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We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model
for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI
data to separate whole tissue time activity curves (TACs) available from dynamic PET data into individual TACs associated with the
blood space, the extravascular-extracellular space (EES), and the extravascular-intracellular space (EIS). Then we simulate whole
tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can
separate the PET TAC into the three components with accuracy that is noise dependent.The simulations show that accurate blood,
EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated
TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET
kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new
information on the transport of a tracer in a variety of dynamic PET studies.

1. Introduction

There is an extensive literature on the use of compartmental
modeling to understand the distribution and retention of
various positron emission tomography (PET) radiotracers
(see, e.g., [1, 2]). A series of ordinary, first-order, linear differ-
ential equations are often used to model the body as a series
of well-mixed “compartments,” between which a tracer may
be transported. Solving the differential equations and then
fitting those solutions to measured tissue time activity curves
(TACs) return estimates of a number of relevant physiological

parameters. Typical dynamic PET models return parameters
describing the metabolic rates of tracer utilization. The
models used to extract these parameters have several free
parameters and the measured TAC is, in practice, a weighted
sum of unknown TACs from multiple compartments. This
results in the introduction of extra assumptions into the
analysis. Another central issue in standard dynamic PET
modeling is the difficulty of obtaining a reasonable time
course of the concentration of the injected tracer in the blood
plasma (i.e., the arterial input function), especially for small
animal studies. Thus, the current state-of-the-art in PET
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kinetic modeling typically requires simplifying assumptions
to reduce the number of free parameters and/or nonlinear
fitting methods which are well known to be sensitive to
measurement noise [1]. Here, we introduce a method that
exploits the data available from dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) studies to con-
strain the kinetic modeling of nuclear measurements and
potentially provide new insight into the physical distribution
and transfer of PET radiotracers.

Similar to a kinetic PET study, DCE-MRI involves the
serial acquisition of images before, during, and after the
injection of a contrast agent [3]. As the contrast agent
perfuses into the voxel (or region) of interest, it changes the
tissue’s native relaxation rates to an extent determined by the
concentration of the contrast agent. By following the image
sequence and fitting the resulting signal intensity with an
appropriate mathematical model, various parameters related
to blood vessel perfusion and permeability and tissue volume
fractions (i.e., the blood fraction, extravascular-extracellular
space (EES), and extravascular-intracellular space (EIS)) can
be extracted. The three volume fraction parameters can
potentially be used to constrain the modeling of kinetic PET
data; that is, the formalism below allows the separation of the
overall tissue TAC into TACs associated with the blood, EES,
and EIS compartments.This enables access to compartments
that are not typically accessible in dynamic PET studies.

It is important to note that there exists a subtle, though
fundamental, difference between the compartmental mod-
els employed in quantitative DCE-MRI and dynamic PET
analyses. The compartments in kinetic PET modeling typ-
ically (15O labeled H

2
O is one notable exception) refer to

biochemical compartments (e.g., bound or free), whereas
the compartments in kinetic MRI modeling refer to physical
compartments (e.g., the blood, EES, or EIS). Thus, when the
compartments extracted from a DCE-MRI analysis are used
to separate the PET TAC into different compartments, the
TAC is separated into the compartments determined from the
DCE-MRI data—and these compartments are fundamentally
different than the biochemical compartments. This means
that the TACs associated with these compartments, as well
as the kinetic parameters describing the movement of the
tracer between these compartments, are not the same as those
reported in the existing PET literature. More specifically,
in this contribution, we develop the formalism required to
use DCE-MRI data to extract separate TACs for the blood
pool (i.e., the input function), EES, and EIS and then show
how these time courses can be used to fit simplified versions
(i.e., fewer free parameters with known TACs) of a PET
compartmental model to extract kinetic parameters related
to the delivery and retention of PET tracer that is distributed
amongst the blood space, EES, and EIS. We conclude by dis-
cussing how the access to these new physiological parameters
may be of use in future dynamic PET studies.

