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We consider an iterative algorithm for solving a complex matrix equation with conjugate and transpose of two unknowns of the
form: A,VB, + C,WD, + A,VB, + C,WD, + A,V'B, + CCW"D, + A,V'B, + C, W'D, = E. With the iterative algorithm, the
existence of a solution of this matrix equation can be determined automatically. When this matrix equation is consistent, for any
initial matrices V;, W, the solutions can be obtained by iterative algorithm within finite iterative steps in the absence of round-off
errors. Some lemmas and theorems are stated and proved where the iterative solutions are obtained. A numerical example is given

to illustrate the effectiveness of the proposed method and to support the theoretical results of this paper.

1. Introduction
Consider the complex matrix equation:
A,VB, + C,WD, + A,VB, + C,WD,

+AV"'B, +C,W'D, + A,V'B,+C,W'D, = E,
o

where A, A,, C,, C, € C™,B,, B,, D;, D, € C™,
A, Ay, Gy, C, e C™E € C™"and B,, By, D, D, €
C™" are given matrices, while V, W € C™ are matrices to be
determined. In the field of linear algebra, iterative algorithms
for solving matrix equations have received much attention.
Based on the iterative solutions of matrix equations, Ding and
Chen presented the hierarchical gradient iterative algorithms
for general matrix equations [1, 2] and hierarchical least
squares iterative algorithms for generalized coupled Sylvester
matrix equations and general coupled matrix equations [3,
4]. The hierarchical gradient iterative algorithms [1, 2] and
hierarchical least squares iterative algorithms [1, 4, 5] for solv-
ing general (coupled) matrix equations are innovational and
computationally efficient numerical ones and were proposed
based on the hierarchical identification principle [3, 6] which

regards the unknown matrix as the system parameter matrix
to be identified. Iterative algorithms were proposed for con-
tinuous and discrete Lyapunov matrix equations by applying
the hierarchical identification principle [7]. Recently, the idea
of the hierarchical identification was also utilized to solve
the so-called extended Sylvester-conjugate matrix equations
in [8]. From an optimization point of view, a gradient-based
iteration was constructed in [9] to solve the general coupled
matrix equation. A significant feature of the method in [9]
is that a necessary and sufficient condition guaranteeing the
convergence of the algorithm can be explicitly obtained.
Some complex matrix equations have attracted attention
from many researchers since it was shown in [10] that the
consistence of the matrix equation AX — XB = C can be
characterized by the consimilarity [11-13] of two partitioned
matrices related to the coefficient matrices A, B, and C. By
consimilarity Jordan decomposition, explicit solutions were
obtained in [10, 14]. Some explicit expressions of the solution
to the matrix equation AX — XB = C were established in
[15], and it was shown that this matrix equation has a unique
solution if and only if AA and BB hav no common eigen-
values. Research on solving linear matrix equations has been
actively engaged in for many years. For example, Navarra et al.



studied a representation of the general common solution of
the matrix equations A;XB;, = C, and A,XB, = C, [16];
Van der Woude obtained the existence of a common solution
X for the matrix equations A; XB; = C;; [17]; Bhimasankaram
considered the linear matrix equations AX = B, CX = D,
and EXF = G [18]. Mitra has provided conditions for the
existence of a solution and a representation of the general
common solution of the matrix equations AX = Cand XB =
D and the matrix equations A;XB, = C; and A,XB, = C,
[19, 20]. Ramadan et al. [21] introduced a complete, general,
and explicit solution to the Yakubovich matrix equation V' —
AVF = BW, and the matrix equation (AXB, GXH) = (C, D)
has some important results that have been developed. In [22],
necessary and sufficient conditions for its solvability and the
expression of the solution were derived by means of gener-
alized inverse. Moreover, in [22] the least-squares solution
was also obtained by using the generalized singular value
decomposition. While in [23], when this matrix equation is
consistent, the minimum-norm solution was given by the use
of the canonical correlation decomposition. In [24], based
on the projection theorem in Hilbert space, an analytical
expression of the least-squares solution was given for the
matrix equation (AXB, GXH) = (C, D) by making use of the
generalized singular value decomposition and the canonical
correlation decomposition. In [25], by using the matrix rank
method a necessary and sufficient condition was derived
for the matrix equations AX;B = C and GX,H = D to
have a common least square solution. In the aforementioned
methods, the coeflicient matrices of the considered equations
are required to be firstly transformed into some canonical
forms. Recently, an iterative algorithm has presented in [26]
to solve the matrix equation (AXB, GXH) = (C, D). Different
from the above mentioned methods, this algorithm can be
implemented by initial coefficient matrices and can provide a
solution within finite iteration steps for any initial values.

