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Abstract. Geodetic control measurements play an important part because they provide information about 
the current state of repair of the construction, which has a direct impact on the safety assessment of its 
exploitation. Authors in this paper have focused on control measurements of the elevator shaft. The article 
discusses the problem of determining the deviation of elevator shaft walls from the vertical plane in the 
local 3D coordinate system. It presents a concept of estimation of measurements results base on the 
parametric method with conditions on parameters. The simulated measurement results were used to verify 
the concept presented in the paper. 

1 Introduction 
An important aspect in the context of using the structure 
is to ensure its safety. For this reason, geodetic control 
measurements are made in order to obtain information 
about the structure behaviour [1, 2]. 
 The process of building an elevator shaft is a very 
demanding venture. The construction has to comply with  
a number of conditions to ensure its proper operation and 
safety in the future. The whole system of an elevator 
consist of a large number of devices and mechanical 
systems. Therefore, only their proper fitting in the shaft 
space and the optimum selection of dimensions allow for 
ensure the reliability and proper exploitation of the 
elevator shaft.  

Design premises for this type of facility are subject to 
inspection at every stage of construction, particularly in 
the rough. Geodetic methods and instruments are 
important in the verification of elevator shaft geometry. 
Control measurements of elevator shafts are made to 
determine the deviation from the vertical plane and walls 
torsion of the structure [3, 4, 5]. The obtained results 
allow to specify the way of assembly of axes of the cabin 
and counterweight guide rails and to adjust the 
dimensions of the cabin in a way that allows for a free 
movement and fulfilment of the design premises [6, 7, 
8].  

In the traditional approach, observations are made in 
a local 2D coordinate system ( XY ) and only elements 
measured in relation to this coordinate system are 
adjusted. This article proposes the concept of estimation 
of an elevator shaft control measurements results in the 
local 3D coordinate system ( XYH ) where the conditions 
for adjustment at individual measurement stages are 
determined not only for two dimensions ( XY ) of the 
control points but also for elevations ( H ). This 
approach involves conditions of placement of  control 

points in three dimensions, which allows for a complete 
set of information about the geometry of the elevator 
shaft walls. 

The elevator shaft geodetic inspection is carried out 
on the basis of control base, which is installed on the 
foundation of the shaft, below the lowest stop level on 
which the cabine stops. The rectangular shape is usually 
four points [5, 6, 7, 8]. In practical applications these 
may also be two points. The scheme of the elevator shaft 
with the location of the points of the control base and 
control points are shown in Fig. 1. The measuring frame 
determines the plane XY , while the vertical axis of the 
assumed local coordinate system is realized by direction 
of action of gravity.  

 

Fig. 1. Scheme of an elevator shaft. 
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Determination of the deviation of the shaft walls 
from the vertical plane is based on the designation of 
adjusted XY coordinates of control points for each 
measuring level, while defining the deviation from the 
horizontal plane is based on the designation of the 
adjusted H coordinates of those points. For this purpose, 
the object of measurement are values on the reference 
level ( gfedcba ,,,,,, ) and values on each measuring 
levels ( jjjjjjj gfedcba ,,,,,, , where j – 
number of measuring level). 

2 The theoretical basis 

2.1 Parametric method with conditions on 
parameters 

The method described in this article applies not only to 
the problem of determining the deviations of walls of an 
elevator shaft, but can also be use to solve other 
problems in engineering geodesy, what is shown in the 
publications [9, 10]. 
 The most important information about this method, 
which will allow for understanding of the way to solve 
the problem, are presented below. Detailed analysis and 
considerations related to the parametric method with 
conditions on parameters can be found in  [3, 4, 11, 12]. 
 As in publications [3, 4, 9, 10], the problem can be 
expressed using the system of equations: 








0ΩBX
VLAX
 

where: 
A , B - known coefficients’ matrices, 
X̂ - estimator of X  vector, 
L , Ω - free terms vectors, 
V̂ - estimator of corrections’ vector. 
  
