̃2)and 2�̃2

= 2�̃

∫
dy8( v2�)

−1∂8(
2�̌2).

We can compute the values�(�̃[�̌]), 1�( 1�̃[ 1�̌]), and
2�( 2�̃[ 2�̌]) as in (72).

The torsions for such non-vacuum exact solutions (79)
generated by the respective data ( s g, s N, s∇) are zero,
which is different from the class of exact solutions (72) with
nontrivial canonical d-torsions (15) and completely deter-
mined by arbitrary data ( sg, sN, sD̂)with Killing symmetry
on ∂7.

3.2 Non-Killing configurations

The off-diagonal integral varieties of the solutions of the
gravitational field equations constructed in the previous sec-
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tion possess for any shell s ≥ 0 at least one Killing vector
symmetry on ∂/∂yas−1 when the metrics do not depend on
the coordinate yas−1 in a class of N adapted frames. There
are two general possibilities to generate ”non-Killing” con-
figurations: 1) performing a formal embedding into higher-
dimensional vacuum spacetimes and/or via 2) “vertical” con-
formal nonholonomic deformations.

3.2.1 Embedding into a higher dimension vacuum

We analyze a subclass of off-diagonal metrics for 6-
d spaces which via nonholonomic constraints and re-
parameterizations transform into 4-d non-Killing vacuum
solutions. Let us consider certain geometric data� = v� =
v
1� = 0 and h3 = ε3, h5 = ε5, nk = 0 and 1nα = 0

with a 2-d h -metric εi eψ(x
k ,�=0)(dxi )2. The coefficients

of the Ricci d-tensor are zero (see (38)–(41) and (42)–
(44)). Here we note that one cannot use (47)–(53) derived
for ∂4h3 
= 0, ∂6h5 
= 0 etc. which does not allow, for
instance, the values h3 = ε3, h5 = ε5, for any nontriv-
ial data h4(xi , y4), wk(xi , y4); h6(xi , y4, y6), 1wk(xi , y4),
1w4(xi , y4, y6). Such values can be considered as generat-

ing functions for the vacuum quadratic line elements

ds2
6→4 = εi e

ψ(xk ,�=0)(dxi )2 + ε3(dy3)2

+h4(dy4 + wkdxk)2 + ε5(dy5)2

+h6(dy6 + 1wkdxk +1 w4dy4)2. (80)

In general, this class of vacuum 6-d metrics have a nonzero
nonholonomically induced d-torsion (15). Such solutions do
not consist necessarily of a subclass of vacuum solutions (73)
when h3 → ε3 and h5 → ε5; the conditions ∂4h3 
= 0 and
∂6h5 
= 0 restrict the class of possible generating functions
h4 and h6. If we fix from the very beginning certain configu-
rations with ∂4h3 = 0 and ∂6h5 = 0, we can consider h4, h6

and wk,
1wk,

1w4 as independent generating functions.
If the coefficients in (80) are subjected additionally to

the constraints (75) for s = 0 and s = 1, we generate
the LC-configurations. We can follow a formal procedure
which is similar to that outlined in Sect. 3.1.6. The condi-
tions ei ln

√| h3| = 0 and 1eα ln
√| h5| = 0 are satisfied,

respectively, for any constant h3 = ε3 and h5 = ε5. Let us
show how we can restrict the class of generating functions in
order to obtain solutions for which

∂4wi (x
i , y4) = ei ln

√
| h4(xi , y4)|, ∂iw j = ∂ jwi , and

∂6
1wα(x

i , y4, y6) = 1eα ln
√

| h6(xi , y4, y6)|,
∂α

1wβ = ∂β
1wα. (81)

We emphasize that the above N adapted formulas do not
depend on y3 and y5. Prescribing any values of h4 and h6

we can find LC-admissiblew-coefficients solving the respec-

tive systems of the first order partial derivative equations
in (81). In general, such solutions are defined by nonholo-
nomic configurations, i.e. in “non-explicit” form. If all val-
ues h4[�̌], h6[ 1�̌], and wk[�̌], 1wk[ 1�̌], 1w4[ 1�̌] are,
respectively, determined by �̌(xi , y4) and 1�̌(xi , y4, y6)

satisfying conditions of type (77) and (78) (but h3 and h5 are
not functionals of type (63)), we can solve (81) in explicit
form. Let us choose any generating functions �̌ and 1�̌,

consider any functionals h4[�̌], h6[ 1�̌], and compute

wi = w̌i = ∂i �̌/∂4�̌ = ∂i Ǎ and (82)
1wi = 1w̌i = ∂i

1�̌/∂6
1�̌ = ∂i

1 Ǎ, 1w4 = 1w̌4

= ∂4
1�̌/∂6

1�̌ = ∂4
1 Ǎ,

for some Ǎ(xi , y4) and 1 Ǎ(xi , y4, y6), which are necessary
for ∂iw j = ∂ jwi and ∂α 1wβ = ∂β

1wα. Considering func-
tional derivatives of type (76) and N coefficients of the type
in (82) when H [�̌] = ln

√| h4| and 1 H [ 1�̌] = ln
√| h6|,

we can satisfy the LC-conditions (81).
Putting together the above formulas, we construct a sub-

class of metrics of (80) determined by generic off-diagonal
metrics as solutions of 6-d vacuum Einstein equations,

ds2
6→4 = εi e

ψ(xk ,�=0)(dxi )2 + ε3(dy3)2 + h4[�̌]
×(dy4 + ∂k Ǎdxk)2 + ε5(dy5)2 + h6[ 1�̌]
×(dy6 + ∂k

1 Ǎ dxk + ∂4
1 Ǎ dy4)2. (83)

We note that in this quadratic line element the terms
ε3(dy3)2 and ε5(dy5)2 are used for trivial extensions from
4-d to 6-d. Re-defining the coordinate y6 → y3,we generate
vacuum solutions in 4-d gravity with metrics (83) depending
on all four coordinates xi , y3 and y4. The anholonomy coef-
ficients (9) are not zero and such metrics cannot be diagonal-
ized by coordinate transformations. This class of 4-d vacuum
spacetimes do not possess, in general, Killing symmetries.

3.2.2 “Vertical” conformal nonholonomic deformations

There is another possibility to generate off-diagonal solutions
depending on all spacetime coordinates and, in general, with
nontrivial sources of the type in (46); see details and proofs
in Ref. [8]. By straightforward computations, we can check
that any metric

g = gi (x
k)dxi ⊗ dxi + ω2(uα)ha(x

k, y4)ea ⊗ ea

+ 1ω2(uα1)ha1(u
α, y6)ea1 ⊗ ea1 + 2ω2(uα2)

× ha2(u
α1 , y8)ea2 ⊗ ea2 + . . . , (84)

with the conformal v-factors subjected to the conditions

ekω = ∂kω + nk∂3ω + wk∂4ω = 0,
1eβ 1ω = ∂β

1ω + 1nβ∂5
1ω + 1wβ∂6

1ω = 0, (85)
2eβ1

2ω = ∂β1
2ω + 2nβ1∂7

2ω + 2wβ1∂8
2ω = 0
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(similar equations can be written recurrently for arbitrary
finite extra dimensions), does not change the Ricci d-tensor
(38)–(45). Any class of solutions considered in this section
can be generalized to non-Killing configurations using non-
holonomic “vertical” conformal transformations.