2. Materials and Methods

2.1. PET Kinetic Modeling. Figure 1 depicts the compart-
mental model that we will use for this study; from left
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Figure 1: A schematic representation of the three-compartment
model used with the dynamic PET imaging. From left to right, the
three compartments represent the blood plasma, the extracellular-
extravascular space, and the extracellular-intravascular space.

to right, the compartments are the plasma, extravascular-
extracellular space, and extravascular-intracellular space,
respectively. We again note that these compartments are not
those identified in a typical PET kinetic modeling, which
consider the three (biochemical) compartments of radio-
tracer distribution as plasma, free and nonspecifically bound
in tissue, and specifically bound [1]. Rather, the (physical)
compartments chosen here reflect those typically identifiable
in a dynamic contrast-enhanced MRI acquisition described
below. The set of compartments described by this model
provides access to other potentially useful compartments and
rate constants. Thus, while the mathematical description of
the tracer concentrations is unchanged, it does change the
interpretation of the parameter values; we return to this
important point in Section 4. The following set of first-order,
ordinary, linear differential equations describe the system
depicted in Figure 1:

𝑑𝐶
𝑝
(𝑡)

𝑑𝑡

= 𝑘
2
𝐶EES (𝑡) − 𝐾1𝐶𝑝 (𝑡) ,

𝑑𝐶EES (𝑡)

𝑑𝑡

= 𝐾
1
𝐶
𝑝
(𝑡) − 𝑘

2
𝐶EES (𝑡) − 𝑘3𝐶EES (𝑡) + 𝑘4𝐶EIS (𝑡) ,

𝑑𝐶EIS (𝑡)

𝑑𝑡

= 𝑘
3
𝐶EES (𝑡) − 𝑘4𝐶EIS (𝑡) ,

(1)

where 𝐶
𝑝
, 𝐶EES, and 𝐶EIS are the concentrations of the

tracer in the blood plasma, extravascular-extracellular, and
extravascular-intracellular spaces, respectively.There are four
unknown rate constants and three unknown concentration-
of-tracer time courses. The problem is compounded by
the fact that a typical PET study measures only the total
concentration of the tracer in a given voxel or region of
interest, 𝐶tissue, which is determined by the concentration
of the tracer in each compartment and the relative volume
contributions of each compartment:

𝐶tissue (𝑡) = V𝑏𝐶𝑏 (𝑡) + VEES𝐶EES (𝑡) + VEIS𝐶EIS (𝑡) , (2)

where V
𝑏
, VEES, and VEIS are the blood, extravascular-

extracellular, and extravascular-intracellular volume
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fractions, respectively. Solving the second two relations
in (1) yields

𝐶EES (𝑡)=
𝐾
1

𝛼
2
− 𝛼
1

𝐶
𝑝
(𝑡)⊗[(𝑘

4
− 𝛼
1
) 𝑒
−𝛼
1
𝑡
+ (𝛼
2
− 𝑘
4
) 𝑒
−𝛼
2
𝑡
] ,

𝐶EIS (𝑡) =
𝐾
1
𝑘
3

𝛼
2
− 𝛼
1

𝐶
𝑝
(𝑡) ⊗ [𝑒

−𝛼
1
𝑡
− 𝑒
−𝛼
2
𝑡
] ,

𝛼
1,2
=

(𝑘
2
+ 𝑘
3
+ 𝑘
4
) ± √(𝑘

2
+ 𝑘
3
+ 𝑘
4
)
2

− 4𝑘
2
𝑘
4

2

.

(3)

If we note that V
𝑏
+ VEES + VEIS = 1, V𝑝 = V𝑏 ⋅ (1 − hematocrit)

and assume that the plasma free fraction is 1, then the solution
(i.e., (2) and (3)) has six unknown parameters and three
unknown concentration-of-tracer time courses. If the arterial
input function can be measured reliably, this is reduced
to two unknown concentration time courses. After briefly
introducing the relevant aspects of DCE-MRI modeling, we
proceed to show how DCE data can constrain this PET
model by eliminating unknown parameters and determining
unknown concentration-of-tracer time courses.

