
Hindawi Publishing Corporation
Journal of Discrete Mathematics
Volume 2013, Article ID 170263, 13 pages
http://dx.doi.org/10.1155/2013/170263

Research Article
Finite Iterative Algorithm for Solving a Complex of
Conjugate and Transpose Matrix Equation

Mohamed A. Ramadan,1 Talaat S. El-Danaf,1 and Ahmed M. E. Bayoumi2

1 Department of Mathematics, Faculty of Science, Menoufia University, Shebeen El-Koom, Egypt
2 Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt

Correspondence should be addressed to Mohamed A. Ramadan; mramadan@eun.eg

Received 4 August 2012; Accepted 4 November 2012

Academic Editor: Franck Petit

Copyright © 2013 Mohamed A. Ramadan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We consider an iterative algorithm for solving a complex matrix equation with conjugate and transpose of two unknowns of the
form: 𝐴
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4
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4
= 𝐸. With the iterative algorithm, the

existence of a solution of this matrix equation can be determined automatically. When this matrix equation is consistent, for any
initial matrices 𝑉

1
, 𝑊
1
the solutions can be obtained by iterative algorithm within finite iterative steps in the absence of round-off

errors. Some lemmas and theorems are stated and proved where the iterative solutions are obtained. A numerical example is given
to illustrate the effectiveness of the proposed method and to support the theoretical results of this paper.

1. Introduction

Consider the complex matrix equation:
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where 𝐴
1
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1
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3
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4
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3
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4
∈

C𝑟×𝑛 are givenmatrices, while𝑉, 𝑊 ∈ C𝑟×𝑠 arematrices to be
determined. In the field of linear algebra, iterative algorithms
for solving matrix equations have received much attention.
Based on the iterative solutions ofmatrix equations, Ding and
Chen presented the hierarchical gradient iterative algorithms
for general matrix equations [1, 2] and hierarchical least
squares iterative algorithms for generalized coupled Sylvester
matrix equations and general coupled matrix equations [3,
4]. The hierarchical gradient iterative algorithms [1, 2] and
hierarchical least squares iterative algorithms [1, 4, 5] for solv-
ing general (coupled) matrix equations are innovational and
computationally efficient numerical ones and were proposed
based on the hierarchical identification principle [3, 6] which

regards the unknown matrix as the system parameter matrix
to be identified. Iterative algorithms were proposed for con-
tinuous and discrete Lyapunov matrix equations by applying
the hierarchical identification principle [7]. Recently, the idea
of the hierarchical identification was also utilized to solve
the so-called extended Sylvester-conjugate matrix equations
in [8]. From an optimization point of view, a gradient-based
iteration was constructed in [9] to solve the general coupled
matrix equation. A significant feature of the method in [9]
is that a necessary and sufficient condition guaranteeing the
convergence of the algorithm can be explicitly obtained.

Some complex matrix equations have attracted attention
from many researchers since it was shown in [10] that the
consistence of the matrix equation 𝐴𝑋 − 𝑋𝐵 = 𝐶 can be
characterized by the consimilarity [11–13] of two partitioned
matrices related to the coefficient matrices 𝐴, 𝐵, and 𝐶. By
consimilarity Jordan decomposition, explicit solutions were
obtained in [10, 14]. Some explicit expressions of the solution
to the matrix equation 𝐴𝑋 − 𝑋𝐵 = 𝐶 were established in
[15], and it was shown that this matrix equation has a unique
solution if and only if 𝐴𝐴 and 𝐵𝐵 hav no common eigen-
values. Research on solving linear matrix equations has been
actively engaged in formany years. For example,Navarra et al.



2 Journal of Discrete Mathematics

studied a representation of the general common solution of
the matrix equations 𝐴

1
𝑋𝐵
1

= 𝐶
1
and 𝐴

2
𝑋𝐵
2

= 𝐶
2
[16];

Van derWoude obtained the existence of a common solution
𝑋 for thematrix equations𝐴

𝑖
𝑋𝐵
𝑗
= 𝐶
𝑖𝑗
[17]; Bhimasankaram

considered the linear matrix equations 𝐴𝑋 = 𝐵, 𝐶𝑋 = 𝐷,
and 𝐸𝑋𝐹 = 𝐺 [18]. Mitra has provided conditions for the
existence of a solution and a representation of the general
common solution of thematrix equations𝐴𝑋 = 𝐶 and 𝑋𝐵 =