Very recently, in [27] a new operator of conjugate product
for complex polynomial matrices is proposed. It is shown that
an arbitrary complex polynomial matrix can be converted
into the so-called Smith normal form by elementary transfor-
mations in the framework of conjugate product. Meanwhile,
the conjugate product and the Sylvester-conjugate sum are
also proposed in [28]. Based on the important properties of
the above new operators, a unified approach to solve a general
class of Sylvester-polynomial-conjugate matrix equations is
given. The complete solution of the Sylvester-polynomial-
conjugate matrix equation is obtained. In [29] by using a real
inner product in complex matrix spaces, a solution can be
obtained within finite iterative steps for any initial values in
the absence of round-off errors. In [30] iterative solutions to
a class of complex matrix equations are given by applying the
hierarchical identification principle.

This paper is organized as follows. First, in Section 2,
we introduce some notations, a lemma, and a theorem
that will be needed to develop this work. In Section 3, we
propose iterative methods to obtain numerical solution to the
complex matrix equation with conjugate and transpose of two
unknowns of the form: A, VB, +C,WD, + A,VB, +C,WD, +
A,VEB, +C,WHD,+A,VTB,+C,W"D, = E using iterative
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method. In Section 4, numerical example is given to explore
the simplicity and the neatness of the presented methods.

2. Preliminaries

The following notations, definitions, lemmas, and theo-
rems will be used to develop the proposed work. We use
AT, A, AH tr(A), and || A|| to denote the transpose, conjugate,
conjugate transpose, the trace, and the Frobenius norm of a
matrix A, respectively. We denote the set of all m x n complex
matrices by C™", and Re(a) denote the real part of number a.

Definition 1 (inner product [31]). A real inner product space
is a vector space V over the real field R together with an inner
product. That is, with a map

() :VxV —R. @)

Satisfying the following three axioms for all vectors x, y, z €
V and all scalars a € R:

(1) symmetry: (x, y) = (y, x)
(2) linearity in the first argument:

(ax,y) = a(x,y),
(x+y,2) = (x,2) + (y,2)

(3) positive definiteness: (x, x) > 0 for all x #0,

two vectors u, v € V are said to be orthogonal if (u, v) =
0.

The following theorem defines a real inner product on
space C™" over the field R.

Theorem 2 (see [32]). In the space C™" over the field R, an
inner product can be defined as

(A,B) = Re [tr (A"B)]. (4)

3. The Main Result

In this section, we propose an iterative solution to a com-
plex matrix equation with conjugate and transpose of two
unknowns:

A,VB, + C,WD, + A,VB, + C,WD, + A;V''B,
(5)
+C,W'D,+A,V'B,+C W'D, = E

defined in (1) where A;, A,, C;, C, € C™, B, B,, D,
D, € C*" A,, A,, C;, Cy € C™ E € C™" and B,, B,
D;, D, € C"" are given matrices, while V, W € C™ are
matrices to be determined.

The following finite iterative algorithm is presented to
solve it.

Algorithm 3. (1)Input A, A,,C,,C,,B,,B,,D;,D,, A5, Ay,
C3, C4) B3) B4) D3) D4) E’
(2) Chosen arbitrary matrices V;, W, € C™;
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(3) Set
R, =E-A,V\B -C,W\D, - szle
- C,W,D, - A,V{'B, - C,W"D,
- AV/B,-C,W/D,,
P, = AR, BT + AR, By + B,RIA, + B,RT4,,
Q= C{{RlDi—I + E?R_IB;I + DstIC3 + D_4R1TC_4’
k=1

(4) If R, = 0, then stop; else go to Step 5;
(5) Set

I,
1P + il

N
1B + Qi

Ry =E-AVi B, - CIWk+1D1 - A ViaB,

Vg = Vi +

k+1 — Wk

A7 H H
- C2‘/Vk+1D2 - A3Vk+lBS - C3‘/vk+1D3

T T
- A4Vk+lB4 - C4Wk+1D4’

H H —Hy—3H H
Pep1 = AV R By + Ay Ry By + B3R A

o IRl
+B,R,, A, + s
h IRl
—H— —H
Q1 = C?RkﬂD? +C, Ry D,
H — = R
+ D3R, C3 + DyRy,  Cy + TG Qs
k

(6) If Ry, = 0, then stop; else let k = k + 1 go to Step 5.