2.2. DCE-MRI Kinetic Modeling. A typical DCE-MRI study
employs an untargeted contrast agent that is distributed from
blood into tissue, but is unable to appreciably penetrate cells,
so the compartmental model is considerably simpler than the
above model for PET tracer kinetics and is given as:

𝑑𝐶tissue (𝑡)

𝑑𝑡

= 𝐾
trans
𝐶
𝑝
(𝑡) −

𝐾
trans

VEES
𝐶tissue (𝑡) , (4)

where𝐶tissue and𝐶𝑝 are the concentration of anMRI contrast
agent in the tissue and plasma space, respectively, 𝐾trans
represents the volume transfer constant for the agent between
the blood plasma (in units of mL (blood)/mL (tissue)/min)
and the extravascular-extracellular space, and VEES are as
above. This corresponds to the first two compartments in
Figure 1. The intracellular compartment concentration 𝐶EIS,
along with the rate constants 𝑘

3
and 𝑘
4
, is zero since standard,

clinically approvedMRI contrast agents remain extracellular.
The solution to (4) is given as follows:

𝐶tissue (𝑡) = 𝐾
trans exp(−𝐾

trans
𝑡

VEES
) ⊗ 𝐶

𝑝
(𝑡) . (5)

Many have noted that this model does not explicitly account
for the plasma fraction, and thus (5) is frequently amended to
include a blood plasma component as follows:

𝐶tissue (𝑡) = 𝐾
trans exp(−𝐾

trans
𝑡

VEES
) ⊗ 𝐶

𝑝
(𝑡) + V

𝑝
𝐶
𝑝
(𝑡) ,

(6)

where V
𝑝
is the blood plasma fraction. By measuring heavily

T1-weighted DCE-MRI data in the tissue of interest (e.g.,
a tumor) and a feeding vessel before, during, and after
the injection of a standard extracellular contrast agent, the

𝐶tissue(𝑡) and 𝐶𝑝(𝑡) time courses can be estimated and fit to
(6) to extract𝐾trans, VEES, and V𝑝; the latter two can be used to
assign VEES, V𝑏 (= V𝑝/(1−hematocrit)), and VEIS (= 1−V𝑏−VEES)
in the PET model.

2.3. Constraining PET Kinetic Modeling. We now show how
DCE-MRI data can be used to eliminate a number of the
unknown quantities in (2) and (3). The method adapts the
approach developed by Asllani et al. [4] for partial volume
corrections in MRI studies of blood flow.

If we take the V
𝑝
(= V
𝑏
⋅ (1 − hematocrit)) and VEES

values returned from a typical DCE-MRI study as a priori
knowledge for the PET analysis, then this reduces the number
of unknowns to four rate constants (𝐾

1
–𝑘
4
) and three

concentration time courses (𝐶
𝑝
, 𝐶EES, and 𝐶EIS). We then

consider a DCE-MRI scan and a PET study that have been
spatially registered such that they have the same voxel sizes.
This implementation differs from the one given in [4] which
does not incorporate spatial registration; we return to this
point in Section 4. Next we take advantage of the differences
in spatial resolution between the acquiredMRI and PET data
and define a small region of tissue, a 5 × 5 voxel window
centered on a particular voxel of interest, from both theDCE-
MRI and PET studies. If we assume that the tissue PET tracer
concentration (the left hand side of (2)) in each voxel of the
5 × 5 window is equal to the measured tissue concentration
in the central (particular) PET voxel and assume that the 𝐶

𝑏
,

𝐶EES, and 𝐶EIS are identical in each MRI voxel—reasonable
assumptions for a small window—then we can write a system
of equations in the three unknowns. In particular, for the 𝑖th
voxel within the window, we have

𝐶tissue (𝑡) = V𝑖,𝑏𝐶𝑏 (𝑡) + V𝑖,EES𝐶EES (𝑡) + V𝑖,EIS𝐶EIS (𝑡) , (7)

where 𝑖 runs from 1 to𝑁, the number of voxels in the search
window. If we define the matrix 𝐴 to be