 As shown in publications [11, 12], the solution of the 
above system of equations (1) is a stepwise solution. In 
the first stage, the vector of correlates K̂  is searched (2): 

 PL}APA)B(A{Ω}BPA){B(AK T1T1T1T  ˆ 

It allows to determine a vector of adjusted parameters 
X̂ (3): 

 )KBPL(APA)(AX TT1T ˆˆ    

which is necessary to obtain an estimator of corrections’ 
vector V̂ (4): 

 LXAV  ˆˆ  

 According to previously quoted sources, the above 
solution may be replaced by a simplified solution. For 
this purpose, the equation 0ΩXB ˆ  is treated as an 
additional equation of corrections, for which infinitely 

large values of weight P are assumed. From this there 
is a dependence (5): 

 ΩVΩXB ˆ  

 This approach allows to obtain from the solution a 
correction value of zero. What is more, this allows to 
perform further calculations in a manner typical of the 
parametric method for which we can write a system of 
corrections in the form: 

 LXAV ~ˆ~~
  

where: 
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The assumed weight matrix P~  is: 
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
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P~  

The simplified solution are presented below: 

 LPA)APA(X T1T ~~~~~~ˆ   

The use of the relation (8) allows the estimator of the 
correction’s vector (6) to be written according to the 
relation: 

 LLPA)APA(AV T1T ~~~~~~~~~
   

2.2 Observation equations 

For further analysis, the scheme of an elevator shaft 
shown in Fig. 1. was used. 
 In the case considered by the authors, the adjustment 
of acquired data is based on the use of parallelism and 
perpendicularity conditions that occur between the 
elements of an elevator shaft. The innovative character 
of the proposed method consists in linking the horizontal 
coordinates of control points to the heights of each level.  
Consequently, the estimation of the measurement results 
performed in the local 3D coordinate system using the 
parametric method with conditions on parameters allows 
simultaneous determination of corrections to the 
coordinates of all axes of the assumed system. This is 
important because other publications about the 
implementation of inventory measurement and 
adjustment of their results do not take into account the 
estimation of the next levels on which the measurement 
is made – heights are taken directly from the building 
project [6, 7]. 
 Opposite walls of the elevator shaft should be 
parallel to each other, therefore, according to Fig. 1, the 
following parallelism conditions are assumed: 
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where:  
44332211 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ YXYXYXYX  - adjusted coordinates of 

control points. 
 What is more, the condition of perpendicularity 
between individual walls should also be maintained: 
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Observation equations can be written according to the 
following relations:  

jj aaX 1
ˆ    jj ccX 2

ˆ  

jj emcX 3
ˆ   jj gmaX 4

ˆ  

jj bbY 1̂    jj dnbY 2̂  

jj fnhY 3̂   jj hhY 4̂  

 In this paper, in addition to the X , Y coordinates the 
heights H  was also analyzed. Due to the contemplated 
assumption of a constant distance between the various 
measurement levels, the condition imposed on height is 
(10): 

 0ˆ  jsHi  

where:  
i  – number of control point, 
j - number of measurement level, 
s  - assumed distance between measurement levels. 

3 An example of practical use 
To verify the presented concept, simulated data was 
used. 
 The considerations were divided into two variants: 
• variant 1: A base of four points has been adopted and 

0H  for reference level; 
• variant 2: A base of two points has been adopted and 

0H  for reference level. 
 In addition, the following conditions were applied for 
the variants: 
•  for first measurement level 02800ˆ iH , 
•  for second measurement level 05600ˆ iH , 
•  for third measurement level 08400ˆ iH , 
•  for fourth measurement level 011200ˆ iH . 

3.1 Variant 1 

In variant 1, four points of base, designated from 1 to 4, 
were used for analysis. Calculations were made at the 
reference level and four measurement levels j  
( 4,3,2,1j ). It has also been assumed that the distance 
between the individual measurement levels should be 
2800 mm. 
 The analyzes were based on the values shown in 
Table 1 and: 

mm1200m ,  mm1400n ,  

mm1900k ,  mm2000p . 

Table 1. Simulated data adopted to analysis – variant 1 ([mm]). 

M
ea

su
re

m
en

t 
le

ve
l 

Number of base point 

1 2 3 4 

a b c d e f g h 

0 350 300 350 300 350 300 350 300 

1 370 286 340 290 366 309 336 290 

2 354 322 355 324 334 281 367 284 

3 310 320 378 285 340 314 352 310 

4 314 324 367 294 342 310 358 320 
 
 Adjusted coordinates of the control points, deviations 
from the vertical of the shaft walls and deviations from 
the reference level derived from the solution described 
above are summarized in the Table 2, Table 3 and 
Table 4 (relation (9)).  

Table 2. Adjusted coordinates of the control points. 