Fori = 1, from Algorithm 3 we have
Re {tr [P (V" =V}) + Q' (W* -w,)]}
= Re for (VR B} + &, R, B,
H — r—=H\" .
©) + ByRYA; + BRIAB, ) (VS -V,)
+(CR, D} + TR, D,
H = 17— =H\H
+D,R}'C; + D,R|C, D, )
x(wW*-wy) |}
H * —H— /= « o
= Re{tr[R7'4, (V" - V}) B+ R, A, (V" -}) B,
+RBY (V' -v) AL + BB, (VU - V) A
+ R?Cl (W* -wW,) D, + R_ch_z(W* -W,)D,
+R,DY (W* —w,)Cl!

+ R, D, (W -wy) Ty ]}
©)

From properties of trace and conjugate

Re {tr [P (V" - V,) + Q' (W™ -w,)]}

=Re {tr [R?A1 (V*-V,)B, +R, &, (V* -V,)B,

+ A,(V' = V,)"B,RF + A, (V" - V) B,R

+RYC, (W* =W,) D,

+RC,(W-W,)D,
* H
@) +C5(W* = W,) D4R}

+C,(W" -w,)" D,RH ”

To prove the convergence property of Algorithm 3, we

first establish the following basic properties.

Lemma 4. Suppose that the matrix equation (1) is consistent
and V*, W* are arbitrary solutions of (1). Then for any initial

matrices V; and Wy, we have

Re {tr [RH (V" =V,) + Q,H w* - sz)]} = "Ri"2’

where the sequence {V;}, {P}, {W;}, {Q;}, and {R;} are gener-

ated by Algorithm 3 fori = 1,2,....

Proof. We apply mathematical induction to prove the conclu-

sion.

= Re{tr[RA, (V" = ;) B, + R4, (V* - V))B,
+RIA, (V' -V,)"B,
+RIAL(V" - Vi)' B,

(8) +RYC, (W* =W,) D,

+ RIC,(W* —W,)D,

+Rc,(w* -w,)"D,

+RYC, (W™ -w)" D, ]}



=Re{tr[R}' (A,V*B, + C,W*D, + A,V*B,
+C,W*D, + A,V B, + WD,
+A V"B, +C,W"' D, - AV,B,

- CIWIDI - AZVIBZ - CZWIDZ
- A,V/'B, - CW D,

T T
- AV B, -C,W/D,)]}.

(10)

In view that V* and W™ are solutions of matrix equation (1),
with this relation we have

Re {tr [PIH (V' -v)+ QI (W™ - Wl)]}
= Re {tr [R? (E - A, VB, -C,W,D,
- A,ViB, ~C,W,D,
(11)
— AVAB, —C,W!D,
- AVB, - C4W1TD4)]}

=Re{tr[RI'R, |} = |R,[".

This implies that (8) holds for i = 1.
Assume that (8) holds for = k. That is,

Re {tr [P (V" - V) + Q/ (W - W)l = |RJ”.  (2)

Then we have to prove that the conclusion holds for i = k + 1;
it follows from Algorithm 3 that

Re {tr [szil (V"= Vi) + Qe (W™ = Wkﬂ)”
—H———H
= Re ‘| tr [ <A11_1Rk+1BfI + A, Ry, B,

H T
+ B3Ry, As + ByRy 1 Ay

[Re |

H
R) 0"V
G *

H H —~Ho—=H
+ (Cl Ry Dy +Cy Ry D,

H —— T ~
+ D3Ry, C3 + DyRy,,Cy

+ M@) Ua _Wk+1)] ]’
IR
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RII:-IAI (V* - Vk+1) Bl

= Re {tr

+ R Ay (V7 = Vi) By

+ Rk+1B§I (V" = Vi) AI;
+Rey By (V- Vi) AL
+ R CL (W = W,,,) D,

+ R Gy (W = W,) D,
+ Rk+1D§I (W" = W) C?