In 4-d, the ansatz (84) can be parameterized with respect
to coordinate frames in a form with nontrivial ω2(uα) which
is different from that given in Fig. 1,

gαβ =

⎡
⎢⎢⎣

g1 + ω2(n 2
1 h3 + w 2

1 h4) ω2(n1n2h3 + w1w2h4) ω2n1h3 ω2
1w1h4

ω2(n1n2h3 + w1w2h4) g2 + ω2(n 2
2 h3 + w 2

2 h4) ω2n2h3 ω2w2h4

ω2n1h3 ω2n2h3 ω2h3 0
ω2w1h4 ω2w2h4 0 ω2h4

⎤
⎥⎥⎦ . (86)

A general metric gαβ(uγ ) can be parameterized in the
form (86) if there are any geometrically and physically well-

defined frame transformations gαβ = e
α
αe
β

βgαβ. For certain
given values gαβ and gαβ (in GR, there are 6 + 6 independent
components), we have to solve a system of quadratic alge-
braic equation in order to determine 16 coefficients e

α
α, up to

a fixed coordinate system. We have to fix such nonholonomic
2+2 splitting and partitions on manifolds when the algebraic
equations have real nondegenerate solutions.

Finally, we note that we can consider generic off-diagonal
coordinate decompositions which are similar to (86) but with
dependencies on all coordinates for higher order shells.

4 Nonholonomic deformations and the Kerr metric

In this section, we show how, using the AFDM formal-
ism, the Kerr solution can be constructed as a particular
case when corresponding types of generating and integra-
tion functions are prescribed. We provide a series of new
classes of solutions when the metrics are nonholonomically
deformed into general or ellipsoidal stationary configura-
tions in four-dimensional gravity and/or extra dimensions.
Explicit examples are studied of generic off-diagonal metrics
encoding interactions in massive gravity, f -modifications
and nonholonomically induced torsion effects. We find such
nonholonomic constraints when modified massive, and zero
mass, gravitational effects can be modeled by nonlinear off-
diagonal interactions in GR.

4.1 Generating the Kerr vacuum solution

Let us consider the ansatz

ds2[0] = Y −1e2h(dρ2 + dz2)− ρ2Y −1dt2 + Y (dϕ + Adt)2

parameterized in terms of three functions (h,Y, A) on coor-
dinates (ρ, z). We obtain the Kerr solution of the vacuum

Einstein equations in 4-d, for rotating black holes, if we
choose

Y = 1 − (px̂1)
2 − (qx̂2)

2

(1 + px̂1)2 + (qx̂2)2
, A = 2M

q

p

(1 − x̂2)(1 + px̂1)

1 − (px̂1)− (qx̂2)
,

e2h = 1 − (px̂1)
2 − (qx̂2)

2

p2[(̂x1)2 + (̂x2)2] , ρ2 = M2(̂x2
1 − 1)(1 − x̂2

2 ),

z = Mx̂1 x̂2,

where M = const and ρ = 0 consists of the horizon x̂1 = 0
and the “north/south” segments of the rotation axis, x̂2 =
+1/− 1. Such a metric can be written in the form (36),

ds2[0] = (dx1)2 + (dx2)2 − ρ2Y −1(e3)2 + Y (e4)2, (87)

if the coordinates x1(̂x1, x̂2) and x2(̂x1, x̂2) are defined for
any

(dx1)2 + (dx2)2 = M2e2h (̂x2
1 − x̂2

2 )Y
−1

×
(

dx̂2
1

x̂2
1 − 1

+ dx̂2
2

1 − x̂2
2

)

and y3 = t + ŷ3(x1, x2), y4 = ϕ + ŷ4(x1, x2, t), when

e3 = dt + (∂i ŷ3)dxi , e4 = dy4 + (∂i ŷ4)dxi ,

for some functions ŷa, a = 3, 4, with ∂t ŷ4 = −A(xk).

For many purposes, the Kerr metric was written in the
so-called Boyer–Linquist coordinates (r, ϑ, ϕ, t), for r =
m0(1 + px̂1), x̂2 = cosϑ. The parameters p, q are related to
the total black hole mass, m0 (it should be not confused with
the parameter μg in massive gravity) and the total angular
momentum, am0, for the asymptotically flat, stationary, and
axisymmetric Kerr spacetime. The formulas m0 = Mp−1

and a = Mqp−1 when p2 + q2 = 1 imply m2
0 − a2 =

M2 (see the monographs [1,27,33] for the standard methods
and bibliography on stationary black hole solutions; we note
here that the coordinates x̂1, x̂2 correspond, respectively, to
x, y from chapter 4 of the first book). In such variables, the
vacuum solution (87) can be written

ds2[0] = (dx1′
)2 + (dx2′

)2 + A(e3′
)2 + (C − B

2
/A)(e4′

)2,

e3′ = dt + dϕB/A = dy3′ − ∂i ′(ŷ
3′ + ϕB/A)dxi ′ ,

e4′ = dy4′ = dϕ, (88)
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for any coordinate functions

x1′
(r, ϑ), x2′

(r, ϑ), y3′ = t + ŷ3′
(r, ϑ, ϕ)+ ϕB/A,

y4′ = ϕ, ∂ϕ ŷ3′ = −B/A,

for which (dx1′
)2 + (dx2′

)2 = �
(
�−1dr2 + dϑ2

)
, and the

coefficients are

A = −�−1(�− a2 sin2 ϑ),

B = �−1a sin2 ϑ
[
�− (r2 + a2)

]
,

C = �−1 sin2 ϑ
[
(r2 + a2)2 −�a2 sin2 ϑ

]
, and

� = r2 − 2m0 + a2, � = r2 + a2 cos2 ϑ. (89)

The quadratic linear elements (87) (or (88)) with prime
data

g̊1 = 1, g̊2 = 1, h̊3 = −ρ2Y −1, h̊4 = Y, N̊ a
i = ∂i ŷa,

( or g̊1′ = 1, g̊2′ = 1, h̊3′ = A, h̊4′ = C − B
2
/A,

N̊ 3
i ′ = n̊i ′ = −∂i ′(ŷ

3′ + ϕB/A), N̊ 4
i ′ = ẘi ′ = 0) (90)

define solutions of the vacuum Einstein equations parame-
terized in the form (21) and (22) with zero sources. Here we
note that we have to consider a correspondingly N adapted
system of coordinates instead of the “standard” prolate spher-
ical, or Boyer–Linquist ones because parameterizations with
the data (90) are most convenient for a straightforward appli-
cation of the AFDM. Following such an approach, we can
generalize the solutions in order to get dependencies of the
coefficients on more than two coordinates, with non-Killing
configurations and/or extra dimensions.