𝐴 =

[
[
[
[
[

[

V
1,𝑏

V
1,EES V

1,EIS
V
2,𝑏

V
2,EES V

2,EIS
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

V
𝑁,𝑏

V
𝑁,EES V

𝑁,EIS

]
]
]
]
]

]

(8)

and the column vector 𝐶 to be

𝐶 = [

[

𝐶
𝑏

𝐶EES
𝐶EIS

]

]

, (9)

then we can rewrite the system in (7) as

𝐶tissue = 𝐴 𝑖𝑗𝐶𝑖, (10)

where 𝐶tissue is a column vector of length 𝑁. The optimal
least-squares solution to (10), which is an overdetermined
problem (5), is given by

𝐶 = (𝐴
𝑇
⋅ 𝐴)

−1

𝐴
𝑇
⋅ 𝐶tissue, (11)

where (𝐴𝑇 ⋅ 𝐴−1)𝐴𝑇 is the pseudoinverse and every term on
the right-handside is known. In principle, this analysis should
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Figure 2: An example of simulated tissue curves and the fits provided by (11). These panels represent 25 voxels with (a) no error in the DCE-
MRI parameters, (b) 5% error, (c) 10% error, and (d) 15% error. The AIF used in these simulations was measured from the left ventricle of a
mouse, which results in some noise even with no error in the DCE-MRI parameters (see panel (a)).

return time courses for 𝐶
𝑏
(and thus 𝐶

𝑝
(𝑡)), 𝐶EES, and 𝐶EIS,

which can then be used to drive the PET kinetic analysis
described by (3) to return the 𝑘

𝑖
. This approach also solves

the problem of not knowing how to separate the measured
whole tissue PET signal into 𝐶EES, 𝐶EIS, and 𝐶𝑝 components.

2.4. Simulations. To evaluate the theory above, we simulated
kinetic PETdata over a range of parameter combinations.The
simulations were initialized with an arterial input function
𝐶
𝑝
(𝑡) measured from a dynamic 18F-fluorothymidine (FLT)

PET scan (data not shown as the particular tracer employed
is not central to this paper; that is, all that is needed is a
reasonable, experimentally measured input function). This
time course was then used to drive (2)-(3) with 𝑘

𝑖
values

that were randomly selected from uniform distributions.The
range of the distribution of the parameters used here was
chosen to be of the same order as those given in the literature
[5, 6], though we again note that the parameters listed in (2)-
(3) are not the same as those in the references. Experimental

noise was simulated in two ways. For each time point, the
standard deviation of the noise level was set to 1, 10, 20, 30, 40,
and 50 times the square root of thewhole tissue concentration
simulated at that time point [7]. A second source of systematic
error was included by varying the accuracy of the parameters
extracted from the DCE-MRI analysis and used as a priori
data for (11). As indicated by (8), 25 sets of values of V

𝑏
,

VEES, and VEIS are required per PET voxel. Reliable values
are available for V

𝑏
and VEES so we assigned the 25 voxel

values randomly selected from uniform distributions with
ranges from 0.04 to 0.12 and 0.25 to 0.45, respectively [8–
10]. Each VEIS value was assigned according to VEIS = 1 −
(V
𝑏
+ VEES). For each noise realization, the simulated whole

tissue data were first analyzed via (11) to extract estimates
of the 𝐶EES, 𝐶EIS, and 𝐶𝑏 time courses. After the first step,
we computed the concordance correlation coefficient (CCC)
between the extracted 𝐶EES, 𝐶EIS, and 𝐶𝑏 and the true 𝐶EES,
𝐶EIS, and 𝐶𝑏 time courses. The CCC tests the strength of
the correlation, as well as the deviation of the correlation
from the line of unity. The extracted time courses were then
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analyzed with (2) and (3) to return estimates of the kinetic
PET parameters. While there are several ways to execute
this fitting, we elected to perform a procedure whereby 𝐶

𝑏

and 𝐶EES were combined with the first expression in (3),
𝐶
𝑏
and 𝐶EIS were combined with the second expression in