— —H, . —H
+ R Dy (W' =W,,,) Cy

R | .

IR
+ QkH(W* - Wean) >]} .

(13)

From properties of trace and conjugate we get

Refir [P, (V° Vi) + 01y O - W)}

= Re <|tr

RkH+1A1 (V* - Vk+1) Bl

+ RzﬂZZ (V* - Vk+1) Ez
* H

+A3(V* = Vi) BstH+1
* T

+ Ay (V' = Vi) B4Rg1

+ Rglcl (W* - Wk+1) Dl

+ RZHEZ (W* - Wk+1) B2

* H
+C (W™ = Wy,y) D3R11:r1

. v o IReal’
+Cy(W* = Wiyy) DyRyyy + 2
IR

x <PI£{ (V* _Vk+1)

|
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= Re{tr [RL, A, (V' = Vi) B,
+ Rk+1A2(V* - Vk+1)Bz
+ Rk+1A3(V* - Vk+1)HBs
+ R ALV - Vk+1)TB4
+RL.C, (W' =W,,,) D,
+ RkH+1C2(W* = Wi1)D;
+ R, C(W” - Wk+1)HD3

[Reas|*

IR’

2
x Re {tr [P,f* (V* -V, - %P,J
1Pell” +

+Q,§’<W* - W,

IR )”‘
- = —5Q
15 + e ™

= Re {tr [R}, (A,V*B, +C, W'D,

* T
+ RELC(WT = W) Dy} +

+A,V*B, + C,W*D,

+A,VB +C,w D,

+A, VB, +C,W'D,

— A Vi By = C, Wi Dy = AyVi B,
- szDz - A3VinlB3
- C3WinlD3 - A4VI;1:;—1B4
= CWea D)}

2
+ —”Rk”! Re {tr
IR

BI(V" Vi) + Q[ (W - W)

]

IR
AR ey > (2

(14)

In view that V* and W™ are solutions of matrix equation (1),

with relation (14) one has
Re {tr [Plfil (V* - Vk+1) + QkH+1 (W* - Wk+1)]}
=Re{tr[R}, (E- AV}, B, - C,W,,, D

- AZVk+lBZ - CZWk+1D2

5
- A3V13133 - C3W1ﬁ1D3
- A4VkT+1B4 - C4W1<T+1D4)]}
||Rk+1|| IR 2 2
IR - —5— (1B + Q)
I k” I k"2 + "Qk”2
=Re {tr [Rk+1Rk+l]} = "Rk+1"2'

(15)
Then relation (8) holds by mathematical induction. ]

Lemma 5. Suppose that the matrix equation (1) is consis-
tent and the sequences {R;}, {P,}, and {Q;} are generated
by Algorithm 3 with any initial matrices V;, W,, such that
R;#0 foralli=1,2,...,k, and then

Re {tr (R'R; )} =

(16)
Reftr (PP +QIQ)} =0, ij=12... .k i#].
Proof. We apply mathematical induction.
Step 1. We prove that
Re {tr (R, R;)} =0, 17)

Re{tr (PP +Q1,Q)} =0, i=12...k  (8)
First from Algorithm 3 we have
Ry = E= Ay Vi By = Ci Wiy, Dy — Aszz
- C, Wi Dy - A3V, B

H T T
- C3‘/Vk+1D3 - A4Vk+lB4 - C4Wk+1D4’

Rk+1:E—A1<Vk+ 7" 2Pk>B
A "Qk"

k
IR + lal?

A2<Vk+ IR k)
2
"Pk” +“Qk”
R )
D
( R o )
H
_A3<Vk+ IR > B
1P + Qe
H
_C3<Wk+ IR’ >
"Pk" ”Qk"

IR !
—A4<Vk+ —"pk> B,
"Pk” + “Qk“2

W

D,



R !
- C4(Wk + %Qk) D,
1]l + Q]

=E-A,V,B, - C1WkD1 - szsz - CZWkDZ
- A3VkHB3 - C3W,?D3 - A4VkTB4

WD, - IR
2 2
I]l” + el

x (A,PB, +C,Q,D, + A,PB,

+C,QD, + A;P'B,
+ C,Q{ Dy + AP B, + C,Q(D,),

IR’
2 2
1]l +

Rk+1 - Rk -
x (A,PB, + C,QD; + A,PB,

+C,QD, + A;P'B,

+ C3Q'Ds + A4P; B, + C,Q;Dy).