In some sense, the Kerr vacuum solution in GR consists
of a “degenerate” case of the 4-d off-diagonal vacuum solu-
tions determined by primary metrics with the data (90) when
the diagonal coefficients depend only on two “horizontal” N
adapted coordinates and the off-diagonal terms are induced
by rotation frames.

4.2 Deformations of Kerr metrics in 4-d massive gravity

Let us consider the coefficients (90) for the Kerr metric as the
data for a prime metric g̊ (in general, it may or may not be an
exact solution of the Einstein or other modified gravitational
equations, or any fiducial metric). Our goal is to construct
nonholonomic deformations,

(g̊, N̊,
v
ϒ̊ = 0, ϒ̊ = 0) → (̃g, Ñ, vϒ̃ = λ̃, ϒ̃ = λ̃),

λ̃ = const 
= 0;
see the sources (34) for the shell s = 0 and (33). The
main condition is that the target metric g positively defines
a generic off-diagonal solution offield equations in 4-d mas-

sive gravity. The N adapted deformations of coefficients of
the metrics, frames, and sources are parameterized in the
form

[g̊i , h̊a, ẘi , n̊i ] → [̃gi = η̃i g̊i , h̃3 = η̃3h̊3, h̃4 = η̃4h̊4,

w̃i = ẘi + ηwi , ni = n̊i + ηni ],
ϒ̃ = λ̃, vϒ̂(xk′

) = v� = μ2
g λ(x

k′
)h̊−1

4 ,

�̃ = μ2
g λ̃, �̃

2 = exp[2�(xk′
, y4)] h̊3, (91)

where the values η̃a, w̃i , ñi , and � are functions of
three coordinates (xk′

, y4) and η̃i (xk) depend only on h-
coordinates. The prime data g̊i , h̊a, ẘi , n̊i are given by coef-
ficients depending only on (xk).

In terms of the η-functions (37) resulting in h∗
a 
= 0 and

gi = ci eψ(x
k ), the solutions of type (65) with �̃ → λ̃ and

2nk′ = 0 (we use “primed” coordinates and prime Kerr data
(88) and (90)) can be re-written in the form

ds2 = eψ(x
k′
)[(dx1′

)2 + (dx2′
)2]

− e2�

4μ2
g |̃λ| A

[
dy3′ +

(
∂k′ ηn(xi ′)−∂k′(ŷ3′ +ϕB/A)

)
dxk′]2

+ (� ∗)2

μ2
g λ(x

k′
)
(C−B

2
/A)[dϕ+(∂i ′

η Ã)dxi ′ ]2, (92)

for

� =
∫

dy4( v�)∂4(�̃
2) = μ2

g λ(x
k′
)h̊−1

4 �̃2,

with �̃2/h̊4 parameterized using (91).10 The gravitational
polarizations (ηi , ηa) and N coefficients (ni , wi ) are com-
puted as follows:

eψ(x
k ) = η̃1′ = η̃2′, η̃3′ = e2�

4μ2
g |̃λ| , η̃4′ = (� ∗)2

μ2
g λ(x

k′
)
,

wi ′ = ẘi ′ + ηwi ′ = ∂i ′(
η Ã[� ]), nk′ = n̊k′ + ηnk′

= ∂k′(−ŷ3′ + ϕB/A + ηn),

where η Ã(xk, y4) is introduced via formulas and assump-
tions similar to (78), for s = 1, andψ••+ψ ′′ = 2μ2

g λ(x
k′
).

For the N coefficients, the parameterizations are used (64)

with �̌ = exp[�(xk′
, y4)]

√
|h̊3′ |, when h̊3′ h̊4′ = AC − B

2

and

wi ′ = ẘi ′ + ηwi ′ = ∂i ′( e�
√

|AC − B
2|)/

� ∗e�
√

|AC − B
2| = ∂i ′

η Ã.

We can take any function ηn(xk) and put λ = const 
= 0
using the corresponding re-definitions of the coordinates and
generating functions.

10 Hereafter we shall consider that we can approximate λ(xk′
) � λ̃ =

const.
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The solutions (92) are valid for stationary LC-configura-
tions determined by off-diagonal massive gravity effects on
Kerr black holes when the new class of spacetimes have a
Killing symmetry in ∂/∂y3′

and a generic dependence on
three (from maximally four) coordinates, (xi ′(r, ϑ), ϕ).Off-
diagonal modifications are possible even for very small val-
ues of the mass parameter μg. The solutions depend on
the type of generating function �(xi ′ , ϕ) we have to fix in
order to satisfy certain experimental/observational data in
certain fixed systems of reference/coordinates. Various data
can be re-parameterized for an effective λ = const 
= 0.
In such variables, we can mimic stationary massive grav-
ity effects by off-diagonal configurations in GR with inte-
gration parameters which should also be fixed by imposing
additional assumptions on the symmetries of the interactions
(for instance, to have an ellipsoid configuration; see Sect.
4.3, and the details and the discussion of parametric Killing
symmetries in Refs. [3–5]).

4.2.1 Nonholonomically induced torsion and massive
gravity

If we do not impose the LC-conditions (22), a nontrivial
source μ�̃ = μ2

g λ̃ from massive gravity induces a station-
ary configuration with nontrivial d-torsion (15). The torsion
coefficients are determined by metrics of the type (65) with
�̃ → λ̃ and parameterizations of coefficients and coordi-
nates distinguishing the prime data for a Kerr metric (90).
Such solutions can be written in the form

ds2 = eψ(x
k′
)
[
(dx1′

)2 + (dx2′
)2
]

− �2

4μ2
g |̃λ| A

[
dy3′

+
(

1nk′(xi ′)+ 2nk′(xi ′)
4μg(�

∗)2

�5

− ∂k′(ŷ3′ + ϕB/A)
)

dxk′]2 + (∂ϕ�)
2

μ2
g λ(x

k′
)�2

×(C − B
2
/A)

[
dϕ + ∂i ′�

∂ϕ�
dxi ′

]2
, (93)

where we use a generating function �(xi ′ , ϕ) instead of e�

and consider nonzero values of 2nk(xi ′). We can see that
nontrivial stationary off-diagonal torsion effects may result
in additional effective rotations proportional toμg if the inte-
gration function 2nk 
= 0. Considering two different classes
of off-diagonal solutions (93) and (92), we can study if a mas-
sive gravity theory is described in terms of an induced torsion
or characterized by additional nonholonomic constraints as
in GR (with zero torsion).