(3), and the residuals for both sets of data were optimized
simultaneously. This procedure was performed 1000 times
with different combinations of parameters and realizations of
noise, and the extracted PET parameters were then compared
to their actual values and the mean ± the 95% confidence
interval was computed. We then performed a second set of
simulations to examine the effect of error in the DCE-MRI
parameters on the accuracy of the kinetic PET parameters.
The noise level in the simulated TACs was set to the square
root of the whole tissue concentration and an error was added
to the DCE-MRI parameters such that the 95% confidence
interval of the assigned parameter value was 0%, 5%, 10%,
and 15% of the mean value. Higher errors in the DCE-
MRI parameters yielded unreliable results in the PET kinetic
analysis. As before, this procedure was performed 1000 times
and both the CCC values between the true and extracted time
courses and the error in the extracted PET parameters were
computed.

3. Results

Figure 2 shows the ability of the algorithm to correctly
separate the 𝐶EES, 𝐶EIS, and 𝐶

𝑏
time courses from one

simulated, whole tissue dataset. The parameter values were
𝐾
1
= 0.3 (mL/min/g), 𝑘

2
= 0.5 (min−1), 𝑘

3
= 0.15 (min−1), and

𝑘
4
= 0.1 (min−1).The solid lines indicate the extracted curves,

while the individual points correspond to the true (simulated)
data; the filled circles in each panel depict the measured 𝐶

𝑏

time course used to drive all the simulations. The four panels
correspond to time courses extracted when the DCE-MRI
parameters have errors of 0%, 5%, 10%, and 15%. In all four
panels, the error in𝐶EIS is less than 5%.𝐶EES is extracted with
an error of less than 5%when the DCE-MRI parameters have
errors of 10% or less (panels (a)–(c)). The maximum error
in 𝐶EES when the DCE-MRI parameters have errors of 15%
is approximately 10%. For the 𝐶

𝑏
component, the maximum

error in the extracted time course increases with the errors in
the DCE-MRI parameters.

As stated above, two sets of noise realizations were
performed. Figures 3 and 4 display results of simulations
done with varying levels of noise added to the simulated
𝐶tissue curves, and with no error in the DCE-MRI parameters.
Figure 3 shows the CCC (vertical axis) between the extracted
and true 𝐶EES, 𝐶EIS, and 𝐶𝑏 time courses as a function of
increasing 𝐶tissue noise for one combination of PET kinetic
parameters. The results are presented as the mean ± the
minimum and maximum CCC values obtained over the
1000 noise realizations. The results from the other seven
combinations of PET kinetic parameters are similar. In all
cases, when no noise is added to the simulated 𝐶tissue curves,
the CCC values are uniformly 1.00. The mean CCC values
decrease with increased noise, with the CCC for 𝐶

𝑏
and 𝐶EES

decreasing to 0.2 at the maximum level of noise tested here.

0 20 40

0

0.2

0.4

0.6

0.8

1

CC
C

K1 = 0.3 k2 = 0.5 k3 = 0.05 k4 = 0.03

Ct error

Cb

CEIS
CEES

Figure 3: The concordance correlation coefficient between the
estimated and true values of the time courses as a function of noise
in the tissue curves for a single set of PET kinetic parameters. If
the 𝐶

𝑡
error is less than 10 times the square root of activity level,

then the CCC is greater than 0.75. Once𝐶
𝑡
error is greater than this,

the ability to faithfully reconstruct the time courses is substantially
reduced.

For all combinations of PET kinetic parameters, the𝐶EIS time
courses are the least affected by noise in the tissue curves.

Figure 4 presents four panels showing the error in the
extracted 𝑘

𝑖
as a function of the error in theDCE-MRI kinetic

parameters. Each panel corresponds to a different combina-
tion of 𝑘

𝑖
values that are listed at the bottomof each panel.The

data are presented as mean ± one standard error. The error
trends in the other sets of PET kinetic parameters is similar to
those shown. Across all parameter combinations, the error in
the extracted PET kinetic parameters is below 50% provided
that the error in the simulated 𝐶

𝑡
curves is below 20 times

the square root of the concentration. However, as the noise
continues to increase, the error in the 𝑘

3
and 𝑘

4
parameters

increases rapidly to above 100%. The error in 𝐾
1
and 𝑘

2

parameters increases less rapidly than that for 𝑘
3
and 𝑘
4
.