(19)

For i = 1, it follows from (19) that
Re {tr (R}'R, )}

o] L
1P+ il

x (A,P,B, + C,Q,D,
+A,P,B, + C,Q,D,

+ A,P7B, + C,QY' D,
H
+ A,P{ B, +C,Q{ D,) > R1”>

IR’
2 2
12 + Qi

Re {tr (RR,) -
x tr (P{'ATR, By + Q'C{'R, D
H  H H K —~H_ H H
+P, AR B, +Q; C,R\D,
+ P, AYR B + Q,CIR, DY

— H J—
+ PiA, Ry B + QCY'R, DY) }
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IR,

=R -
1207 +

x Re {tr [P{TAYR, B + Q]'C]'R, D

+ P, AYRBY + Q" CY'R, DY
+ByRI AP + D,RYC,QY
+ B AH DT

2
IR

=Ry -
12 + il

xRe {tr [P (AYR,B + AR, B,
+ BsR?A3 + B_4R1TA_4)
—H——H
+Q (C'R, D} +C, R, D,

+DyR'C, + D,RIC, )|}

R 2
= ||R1||2_ m Re{tr(PfPl +Q?Q1)}’
1 1
Re {tr (R}'R, )}
R’ 2 2
PO L1 T = 0.
“ 1" ||P1”2+||Q1||2 (” 1" +||Q1")

(20)

This implies that (17) is satisfied for i = 1.

From Algorithm 3 we have

Re{tr (P'P, + Q' Q))}

= Re {tr

(A?RZB{" + A R By + B,RIA,

2 H
+ B_4R;A_4+ nR2“2P1> P,
IR,

+ (c?RzD? +C.R, Dy +DyRIC,

RS Y
+D,RIC, + ||R2||2Q1> Q
1

|
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= Re {tr

RYAPB, + R, A,P,B, + R,BP, A

+R,B, PA," " I PP +

B

+ R_2H62Q152 + RzD?Qlcf

+R)'C,Q, D,
L IR[°
+ R D Q1C4 Q1 Q,

NG }

RVA,PB, + R, A,P,B,+ A,PB,R

= Re {tr

+ AP B,RY + R¥'C,Q,D,

+ R_2H62Q152 + C3Q?D3R?

R 2
+ C,Q D,RY + “ R2 ” (PP, + Q?Ql)] }
1

RYA,PB, + R}A,PB, + R\'A,P'B,

= Re {tr

+RYA,P B, + RE'C,Q,D,

+R'C,Q,D, + RVC,Q'D

+ RYC,QID, + ” 2:: (PP, +Q; Ql)”
1

Ry (A,P,B, + C,Q,D, + A,P,B,

= Re <|tr

+C,Q,D, + A;PI'B;y + C,QV D,
+A,P B, + C,Q]'D,) ] }

L RS
TR s (IR

2

+lal)

L IRs[°
RS A

||P1|| +"Q1" (“R ” )

&,

L 2" (Im P+

+lal’)

) =

(21)
This implies that (18) is satisfied fori = 1.

Assume that (17) and (18) hold for i = k — 1, from
Algorithm 3 we have

Re {tr (R, R )}

= Re {tr [(Rk - —"Rk"Z
IIPkIIZ + ||Qk||2

x (A,PB, + C,QD; + A, BB,
~ H H
+C,QeD, + A;PI'B; + C,Q1 Dy

|

H
+ A,P[B, + C4Q[D4)) R,

Re {tr (R, Ry )}

R [
= Re{tr(RFR) - "—"
{ (RR) 127 + il

x tr (P AYR By + QCI'R. DY
—H —H
+ P, AYRBI + Q. CYR.DY
+ P AR, B + Q. CYR. DY

¢ BATRB + GCTRD!) }

e
2 2
1Pel” + ]

x Re {tr (P ATR,BY + Q/C{'R,DY!