It should be noted that configurations of the type (93)
can be constructed in various theories with noncommutative,
brane, extra-dimension, warped, and trapped brane type vari-
ables in the string, or Finsler-like and/or Hořava–Lifshits the-

ories [6,10,11,13,25] when nonholonomically induced tor-
sion effects play a substantial role. Those classes of solutions
were constructed for different sets of interactions constants
and, for instance, for propagating Schwarzschild and/or ellip-
soid type configurations on Tau NUT backgrounds etc. The
off-diagonal deformations and effective polarizations of the
coefficients of the metrics correspond to a prime Kerr metric
and are related to the target configuration in massive gravity.

4.2.2 Small f -modifications of Kerr metrics and massive
gravity

Using the AFDM, we can construct off-diagonal solutions for
a superposition of f -modified and massive gravity interac-
tions. Such nonlinear effects can be distinguished in explicit
form if we consider for additional f -deformations, for
instance, a “prime” solution for massive gravity/effectively
modeled in GR with source μ� = μ2

g λ(x
k′
), or re-defined

to μ�̃ = μ2
g λ̃ = const. Adding a “small” value �̃ deter-

mined by f -modifications, we work in N adapted frames
with an effective source ϒ = �̃+ λ̃ (see formulas (33) and
(34)). As a result, we construct a class of off-diagonal solu-
tions in modified f -gravity generated from the Kerr black
hole solution as a result of two nonholonomic deformations,

(g̊, N̊,
v
ϒ̊ = 0, ϒ̊ = 0) → (̃g, Ñ, vϒ̃ = λ̃, ϒ̃ = λ̃)

→ ( εg, εN, ϒ = ε �̃+ μ�̃,ϒ = ε �̃+ μ�̃),

when the target data g = εg and N = εN depend on a small
parameter ε, 0 < ε � 1. For simplicity, we restrict our
considerations for solutions when |ε �̃| � | μ�̃|, i.e. con-
sider that f -modifications in N adapted frames are much
smaller than massive gravity effects (in a similar from, we
can analyze nonlinear interactions with |ε �̃| � | μ�̃|). The
corresponding N adapted transformations are parameterized
as

[g̊i , h̊a, ẘi , n̊i ] → [gi = (1 + εχi )̃ηi g̊i , h3

= (1 + εχ3)̃η3h̊3, h4 = (1 + εχ4)

η̃4h̊4,
εwi = ẘi + w̃i + εwi ,

εni = n̊i + ñi + εni ];
ϒ = μ�̃(1 + ε �̃/ μ�̃); ε�̃ = �̃(xk, ϕ)

[1 + ε 1�̃(xk, ϕ)/�̃(xk, ϕ)] = exp[ ε�(xk, ϕ)], (94)

leading to a 4-d LC-configuration with d-metric,

ds2
4εd K = εi (1 + εχi )e

ψ(xk )(dxi )2

+
ε�̃2

4 ϒ

[
dy3 + (∂i n)dxi

]2

+ (∂ϕ
ε�̃)2

ϒ ε�̃2

[
dy4 + (∂i

ε Ǎ)dxi
]2
,

for ∂i
ε Ǎ = ∂i

ε Ǎ + ε∂i
1 Ǎ determined by ε�̃ = �̃ +

ε 1�̃ following the conditions in (82). The values labeled
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by “◦” and “̃” are taken from (91) (for simplicity, we omit
priming of indices). The χ - and w-values (corresponding to
a re-definition of the coefficients; for simplicity, we consider
εni = 0) have to be computed to define ε -deformed LC-
configurations; see (75) for s = 0, as solutions of the system
(46) in the form (47)–(50) for a source ϒ = μ�̃+ ε�̃.

The deformations (94) of the off-diagonal solutions (92)
result in a new class of ε-deformed solutions with

χ1 = χ2 = χ, for ∂11χ + ε2∂22χ = 2�̃;
χ3 = 2 1�̃/�̃− �̃/ μ�̃,

χ4 = 2∂4
1�̃/�̃− 2 1�̃/�̃− �̃/ μ�̃,

wi = (
∂i

1�̃

∂i �̃
− ∂4

1�̃

∂4�̃
)
∂i �̃

∂4�̃
= ∂i

1 Ǎ, ni = 0, (95)

where there is not summation on index “i ′′ in the last formula
and h̊3′ h̊4′ = AC−B

2
.Such nonholonomic deformations are

determined, respectively, by two generating functions �̃ =
e� and 1�̃ and two sources μ�̃ and �̃. Putting all this
together, we construct an off-diagonal generalization of the
Kerr metric via “main” massive gravity terms and additional
ε-parametric f -modifications,

ds2 = eψ(x
k′
)(1 + εχ(xk′

))[(dx1′
)2 + (dx2′

)2]
− e2�

4| μ�̃| A[1 + ε(2e−� 1�̃− �̃/ μ�̃)][dy3′

+
(
∂k′ ηn(xi ′)− ∂k′(ŷ3′ + ϕB/A)

)
dxk′ ]2

+ (�
∗)2
μ�̃

(C − B
2
/A)[1+ε(2e−�∂4

1�̃− 2e−� 1�̃

−�̃/ μ�̃)][dϕ + (∂i ′ Ã + ε∂i ′
1 Ǎ)dxi ′ ]2. (96)

We can consider ε-deformations of the type (94) for (93),
which allows us to generate new classes of off-diagonal
solutions with nonholonomically induced torsion determined
both by massive and f -modifications of GR. Such a space-
time cannot be modeled as an effective one with anisotropic
polarizations in GR.

4.3 Ellipsoidal 4-d deformations of the Kerr metric

We provide some examples of how the Kerr primary data
(90) is nonholonomically deformed into target generic off-
diagonal solutions of vacuum and non-vacuum Einstein
equations for the canonical d-connection and/or the Levi–
Civita connection.