Figures 5 and 6 display similar results as those in Figures
3 and 4. These two figures display the results from the
simulations where the error in the DCE-MRI parameters
increased from0 to 15%.As stated above, in these simulations,
the error in the 𝐶

𝑡
time course was fixed to the square

root of the concentration in the tissue. Figure 5 shows the
CCC between the extracted and true 𝐶EES, 𝐶EIS, and 𝐶𝑏
time courses as a function of percent error in the DCE-
MRI parameters for a single set of PET kinetic parameters.
The mean CCCs are all above 0.9 across all parameter
combinations and noise realizations. The minimum CCC
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Figure 4: The error in the estimated PET kinetic parameters as a function of the noise in the tissue curves. Each panel corresponds to a
different set of PET kinetic parameters. For each set of parameters, when the error in 𝐶

𝑡
is less than 10 times the square root of the activity

level, the parameter error is less than 50. As the error in 𝐶
𝑡
continues to increase, the error in 𝑘

3
and 𝑘

4
increases rapidly. The error in𝐾

1
and

𝑘
2
also continues to increase, but less rapidly.

over all the realizations was 0.6, which occurred when the
error in the DCE parameters is 15%.

Figure 6 again presents four panels showing the error in
the extracted 𝑘

𝑖
as a function of the error in the DCE-MRI

kinetic parameters. The range and combinations of the 𝑘
𝑖
are

the same as in Figure 5. The data are presented as mean ±
one standard error. Across all eight parameter combinations
tested, the errors in the extracted PET kinetic parameters
are below 25% provided that the error in the DCE-MRI
parameters is below 10%. However, once the DCE-MRI error
approaches 15%, there are certain combinations of kinetic
PET parameters that lead to errors as high as 50% in the
extracted parameters; one example can be seen in panel (d).

4. Discussion

Since the advent of the first prototype SPECT-CT system
in 1990 [11, 12], multimodality imaging has been largely
focused on combining form and function. In particular,
SPECT-CT and PET-CT systems have combined the high-
resolution anatomical images available through CT imag-
ing with the molecular information provided by nuclear
medicine [13, 14]. New developments in multimodality imag-
ing are increasingly focused on combining data sets to enable

new measurements not previously possible. One example
of this new type of functional imaging is the combination
of dynamic PET imaging with dynamic MR imaging. The
introduction of PET/MR hybrid scanners [15–17] makes the
approach outlined here practical. With these scanners, the
data could be acquired at nearly the same time and would be
readily registered.

The results from the simulations show that the method
returns good estimates for the time courses𝐶

𝑏
,𝐶EES, and𝐶EIS

as well as the PET kinetic parameters 𝑘
𝑖
when the noise in the

tissue curves and the error in the volume fractions measured
by DCE-MRI are both small. The method is highly sensitive
to increased noise in the TACs, as seen in Figures 3 and 4.
This is a potential limitation of the proposed method. More
sophisticated imaging or postprocessing techniques focusing
on reducing the noise in the measured PET data would allow
for higher accuracy in the estimated PET kinetic parameters.