+ B AURBY +Q; CIRDY!
+ B3Ry AP + D3R C,Q)
+ ByRe AP + DR CiQ; )}

ST L -
[Pel” + Q]

xRe {tr [ P! (AYR.BY + A R By
+ B;R{A; + B_4RZA_4)
—H——H
+Q (CI'R.DY +C, R, D,

+ DyRIC, + D,RC, )|}



8
- A

2 2

1Pl + Q]

x Re <|tr [Pf(Pk “ k" 5 P 1>
IRl
(- 180 )
W]
R 2
- IR e (R ) -
k k

Thus (17) holds for i = k.
Also, from Algorithm 3 we have

Re {tr (Pk+1Pk + QlIc_IHQk)}

= Re {tr

H H —H;—3ZH
(AleHBl +A2 Rk+1 B2

H =T ——
+ B3Ry, Az + ByRy 1Ay

H
P>Pk

H H A ~H5—+H
+ (Cl Ry Dy +Cy Ry D,

L Rl

IRl

H — T =
+ D3Ry, C5 + DyRy,,Cy

H
R )
T

H —H— =
R A1PB;y + Ry APcB,

= Re {tr

+ Ry B PAY + R By PA,

o [Rea|” ||

IRl

+ Ryy EszBz + Rk+1DHQkC§I

Rk+1 C Qk

- —H —H
+ R Dy QCy

|| 1

. —
Ry A PBy + R,y APB,

= Re {tr

+ A,PUBsRY + A,P[B,R],
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IRl

L PP+ Ry QD
IR '

—— u u
+ Ry CQD, + C3Q D3Ry,

Reall s ”
T

T
+ C,Q; D4RkHJr1 +

= Re {tr [R{’H (A,PB, + C,Q.D,

+ A,PB, + C,QD, + A;P'B,

22
(22) +C;Q'D; + AP B, + C4Q{D4)

MRl

e P“Qka)}
_ 12l + i’ Re {tr (R (R, - R
"Rkuz {t ( k+1( k+1))}
||Rk+1|| 2
A Qx
Sal e+t
__”Pk" + R IP
”Rk "2 (” k+1 " )
||Rk+1|| 2
el +1Qkl) =
il 1o+ o)

(23)

This implies that (17) and (18) hold for i = k.

Then relations (17) and (18) holds by mathematical induc-
tion.
Step 2. We want to show that

Re (tr (RTR;)) =0,

Re (tr (PP +Qi1Q:)) =

(24)

holds for [ > 1. We will prove this conclusion by induction.
The case of I = 1 has been proven in Step 1. Now we assume
that (24) holds for I < s, s > 1. The aim is to show that

Re(tr (R, R;)) =0,

(25)
Re (tr (P P+ Qron Q) =
First we prove the following:
Re (tr (RI,R,)) =
(26)

Re (tr (Ps+1P0 + Qg—lQO)) =
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By using Algorithm 3, from (19) and induction we have

Re {tr (R, R, )}

oL R
§ {t KR TG

x (A,P.B, + C,Q,D, + A,P.B,

+C,Q,D, + A;PB; + C;Q' D,

H
+A,P B, +C,Q; D) > Rojl }

2
= Re <| tr (R?RO) - !RSH

121 + I
x tr (PYAYR, B + Q' C{'R DY
+ B AR B + Q. CHR DY
+ P,AYR,BY + QCL'R,DY
+ PAYR,B + QC{R,D}") } ,
Re {tr (R, R, )}

= Re {tr (R'R,)} -

IRJ°
2 2
[P + ]

x Re {tr (PI'ATR,B{" + Q7'CI'R, D

+ P AUR B +Q, CHR,DH
+B;R)'A,P” + D,RI'C,Q"
+ ByRy AP+ D,R;C,Q! )}
IR’
12 + ]’

x Re ftr (P! (AT RBY + A, Ry By

+ BsRy Ay + ByRA,)
—H——H
+ Q! (C'R,D} +C, R, D,
H ~ pl~
+D;R'C; + DRy Cy) )}

]

- W Re {tr (PP, + QI'Q, )} =

Re {tr (P}, Py + QL1 Qo) }

= Re {tr

H H  —7Ho—3H
<A1 Rg1By + A, R, B,

+ BsRSrlAs + B_4RZ+1A_4
2 H
Sl Y
IR
—H———H
+ (C{_IRHID{I + C2 Rs+1 DZ

+ D;R, G + F4RZ+1C_4

s+1

IRl Y
T ) Q”