N
um

be
r 

 
of

 p
oi

nt
 Coordinate 

X̂  
[mm] 

Ŷ  
[mm] 

Ĥ [mm] 

1j  2j  3j  4j  

1 0.4 -3.1 2800.0 5600.0 8400.0 11200.0 

2 0.4 1996.9 2800.0 5600.0 8400.0 11200.0 

3 1900.4 1996.9 2800.0 5600.0 8400.0 11200.0 

4 1900.4 -3.1 2800.0 5600.0 8400.0 11200.0 
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Table 3. Deviations from the vertical plane of the shaft walls 
([mm]). 

V̂  
Measurement level 

1 2 3 4 

1X̂d  20.4 4.4 -39.6 -35.6 

1̂Yd  -17.1 18.9 16.9 20.9 

2X̂d  -9.6 5.4 28.4 17.4 

2Ŷd  6.9 -27.1 11.9 2.9 

3X̂d  -15.6 16.4 10.4 8.4 

3̂Yd  -12.1 15.9 -17.1 -13.1 

4X̂d  14.4 -16.6 -1.6 -7.6 

4Ŷd  -13.1 -19.1 6.9 16.9 

Table 4. Deviations from the reference level ([mm]). 

V̂  
Measurement level 

1 2 3 4 

1Ĥd  -10.0 -12.0 -4.0 -16.0 

2Ĥd  -2.0 -8.0 -11.0 -8.0 

3Ĥd  -14.0 -18.0 -9.0 -9.0 

4Ĥd  -6.0 -3.0 -15.0 -22.0 

3.2 Variant 2 

The analysis was based on a base of two points: 1 and 3 
(according to the Fig. 1). As in variant 1, four 
measurement levels  4,3,2,1j  and a distance of 
2800 mm between them were assumed. For the analysis, 
the same simulated data of measured values were 
accepted, because of the willingness to compare the 
obtained results from both variants (Table 5).  
Table 5. Simulated data adopted to analysis – variant 2 ([mm]). 

M
ea

su
re

m
en

t 
le

ve
l 

Number of base point 

1 3 

a m+g b n+d e m+c f n+h 

0 350 1550 300 1700 350 1550 300 1700 

1 370 1536 286 1690 366 1540 309 1690 

2 354 1567 322 1724 334 1555 281 1684 

3 310 1552 320 1685 340 1578 314 1710 

4 314 1558 324 1694 342 1567 310 1720 
 
 The results of the calculations are shown in Table 6,  
Table 7 and Table 8.  
 
 

Table 6. Adjusted coordinates of the control points. 

N
um

be
r 

of
 

po
in

t 

Coordinate 

X̂  
[mm] 

Ŷ  
[mm] 

Ĥ [mm] 

1j  2j  3j  4j  

1 4.3 -4.8 2800.0 5600.0 8400.0 11200.0 

3 1904.2 1995.3 2800.0 5600.0 8400.0 11200.0 

Table 7. Deviations from the vertical plane of the shaft walls 
([mm]). 

 Measurement level 

 1 2 3 4 

1X̂d  24.3 8.3 -35.7 -31.7 

1̂Yd  -18.8 17.2 15.2 19.2 

3X̂d  -11.8 20.2 14.2 12.2 

3dY  -13.7 14.3 -18.7 -14.7 

Table 8. Deviations from the reference level ([mm]). 

 Measurement level 

 1 2 3 4 

1Ĥd  -10.0 -12.0 -4.0 -16.0 

3dH  -14.0 -18.0 -9.0 -9.0 

4 Summary 
The method of adjustment of observations made in the 
local 3D coordinate system presented in the article 
allows to perform more detailed analyzes of the 
geometry of the elevator shaft. The use of appropriate 
geometric conditions enabled the determination of such 
coordinates of adjusted control points for which the 
deviation of the shaft walls from the vertical plane 
obtained at the subsequent measurement levels was as 
small as possible.  
 It should be note that for uniform observational data, 
the final values of the adjusted coordinates and the 
deviations of the wall from the vertical plane are 
different  – differences up to 4 mm. This value allows 
both methods to be considered correct, but for variant 2 
the number of necessary stations of the instrument is 
smaller, which is an undoubted advantage of this 
method. 
 The calculations presented in the article were 
performed on simulated data, but it can be assumed that 
the proposed method can be applied successfully to 
determine the deviations from the vertical plane of the 
elevator shaft walls also for the data obtained for a real 
structure. 
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