4.3.1 Vacuum ellipsoidal configurations

Let us construct a class of parametric solutions with such
nonholonomic constraints on the coefficients given by (93)
which transform the metrics into effective 4-d vacuum LC-
configurations of the type (69). This defines a model when

f -modifications compensate massive gravity deformations
of a Kerr solution, with ϒ = μ�̃+ ε�̃ = 0, and result in
ellipsoidal off-diagonal configurations in GR, where ε =
−μ�̃/˜� � 1 can be considered as an eccentricity parameter.
We find solutions for ε-deformations to vacuum solutions.
The ansatz for the target metrics is of the type

ds2 = eψ(x
k′
)(1 + εχ(xk′

))[(dx1′
)2 + (dx2′

)2]
− e2�

4μ2
g| λ̃|

A[1 + εχ3′ ][dy3′

+
(
∂k′ ηn(xi ′)− ∂k′(ŷ3′ + ϕB/A)

)
dxk′ ]2

+ (∂4�)
2η4′

μ2
g λ̃

(C − B
2
/A)[1 + εχ4′ ]

×[dϕ + (∂i ′ Ã + ε∂i ′
1 Ǎ)dxi ′ ]2, (97)

when the prime metrics (92) are obtained for η4′ = 1. The
condition (55) for φ = const, i.e. for vacuum off-diagonal
configurations, when h4′ = 0h4′(∂4

√|h3′ |)2, see (68), is sat-

isfied for η4′ = A
√

|B2 − C A|e2� . For terms proportional
to ε), we compute χ4′ = (∂4�)

−1(1 + e−�χ3′), where
�(r, ϑ, ϕ) and χ3′(r, ϑ, ϕ) are generating functions. We
can consider as generating functions for N coefficients any
Ã(r, ϑ, ϕ) and 1 Ǎ(r, ϑ, ϕ), which for wi ′ = ∂i ′( Ã + ε 1 Ǎ)
solve the LC-conditions. The LC-conditions ei ln

√| h3| =
0, ∂iw j = ∂ jwi for s = 0, see (75), can be satisfied if we
parameterize

wi ′ = ∂i ′
ε�/∂ϕ

ε� = ∂i ′( Ã + ε 1 Ǎ),

for ε� = exp(� + εχ3′); see the discussions related to (81)
and (82). Because h4′ for (97) can be approximated up to ε2

to be a functional on ε�, we can satisfy for certain classes
of generating functions ε� = ε�̃ = ε�̌, see (77), the
conditions ∂ϕwi ′ = ei ′ ln

√| h4|.
We can choose such a generating function χ3′, when the

constraint h3′ = 0 defines a stationary rotoid configuration
(different from to the ergo sphere for the Kerr solutions).
Prescribing

χ3′ = 2ζ sin(ω0ϕ + ϕ0), (98)

for constant parameters ζ , ω0 and ϕ0, and introducing the
values

A(r, ϑ)[1 + εχ3′(r, ϑ, ϕ)]
Â(r, ϑ, ϕ) = −�−1(�̂− a2 sin2 ϑ),

�̂(r, ϕ) = r2 − 2m(ϕ)+ a2,

as ε-deformations of Kerr coefficients (89), we get an effec-
tive “anisotropically polarized” mass

m(ϕ) = m0/
(

1 + εζ sin(ω0ϕ + ϕ0)
)
. (99)

123



3152 Page 22 of 27 Eur. Phys. J. C (2014) 74 :3152

The condition h3 = 0, i.e. ϕ�(r, ϕ, ε) = a2 sin2 ϑ, results
in an ellipsoidal “deformed horizon” r(ϑ, ϕ) = m(ϕ) +(
m2(ϕ)− a2 sin2 ϑ

)1/2
. For a = 0, this is just the parametric

formula for an ellipse with eccentricity ε,

r+ = 2m0

1 + εζ sin(ω0ϕ + ϕ0)
.

If the anholonomy coefficients (9) computed for (97) are
not trivial for such wi and nk = 1nk, the generated solu-
tions cannot be diagonalized via coordinate transformations.
The corresponding 4-d spacetimes have one Killing sym-
metry with respect to ∂/∂y3′

. For small ε, the singular-
ity at � = 0 is “hidden” under ellipsoidal deformed hori-
zons if m0 ≥ a. Both the event horizon, r+ = m(ϕ) +
(m2(ϕ) − a2 sin2 ϑ)1/2, and the Cauchy horizon, r− =
m(ϕ) − (m2(ϕ) − a2 sin2 ϑ)1/2, are ϕ-deformed and are
effectively embedded into an off-diagonal background deter-
mined by the N coefficients. In some sense, such configu-
rations determine Kerr-like black hole solutions with addi-
tional dependencies on the variable ϕ of certain diagonal and
off-diagonal coefficients of the metric. For a = 0, but with
ε 
= 0,we get ellipsoidal deformations of the Schwarzschild
black holes (see [6] and references therein on the stability
and interpretation of such solutions with both commutative
and/or noncommutative parameters). Such an interpretation
is not possible for “non-small” N -deformations of the Kerr
metric. In general, it is not clear what physical importance
such target exact solutions may have, even if they may be
defined to preserve the Levi–Civita configurations.

The eccentricity ε = −̃λ/�̃ � 1 depends both on massive
gravity and f -modifications encoded into effective cosmo-
logical constants. We proved that via nonholonomic defor-
mations it is possible to transform non-vacuum solutions
with an effective locally anisotropically cosmological con-
stant into effective off-diagonal vacuum configurations in
GR. If the generating functions are prescribed to possess nec-
essarily smooth conditions of a certain type, the solutions
are similar to certain Kerr black holes with ellipsoidal ε-
deformed horizons and embedded self-consistently into non-
trivial off-diagonal vacuum configurations. Polarizations of
such vacuums encode massive gravity contributions and f -
modifications.

4.3.2 Ellipsoid Kerr–de Sitter configurations

We construct a subclass of solutions (96) with rotoid config-
urations if we constrain χ3 appearing in the ε-deformations
in (95) to be of the form

χ3 = 2 1�̃/�̃− �̃/ μ�̃ = 2ζ sin(ω0ϕ + ϕ0),

which is similar to (98). Expressing 1�̃ = e� [ �̃/2 μ�̃ +
ζ sin(ω0ϕ+ϕ0)], for �̃ = e� ,we generate a class of generic

off-diagonal metrics associated with the ellipsoid Kerr–de
Sitter configurations,

ds2 = eψ(x
k′
)(1 + εχ(xk′

))[(dx1′
)2 + (dx2′

)2]
− e2�

4| μ�̃| A[1 + 2εζ sin(ω0ϕ + ϕ0)][dy3′

+
(
∂k′ ηn(xi ′)− ∂k′(ŷ3′ + ϕB/A)

)
dxk′ ]2

+ (� ∗)2
μ�̃

(C − B
2
/A)[1 + ε(∂4� �̃/̃λ

× + 2∂4�ζ sin(ω0ϕ + ϕ0)

+ 2ω0 ζ cos(ω0ϕ + ϕ0))]
[dϕ + (∂i ′ Ã + ε∂i ′

1 Ǎ)dxi ′ ]2. (100)

Such metrics have a Killing symmetry in ∂/∂y3 and are
completely defined by a generating function �(xk′

, ϕ) and
the sources μ�̃ = μ2

g λ and �̃. They define ε-deformations
of Kerr–de Sitter black holes into ellipsoid configurations
with effective (polarized) cosmological constants determined
by the constants in massive gravity and f -modifications. If
the LC-conditions are satisfied, such metrics can be modeled
in GR.