H +—H7 p 3
R, A1BB; + R,y AFB,

= Re {tr

Hp +H, 5 — 5 Hy 57 H
+ Ry By ByAy + R, By BA,

IR

IR

——H— = H H
+Ryy GQoD, + Ry, D3 QyCs

”ufz]l” o

—H— —
RY A \P,B, +R,, A,P,B,

PFp, + R, C,Q,D,

+ Rs+1 D Q0C4

= Re {tr

+ A,PY'B,R! + A,PIB,RY
[Ret|”

I

Ry ConD +C3Q0 D Rs+1

Pp, +R" C,Q,D,

+ C,QiD,R™ + "";*h" Q; Qo“

R (A,P)B, +C,QD; + A,PyB,

:Re{t

+C,QyD, + A;P,)B,
+C,Q'D; + A,P] B,

+C4Q0TD4)
Rl i, o
TR Q°)”

2 2
_ Rl + 1l Re {tr (R, (Ry - Ry))}=0.

IR
27)

Then (26) is holds.
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From Algorithm 3 we have

Re {tl‘ (PiI:rIsHPi + insﬂQi)}

R{

—H
<A1 R1+s+1B + A Rz+s+1 B2

+B3 z+s+1A3+B4 z+s+1A_4
2 H
R.
+ " 1+s+1! Pi+5> P;
IRis
H

H
+<C1 Ri+s+1D +C Rz+s+1 2

+ D3 1+s+1C3 + D4 1+s+1C4

||Ri+s+1 ” }

Q; > Q;
2 its i
IR:.|

Hp H 55— 5 H,7H
+Ri 1By BAS + Ry By, PA,

APB, +R,.., A,PB,

z+s+1

:Re{t

+ “ 1+s+1” P P R

“R1+5“ i+s i+s+1

= H - ~H
+ RHH] CzQiDz + Ry D3 QG5

G,QD,

5 H~7H ||Ri+s+1||2 H
+ Ri+s+1 D4 QiC4 + —2Qi+sQi
IR

=Re {tr Rz+s+1A PB +Rz+s+1 _2Pi§2
+A P B Rz+s+1 +A P B Rz+s+1
R.
MPHSP + Rz+s+1C QiDl
[Rs.s|
+ i+s+1 CZQD +C3Q D Rz+s+1
+ C4QkD Rz+s+1 “ i+3+1! QtI;IsQl]}
IRixs]
=Re {tr R . (A,PB, +C,QD,

+A,P.B, + C,Q;D,
+AsP"B, + C,P D,
+ A.P'B,+C,Q D)

R,
- H (PP +QlQ )] }

Journal of Discrete Mathematics

= M Re {tr (RH (R - Ri+1))}

_ M Re {tr (R}, R;)}.

I:I°
(28)

Also from (19) we have

Re {tr (R}, R;)}

i+s+1

2
=Reqtr <R,-+s - —"RHS" 3
1l + Qi

X (AP, B, + C,Q;, D,
+A Pt+sB2 +C,QD,

+ A, P! B3+C3Q

1+s

H
+ APl B, +C,Ql..D )> R,”»

2
= Re <|tr (RIR)) IR

R

1+S

x tr (PLLATRBY + Q| ,CI'R,DY!

i+s i+s
~—H_ H H
1+s A B + Qi+s C2 RiDZ

+ P, AYRBY + Q. CYR,DY

P, ATRB + Q. .CI'RD} )}

Re {tr (RH Ri)}

i+s+1

IRl
Bl Qe

1+s i+s

XRe{tr(P A RB +Ql C RD

P.. AURBY +Q,. CHR.DY

1+S

+B3R A, p!! +D3R C3Q

1+s i+s

+ B4R A z+s +D4R C4Q1+s>}
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= —&
[Pl + Qi

xRe {tr [P, (AYRB + A, R, B,
+ B;R Az + B_4R;TA_4)
+Q/l, (C{{RiD]l;I + E?R_iﬁf
+ D3R;'Cy + ERzTc_zt)]}

RGP
2 2
[Pl + Q]

cre fr ot (o ulR”up)
+ QL <Qi - ﬁ%lﬂ}

_ R R
12l + Qs 1Ri |

x Re {tr (P:-Ispifl + Qngifl)} :

(29)

Repeating (28) and (29), one can easily obtain for certain «
and

tr (Pilfﬁlpi + Qgs+1Qi) =o [tr (Psi]lpl + QﬁrlQl)] >

(30)
tr (R}, R;) = B[tr (RE,R,)] .