As seen in Figures 5 and 6, the accuracy of the PET
parameters also depends on how well the DCE-MRI param-
eters are known. The dependence of the PET parameter
estimates on the error in the DCE-MRI parameters is smaller
than the dependence on the noise in the tissue concentration
curves. Other studies have shown that the error in the DCE-
MRI parameters depends on several factors, including the
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Figure 5: The concordance correlation coefficient between the
estimated and true values for the time courses as a function of
error in the DCE-MRI parameters for a single set of PET kinetic
parameters. The method is able to return the time courses faithfully
when the DCE-MRI parameter error is less than 5%. With higher
error in the DCE-MRI parameters, the CCC remains above 0.95 on
average, though some realizations returnedCCCvalues as low as 0.9.

accuracy of the arterial input function used to estimate the
parameters [18, 19]. Methods for obtaining higher accuracy
in DCE-MRI parameters are an area of active research (see,
e.g., [20, 21]). Recent work assessing the reproducibility of
DCE-MRI parameters in preclinical models of breast cancer
reported that parametermeasurements for VEES are repeatable
between imaging sessions [22], which suggests that, with
no systemic modeling errors, obtaining VEES measurements
with small errors is possible. The repeatability index for V

𝑏

was smaller and may be more susceptible to measurement
error. Similar work in clinical applications of DCE-MRI also
reported high repeatability for VEES [23, 24].

Themethod developed byAsllani et al. [4] took advantage
of the difference in spatial resolution between echo planar
and arterial spin labeled MRI acquisitions to develop a
system of equations similar to that given previously in
(7). In that implementation, the echo planar images and
arterial spin-labelled images were acquired sequentially on
the same system and thus were inherently coregistered. In
our method, the PET and MR images would typically be
acquired on different scanners (though, as noted above,
PET-MRI scanners are becoming more commonplace), and
some spatial registration would be required prior to image
processing. As mentioned above, our approach assumes that
the TACs in each compartment are identical within a 5 × 5

window of MRI voxels, which is reasonable for MRI voxel
sizes of approximately 250 𝜇m × 250𝜇m in-plane resolution
which is common for in vivo DCE-MRI studies in mice.

As noted in the Introduction, the parameters 𝑘
𝑖
used

in this formulation have a fundamentally different meaning
than those commonly employed in PET kinetic modeling.
Typically, compartments used in dynamic PET modeling are
based on biochemical compartments, whereas in dynamic
MRI modeling they are based on physical compartments.
One consequence of this difference is that standardmetabolic
rate constants cannot be calculated directly from the formal-
ism as presented in this effort. However, even though the
rate constants calculated from this model do not reflect the
biochemical state of the radiotracer, they do provide infor-
mation on the physical movement of radiotracers into and
out of the vascular and cellular spaces. This set of parameters
is potentially useful in situations where the physical location
of the tracer (i.e., intra- or extracellular) may be relevant
to patient diagnosis or treatment planning. For example,
this model may be of potential interest in measuring the
cellular uptake of glucose in dynamic FDG studies in diabetic
populations. The new 𝑘

3
and 𝑘

4
parameters returned by this

model reflect the rate of transport of tracer into and out of
the intracellular space, respectively. These parameters may
be able to report on GLUT-1 and GLUT-3 transportation in
tumor cells. This model could also be of potential interest
in dynamic [15O]-labeled water studies. Typical modeling
of [15O]-labeled water utilizes a two-compartment model
with one intravascular compartment and one extravascular
compartment [25]. This is due to difficulty in resolving intra-
and extracellular compartments due to the free diffusion
of water across the cell boundary. Using DCE-MRI data to
inform the fractional volume of these compartments may
provide further insight into the molecular physiology. Of
course, the preclinical and clinical utility of the “new” 𝑘

𝑖

parameters is left to future work.
It should also be noted that performing the analysis

described in this work would, of course, not preclude any
dynamic modeling with more traditional compartment def-
initions on the same data. Also, despite the changes in the
physical interpretation of the rate constants, the arterial input
function derived from the proposed method is identical to
that used inmore traditional dynamic PETmodeling and can
be used in implementing these models. Perhaps, the method
proposed in this effort has value in merely providing an input
function from which a standard dynamic analysis could be
performed. Additionally, the input function estimated by this
approach comes from the (local) tissue of interest which
could potentially eliminate uncertainties related to the delay
and dispersion when an input function is estimated from
blood samples or ROIs in distant locations.