4.4 Extra-dimensional off-diagonal (non-) massive
modifications of the Kerr solutions

Various classes of generic off-diagonal deformations of the
Kerr metric into higher-dimensional exact solutions can be
constructed. The explicit geometric and physical properties
depend on the type of additional generating and integration
functions and (non-) vacuum configurations and (non-) zero
sources we consider. Let us analyze a series of 6-d and 8-d
solutions encoding possible higher dimensional interactions
with effective cosmological constants, nontrivial massive
gravity contributions, f -modifications, and certain analogies
to Finsler gravity models.

4.4.1 6-d deformations with nontrivial cosmological
constant

Off-diagonal extra-dimensional gravitational interactions
modify a Kerr metric for any nontrivial cosmological con-
stant in 6-d.11 Such higher-dimensional Kerr–de Sitter con-
figurations can be generated by nonholonomic deforma-
tions (g̊, N̊,

v
ϒ̊ = 0, ϒ̊ = 0) → (̃g, Ñ, vϒ̃ = �, ϒ̃ =

�, v1ϒ̃ = �). The solutions are not stationary; they are
characterized by a Killing symmetry in ∂/∂y5 and can be
parameterized in the form

11 In a similar form we can generalize the constructions in 8-d gravity.
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ds2 = eψ(x
k′
)[(dx1′

)2 + (dx2′
)2] − e2�

4�
A[dy3′

+
(
∂k′ ηn(xi ′)− ∂k′(ŷ3′ + ϕB/A)

)
dxk′ ]2

+ (∂ϕ�)
2

�
(C − B

2
/A)[dϕ + (∂i ′

η Ã)dxi ′ ]2

+
1�̃2

4 �

[
dy5 + (∂τ

1n)duτ
]2

+ (∂6
1�̃)2

� 1�̃2

[
dy6 + (∂τ

1 Ǎ)duτ
]2
. (101)

The “primary” data A, B,C are described by (89) and the
generating functions

� = �(xk′
, ϕ), 1�̃(uβ, y6) = 1�̃(xk′

, t, ϕ, y6);
ηn = ηn(xi ′), 1n = 1n(uβ, y6); η Ã = η Ã(xk′

, ϕ),

1 Ǎ = 1 Ǎ(uβ, y6),

subjected to the LC-conditions and integrability conditions.
We can “extract” ellipsoid configurations for a subclass of

metrics with “additional” ε-deformations,

ds2 = eψ(x
k′
)[(dx1′

)2 + (dx2′
)2]

−e2�

4�
A
[
1 + 2εζ sin(ω0ϕ + ϕ0)

][
dy3′

+
(
∂k′ ηn(xi ′)− ∂k′(ŷ3′ + ϕB/A)

)
dxk′]2

+ (∂ϕ�)
2

�
(C − B

2
/A)

[
1 + ε(2∂4�ζ sin(ω0ϕ + ϕ0)

+ 2ω0ζ cos(ω0ϕ + ϕ0))
][

dϕ + (∂i ′
η Ã)dxi ′

]2

+
1�̃2

4 �

[
dy5 + (∂τ

1n)duτ
]2 + (∂6

1�̃)2

� 1�̃2

×
[
dy6 + (∂τ

1 Ǎ)duτ
]2
.

For small values of the eccentricity ε, such metrics
describe “slightly” deformed Kerr black holes embedded
self-consistently into a generic off-diagonal 6-d spacetime. In
general, extra dimensions are not compactified. Nevertheless,
imposing additional constraints on the generating functions
1�̃, 1n,1 Ǎ,we can construct warped/trapped configurations
as in brane gravity models and generalizations; see similar
examples in [8,12,13,25].

4.4.2 8-d deformations and Finsler-like configurations

Next, we generate a 8-d metric with nontrivial induced tor-
sion describing nonholonomic deformations, (g̊, N̊,

v
ϒ̊ =

0, ϒ̊ = 0) → (̃g, Ñ, vϒ̃ = �, ϒ̃ = �, v1ϒ̃ = �, v2ϒ̃ =
�). A similar 4-d example is given by (93) but here we use
a different source (in this subsection, we take the source as
a cosmological constant � in 8-d). This class of solutions is

parameterized in the form

ds2 = eψ(x
k′
)[(dx1′

)2 + (dx2′
)2] − �2

4�
A[dy3′

+
(

1nk′(xi ′)+ 2nk′(xi ′)
4μg(�

∗)2

�5

− ∂k′(ŷ3′ + ϕB/A)
)

dxk′ ]2

+ (∂ϕ�)
2

��2 (C − B
2
/A)[dϕ + ∂i ′�

∂ϕ�
dxi ′ ]2

+
1�̃2

4 �

[
dy5 + (∂τ

1n)duτ
]2 + (∂6

1�̃)2

� 1�̃2

×
[
dy6 + (∂τ

1 Ǎ)duτ
]2

+
2�̃2

4 �

[
dy7 + (∂τ1

2n)duτ1
]2

+ (∂8
2�̃)2

� 2�̃2

[
dy8 + (∂τ1

2 Ǎ)duτ1
]2
, (102)

where the generating functions are chosen

� = �(xk′
, ϕ), 1�̃(uβ, y6) = 1�̃(xk′

, t, ϕ, y6),

2�̃(uβ1 , y8) = 2�̃(xk′
, t, ϕ, y5, y6, y8); (103)

1n = 1n(uβ, y6), 2n = 2n(uβ1 , y8),

η Ã = η Ã(xk′
, ϕ), 1 Ǎ = 1 Ǎ(xk′

, t, ϕ, y6),

2 Ǎ = 2 Ǎ(xk′
, t, ϕ, y5, y6, y8).

The generating functions for the class of solutions (102)
are chosen in a form where the nonholonomically induced
torsion (15) is effectively modeled on a 4-d pseudo-Riemann-
ian spacetime, but on the higher shells s = 1 and s = 2 the
torsion fields are zero. We can generate extra-dimensional
torsion N adapted coefficients if nontrivial integration func-
tions of the type 2nk′(xi ′) are considered for the higher
dimensions.

Metrics of type (102) can be re-parameterized to define
exact solutions in the so-called Einstein–Finsler gravity
and fractional derivative modifications constructed on tan-
gent bundles to Lorentz manifolds; see details in Refs.
[13,25,28,29] and the following different Finsler or frac-
tional models [30–32,34,35]. For Finsler-like theories, we
have to consider y5, y6, y7, y8 as fiber coordinates for a
tangent bundle with local coordinates xi ′ , y3′

, ϕ when the
1v + 2v coefficients of the metric and other geomet-

ric/physical objects can be transformed into standard ones in
Finsler geometry via frame and coordinate transformations.
In some sense, Finsler-like theories with small corrections to
GR are extra-dimensional ones with “velocity/momentum”
coordinates and with low “speed/energy” nonlinear correc-
tions.
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Finally we note that the class of metrics (102) contains
a subclass of the 6-d→8-d generalization of (101) to those
configurations with zero torsion if we choose � = e2� and
impose on the N coefficients respective constraints which are
necessary for selecting LC-configurations.