Combining these two relations with (26) implies that (24)
holds for I = s + 1. From Steps 1 and 2 the conclusion holds
by the principle of induction. With the above two lemmas, we
have the following theorem. O

Theorem 6 (see [32]). If the matrix equation (1) is consistent,
then a solution can be obtained within finite iteration steps by
using Algorithm 3 for any initial matrices V, W;.

4. Numerical Example

In this section, we present numerical example to illustrate the
application of our proposed methods.

Example 7 In this example we illustrate our theoretical
results of Algorithm 3 for solving the system of matrix
equation:

A,VB, + C,WD, + A,VB, + C,WD, + A,V"B,
31
+C,W"D, +A,V'B,+C,W'D, = E.

1

Because of the influence of the error of calculation, the
residual R(k) is usually unequal to zero in this process of
the iteration. We regard the matrix R(k) as a zero matrix if

R(k) < 10710,
Given
243 —i 141
Al_[ 5 1+2i —3]’
243 —i 141
AZ_[ 5 1+2i —3]’
0 2—-1 i 0 1-3i 1+
A3_[—1+3i 2 0]’ A4_[0 4+1i —Bi]’
142 3—-i 4 3421 0 1+
Cl‘[ - 2i —3]’ CZ‘[ 0 4 1—21']’
1-3i 21 -3i 1-2i 0 2
C3‘[ 1 2+3i 41‘]’ C4_[3—i 1+i —1]’
4+i —i 0 i
B, = 0o 1-if|, B,=|1+i 0],
4i 2+ 2i -1-1i 3i
0 1 3+ —-1-1
By=|-3i 4+i |, B,= 0 2—-1 |,
5 1+2i -1+ 2
0 0 0 i
Dy =|1-3i —-i |, D,=|1+i 0|,
2i  -3i -1-1i 3i
0 1 3 -2+
Dy=|-3i 4+i|, D,=|0 i |,
5 1+2i —-2i —4i

g [42+550 115+25i
T -38-i 132+44i)
(32)

Taking V, = [§ §] and W, = [3J] we apply Algorithm 3
to compute Vi, W,.
And iterating 42 steps we get

\%4
[ 0.0126 + 1.8415i 0.0827 + 0.6381i 1.1221 — 0.9428i
=1-0.6903 + 1.0185; 1.8818 + 1.0203i 0.9208 + 0.4569i | ,
| 0.5344 - 0.4909i 0.9280 + 0.7169i 0.4872 — 0.2734i
w

[0.4218 —0.9710i 0.1763 +0.5183i 1.1331 — 0.0432i
=1 0.6273 - 0.1216i —0.3902 + 0.4313i 0.6240 + 0.9828i
1—0.7011 — 0.3418i 0.3695 + 1.7627i —0.3032 + 0.7073

(33)

which satisfy the matrix equation:

A,VB, + C,WD, + A,VB, + C,WD, + A;V'B,
(34)
+C,W"D, +A,V'B,+C,W'D, = E.
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—10 L L L L L 1 1 1
0 5 10 15 20 25 30 35 40 45

k (iteration number)

—— log, 1k

F1GURE 1: The relation between the number of iterations and residual
for the example.

With the corresponding residual
R

= ”E ~ A VB, —~ CiWy,Dy = AVppB, - CW D,
H H T T
= A3V By =~ W, Dy — AV, B, — C4W42D4||

=6.6115x 107",
(35)

5. Conclusions

The above Figurel shows the convergence curve for the
residual function R(k). In this paper, an iterative algorithm
constructed to solve a complex matrix equation with conju-
gate and transpose of two unknowns of the form: A, VB, +
C,WD, +A,VB,+C,WD,+A,V'B,+C, WD, + A,V B, +
C,W'D, = E is presented. We proved that the iterative
algorithms always converge to the solution for any initial
matrices. We stated and proved some lemmas and theorems
where the solutions are obtained. The proposed method
is illustrated by numerical example where the obtained
numerical results show that our technique is very neat and
efficient.
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