Future studies with this method will focus on validating
the proposed method with in vivo data. Higher temporal
resolution in the DCE-MRI data may allow for improved
accuracy in theDCE-MRI parameters, but acquiring this data
would cost some spatial resolution.The noise in the PET data
could also be improved by effectively lowering the spatial
resolution through averaging the data.The proposed method
may be more effective in situations where the desire for
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Figure 6:The error in the estimated PET kinetic parameters as a function of the error in the DCE-MRI parameters. Each panel corresponds
to a different set of PET kinetic parameters. For each parameter combination, the error in the PET parameters is below 25% provided the
error in the DCE-MRI parameters is below 10%. As the DCE-MRI parameter error increases, the error in the PET parameters exceeds 40%
in some cases (see panel (d)).

quantitative information outweighs the need for high spatial
resolution information.

5. Conclusion

We have presented a method that uses DCE-MRI parameters
to separate the whole tissue concentration curves, 𝐶tissue,
into extravascular-extracellular, extravascular-intracellular,
and intravascular components. These separate components
are then used to initialize and constrain the model fitting for
a dynamic PET compartment model. We show in simulation
that this method returns PET parameters with less than 25%
error provided that the noise in the tissue curves and the
error in the DCE-MRI parameters are both small. In the limit
of perfectly known DCE-MRI parameters and no noise in
the tissue curves, the method returns parameters with no
error. These preliminary (theoretical) results warrant in vivo
experimental studies to validate or refute the method.
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“PET/MRI: paving the way for the next generation of clin-
ical multimodality imaging applications,” Journal of Nuclear
Medicine, vol. 51, no. 3, pp. 333–336, 2010.

[17] T. E. Yankeelov, T. E. Peterson, R. G. Abramson et al., “Simulta-
neous PET-MRI in oncology: a solution looking for a problem?”
Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1342–1356, 2012.

[18] S. L. Barnes, J. G.Whisenant, M. E. Loveless, G. D. Ayers, and T.
E. Yankeelov, “Assessing the reproducibility of dynamic contrast
enhanced magnetic resonance imaging in a murine model of
breast cancer,” Magnetic Resonance in Medicine, vol. 69, no. 6,
pp. 1721–1734, 2013.

[19] E. Henderson, B. K. Rutt, and T.-Y. Lee, “Temporal sampling
requirements for the tracer kinetics modeling of breast disease,”
Magnetic Resonance Imaging, vol. 16, no. 9, pp. 1057–1073, 1998.

[20] J. U. Fluckiger,M.C. Schabel, andE.V. R.DiBella, “Toward local
arterial input functions in dynamic contrast-enhanced MRI,”
Journal of Magnetic Resonance Imaging, vol. 32, no. 4, pp. 924–
934, 2010.

[21] J. Li, Y. Yu, Y. Zhang et al., “A clinically feasible method to
estimate pharmacokinetic parameters in breast cancer,”Medical
Physics, vol. 36, no. 8, pp. 3786–3794, 2009.

[22] S. L. Barnes, J. G.Whisenant, M. E. Loveless, G. D. Ayers, and T.
E. Yankeelov, “Assessing the reproducibility of dynamic contrast
enhanced magnetic resonance imaging in a murine model of
breast cancer,” Magnetic Resonance in Medicine, vol. 69, no. 6,
pp. 1721–1734, 2013.

[23] S.M. Galbraith,M. A. Lodge, N. J. Taylor et al., “Reproducibility
of dynamic contrast-enhanced MRI in human muscle and
tumours: comparison of quantitative and semi-quantitative
analysis,” NMR in Biomedicine, vol. 15, no. 2, pp. 132–142, 2002.

[24] A. R. Padhani, C. Hayes, S. Landau, and M. O. Leach, “Repro-
ducibility of quantitative dynamic MRI of normal human
tissues,” NMR in Biomedicine, vol. 15, no. 2, pp. 143–153, 2002.

[25] A. J. de Langen, M. Lubberink, R. Boellaard et al., “Repro-
ducibility of tumor perfusion measurements using 15O-labeled
water and PET,” Journal of Nuclear Medicine, vol. 49, no. 11, pp.
1763–1768, 2008.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