4.4.3 Kerr massive deformations and vacuum extra
dimensions

In this subsection, we momentarily return to the vacuum
ellipsoid solutions (97) and extend the metric to extra dimen-
sions when the source is of type ϒ = λ̃+ ε(�̃ + �) = 0,
μ�̃=μ2

g| λ|, and result in ellipsoidal off-diagonal configu-

rations in GR, where ε = − μ�̃/(�̃+�) � 1 can be con-
sidered as an eccentricity parameter. We can construct mod-
els of off-diagonal extra-dimensional interactions when the
f -modifications �̃ compensate an extra-dimensional contri-
bution via the effective constant �̃ and which are related to
the configurations of massive gravity deformations of a Kerr
solution. We select a subclass of solutions for ε-deformations
of the vacuum solutions described by the ansatz for the target
metrics

ds2 = eψ(x
k′
)(1 + εχ(xk′

))
[
(dx1′

)2 + (dx2′
)2
]

− e2�

4 μ�̃
A
[
1 + εχ3′

][
dy3′ +

(
∂k′ ηn(xi ′)

−∂k′(ŷ3′+ϕB/A)
)

dxk′]2 + (∂4�)
2η4′

μ�̃
(C−B

2
/A)

×
[
1 + εχ4′

][
dϕ + (∂i ′ Ã + ε∂i ′

1 Ǎ)dxi ′
]2

+
1�̃2

4( �̃+�)

[
dy5 + (∂τ

1n)duτ
]2

+ (∂6
1�̃)2

( �̃+�) 1�̃2

[
dy6 + (∂τ

1 Ǎ)duτ
]2

+
2�̃2

4 (�̃+�)

[
dy7 + (∂τ1

2n)duτ1
]2

+ (∂8
2�̃)2

( �̃+�) 2�̃2

[
dy8 + (∂τ1

2 Ǎ)duτ1
]2
. (104)

The extra-dimension components of this metric are gen-
erated by the functions 1�̃, 2�̃ and the N coefficients simi-
larly to (102) but with modified effective sources in the extra
dimensions,� → �̃+�.This result shows that extra dimen-
sions can mimic the ε-deformations in order to compensate
contributions from the f -modifications and even effective
vacuum configurations of the 4-d horizontal part. In general,
vacuum metrics (104) encode extra-dimension modifica-
tions/polarizations of the physical constants and coefficients
of the metrics under nonlinear polarizations of an effective
8-d vacuum distinguishing the 4-d nonholonomic configura-
tions and massive gravity contributions. Extra-dimensional

and f -modified contributions are described by terms propor-
tional to the eccentricity ε.

4.4.4 Extra-dimensional massive ellipsoid Kerr–de Sitter
configurations

Combining the solutions (100) and (102), we construct a class
of non-vacuum 8-d solutions with rotoid configurations if we
constrain χ3 in the ε-deformations (for 4-d, see the similar
formula (95)) to be of the form

χ3 = 2 1�̃/�̃− ( �̃+�)/ μ�̃ = 2ζ sin(ω0ϕ + ϕ0).

We reexpress 1�̃ = e� [ ( �̃+�)/2 μ�̃+ ζ sin(ω0ϕ +
ϕ0)], for �̃ = e� and (103), and generate a class of generic
off-diagonal extra-dimensional metrics for ellipsoid Kerr–de
Sitter configurations

ds2 = eψ(x
k′
)(1 + εχ(xk′

))[(dx1′
)2 + (dx2′

)2]
− e2�

4| μ�̃| A[1 + 2εζ sin(ω0ϕ + ϕ0)][dy3′

+
(
∂k′ ηn(xi ′)− ∂k′(ŷ3′ + ϕB/A)

)
dxk′ ]2

+ (�
∗)2
μ�̃

(C − B
2
/A)

[
1 + ε

(
∂4�

�̃+�

μ�̃

+2∂4�ζ sin(ω0ϕ + ϕ0)+ 2ω0 ζ cos(ω0ϕ + ϕ0)
)]

×[dϕ + (∂i ′ Ã + ε∂i ′
1 Ǎ)dxi ′ ]2

+
1�̃2

4 ( �̃+�)

[
dy5 + (∂τ

1n)duτ
]2

+ (∂6
1�̃)2

( �̃+�) 1�̃2

[
dy6 + (∂τ

1 Ǎ)duτ
]2

+
2�̃2

4 (�̃+�)

[
dy7 + (∂τ1

2n)duτ1
]2

+ (∂8
2�̃)2

( �̃+�) 2�̃2

[
dy8 + (∂τ1

2 Ǎ)duτ1
]2
.

Such non-vacuum solutions can also be modeled for
Einstein–Finsler spaces if the extra-dimension coordinates
are treated as velocity/momentum ones. The metrics pos-
sess a respective Killing symmetry in ∂/∂y7. They define
ε-deformations of Kerr–de Sitter black holes into ellipsoid
configurations with effective cosmological constants deter-
mined by the constants in massive gravity, f -modifications
and extra-dimensional contributions.

5 Concluding remarks

In this work, we have elaborated the anholonomic frame
deformation method, AFDM, in constructing exact solutions
in gravity theories, which we formulated and developed in
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[5–9]; see also the references therein. The method is based
on a general decoupling property of the gravitational field
equations, which is possible for certain classes of noholo-
nomic 2 + 2 + . . . splittings of the spacetime dimensions.
Such solutions are generic off-diagonal, with zero or non-
zero torsion structure, and they may depend on all (higher
dimensions, or 4-d) spacetime coordinates. In the simplest
form, the constructions can be performed by using an “aux-
iliary” metric-compatible connection which is constructed
along with the “standard” Levi–Civita connection and from
the same metric structure. Both connections are related via
a distortion tensor which is completely determined by the
coefficients of the metric and the frame splitting. After a
class of off-diagonal solutions are constructed in general, we
can impose certain conditions on the structure of the non-
holonomic frames, when the coefficients of both the auxil-
iary and the standard connections are the same, and we can
extract solutions with zero torsion, for instance, in general
relativity theory.

In general form, the off-diagonal metrics and nonlinear
and linear connections constructed following the AFDM
method depend on various classes of generating and inte-
gration functions, certain symmetry parameters, and on pos-
sible nonzero sources and/or (polarized) cosmological con-
stants. This is possible because in our approach the (gen-
eralized/modified) Einstein equations are transformed (after
choosing the corresponding ansatz for the metrics) into sys-
tems of nonlinear partial differential equations which can
be integrated in a very general form and depending on cer-
tain classes of generating/integration functions. This is dif-
ferent from the case of a diagonal ansatz, for instance, for
the Schwarzschild metric when the gravitational field equa-
tions transform into a system of nonlinear ordinary dif-
ferential equations depending on certain integration con-
stants. We can construct chains of nonholonomic frame
deformations in order to transform a given primary met-
ric (it may be an exact solution, or not, in a gravity the-
ory) into other classes of target metrics and which can
be fixed to be exact solutions in a “metric compatible”
gravity theory. From a formal point of view, the chains’
metrics can correspond to spaces with nontrivial topol-
ogy, have a singular/stochastic/evolution etc. behavior and
various types of horizons, symmetries, and boundary con-
ditions. In general, it is not possible to formulate some
uniqueness property or limiting/asymptotic conditions. Cer-
tain geometric data and physical information of “interme-
diary” metrics are encoded, step by step, into the target
metrics. We can impose certain nonholonomic constraints
on such integral varieties in order to relate a new class of
target metric solutions to some well-defined primary met-
rics. However, it is not clear what physical importance these
“very general” classes of target metric exact solutions may
have.

In a series of works [10–13] (see details and references in
[9]) we studied various examples. When using the AFDM we
can construct locally anisotropic black ellipsoid/hole, spin-
ning and/or solitonic spaces etc. Certain configurations seem
to be stable [6] and maintain, for instance, the main proper-
ties of the Schwarzschild metric but for small rotoid defor-
mations.

The goal of this article was fourfold:

1. to elaborate the AFDM in a form which allows us to con-
struct generic off-diagonal solutions with Killing sym-
metries and the generalizations to non-Killing configura-
tions using extensions to higher dimensions and so-called
“vertical” conformal factors;

2. to study off-diagonal modifications of the Kerr metric
under massive gravity and f -modified nonlinear inter-
actions, via higher dimensions, and state the conditions
when such configurations can be modeled as effective
ones in general gravity, or via nonholonomically induced
torsion fields etc.;

3. to show how the well-known and physically important
exact solution for the Kerr black hole can be constructed,
for some special class-types of integration functions, fol-
lowing the AFDM, and

4. to provide certain examples when the solutions in point
2 can be generalized to various vacuum and non-vacuum
configurations with ellipsoidal symmetries.

In some cases of rotoidal deformations with small eccen-
tricity parameter, we have been able to prove that the phys-
ical properties of the primeval metrics are preserved but
with certain effective polarizations of the physical con-
stants and deformation to ellipsoidal configurations. It is
possible to construct exact solutions for very general off-
diagonal deformations (not depending of small parameters)
but the physical properties are not clear if, for instance, addi-
tional smooth, symmetry, Cauchy, and/or boundary condi-
tions are not imposed. A very important property is that
off-diagonal nonlinear gravitational interactions can mimic
effective modified gravity theories, with anisotropies and re-
scalings, which can find applications in modern cosmology
and/or elaborate new models of quantum gravity [13,14,26].
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Appendix A: The conditions for zero torsion

We can consider frame transformations to the N coefficients
and the ansatz (35) when all coefficients of a nonholonomi-
cally induced torsion (15) are zero and �	

γs
αsβs

= 	̂
γs
αsβs

. For
simplicity, we analyze such conditions for the shell s = 0,
i.e. for 4-d spacetimes.

In N adapted frames, the coefficients of the d-torsion (15)
are T̂ i

jk = L̂i
jk − L̂i

k j = 0, T̂ i
ja = Ĉi

jb = 0, T̂ a
bc =

Ĉa
bc− Ĉa

cb = 0 for any ansatz (35). The nontrivial coefficients
are T̂ c

a j = L̂c
a j − ea(N c

j ) and T̂ a
ji = −�a

ji . The values

L̂a
bi = ∂b N a

i + 1

2
hac(∂i hbc−N e

i ∂ehbc−hdc∂b N d
i −hdb∂c N d

i ),

T̂ c
a j = 1

2
hac(∂i hbc − N e

i ∂ehbc − hdc∂b N d
i − hdb∂c N d

i )

are computed for N 3
i = ni (xk, y4), N 4

i = wi (xk, y4); hbc =
diag[h3(xk, y4), h4(xk, y4)]; hac = diag[(h3)

−1, (h4)
−1].

We have

T̂ 3
bi = 1

2
h3c(∂i hbc − N e

i ∂ehbc − hdc∂b N d
i − hdb∂c N d

i )

= 1

2h3
(∂i hb3 − wi∂4hb3 − h3∂bni ),

i.e. T̂ 3
3i = 1

2h3
(∂i h3 − wi∂4h3), T̂ 3

4i = 1
2∂4ni .

Similarly, we get

T̂ 4
bi = 1

2
h4c(∂i hbc − N e

i ∂ehbc − hdc∂b N d
i − hdb∂c N d

i )

= 1

2h4
(∂i hb4−wi∂4hb4−h4∂bwi − h3b∂4ni −h4b∂4wi ),

i.e. T̂ 4
3i = − h3

2h4
∂4ni , T̂ 4

4i = 1
2h4
(∂i h4 − wi∂4h4)− ∂4wi .

The coefficients �a
i j = e j

(
N a

i

) − ei (N a
j ) are computed

thus:

�a
i j = ∂ j

(
N a

i

)− ∂i (N
a
j )− N b

j ∂b N a
i + N b

i ∂b N a
j

= ∂ j
(
N a

i

)− ∂i (N
a
j )− w j∂4 N a

i + wi∂4 N a
j .

We obtain such nontrivial values as

�3
12 = −�3

21 = ∂2n1 − ∂1n2 − w2∂4n1 + w1∂4n2,

�4
12 = −�4

21 = ∂2w1 − ∂1w2 − w2∂4w1 + w1∂4w2.
(6.1)

Summarizing the above formulas for ∂4ni = 0 and ∂2n1 −
∂1n2 = 0, we get the condition of zero torsion for the ansatz
in (35) with nk = ∂kn(xi ),

1

2h3
(∂i h3 − wi∂4h3) = 0, (6.2)

1

2h4
(∂i h4 − wi∂4h4) = ∂4wi , (6.3)

∂2w1 − ∂1w2 − w2∂4w1 + w1∂4w2 = 0. (6.4)

In this form we can define a LC-configuration. The final
step is to impose the condition that the coefficients nk do

not depend on y4. This can be fixed in the form 1nk(xi ) =
∂kn(xi ) and 2nk = 0, i.e. nk = ∂kn(xi ).

Finally, we note that the LC-conditions can be formulated
recurrently, in similar forms, for higher order shells both for
zero and nonzero sources.
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