𝐷 and the matrix equations 𝐴
1
𝑋𝐵
1
= 𝐶
1
and 𝐴

2
𝑋𝐵
2
= 𝐶
2

[19, 20]. Ramadan et al. [21] introduced a complete, general,
and explicit solution to the Yakubovich matrix equation 𝑉 −

𝐴𝑉𝐹 = 𝐵𝑊, and the matrix equation (𝐴𝑋𝐵, 𝐺𝑋𝐻) = (𝐶,𝐷)

has some important results that have been developed. In [22],
necessary and sufficient conditions for its solvability and the
expression of the solution were derived by means of gener-
alized inverse. Moreover, in [22] the least-squares solution
was also obtained by using the generalized singular value
decomposition. While in [23], when this matrix equation is
consistent, the minimum-norm solution was given by the use
of the canonical correlation decomposition. In [24], based
on the projection theorem in Hilbert space, an analytical
expression of the least-squares solution was given for the
matrix equation (𝐴𝑋𝐵, 𝐺𝑋𝐻) = (𝐶,𝐷) by making use of the
generalized singular value decomposition and the canonical
correlation decomposition. In [25], by using the matrix rank
method a necessary and sufficient condition was derived
for the matrix equations 𝐴𝑋

1
𝐵 = 𝐶 and 𝐺𝑋

2
𝐻 = 𝐷 to

have a common least square solution. In the aforementioned
methods, the coefficient matrices of the considered equations
are required to be firstly transformed into some canonical
forms. Recently, an iterative algorithm has presented in [26]
to solve thematrix equation (𝐴𝑋𝐵, 𝐺𝑋𝐻) = (𝐶,𝐷). Different
from the above mentioned methods, this algorithm can be
implemented by initial coefficient matrices and can provide a
solution within finite iteration steps for any initial values.

Very recently, in [27] a new operator of conjugate product
for complex polynomialmatrices is proposed. It is shown that
an arbitrary complex polynomial matrix can be converted
into the so-called Smith normal form by elementary transfor-
mations in the framework of conjugate product. Meanwhile,
the conjugate product and the Sylvester-conjugate sum are
also proposed in [28]. Based on the important properties of
the above new operators, a unified approach to solve a general
class of Sylvester-polynomial-conjugate matrix equations is
given. The complete solution of the Sylvester-polynomial-
conjugate matrix equation is obtained. In [29] by using a real
inner product in complex matrix spaces, a solution can be
obtained within finite iterative steps for any initial values in
the absence of round-off errors. In [30] iterative solutions to
a class of complex matrix equations are given by applying the
hierarchical identification principle.

This paper is organized as follows. First, in Section 2,
we introduce some notations, a lemma, and a theorem
that will be needed to develop this work. In Section 3, we
propose iterativemethods to obtain numerical solution to the
complexmatrix equationwith conjugate and transpose of two
unknowns of the form:𝐴
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method. In Section 4, numerical example is given to explore
the simplicity and the neatness of the presented methods.

2. Preliminaries

The following notations, definitions, lemmas, and theo-
rems will be used to develop the proposed work. We use
𝐴
𝑇
, 𝐴, 𝐴

𝐻, tr(𝐴), and ‖𝐴‖ to denote the transpose, conjugate,
conjugate transpose, the trace, and the Frobenius norm of a
matrix𝐴, respectively. We denote the set of all𝑚×𝑛 complex
matrices byC𝑚×𝑛, and Re(𝑎) denote the real part of number 𝑎.

Definition 1 (inner product [31]). A real inner product space
is a vector space𝑉 over the real fieldR together with an inner
product. That is, with a map

⟨⋅, ⋅⟩ : 𝑉 × 𝑉 → R. (2)

Satisfying the following three axioms for all vectors 𝑥, 𝑦, 𝑧 ∈

𝑉 and all scalars 𝑎 ∈ R:

(1) symmetry: ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩

(2) linearity in the first argument:

⟨𝑎𝑥, 𝑦⟩ = 𝑎 ⟨𝑥, 𝑦⟩ ,

⟨𝑥 + 𝑦, 𝑧⟩ = ⟨𝑥, 𝑧⟩ + ⟨𝑦, 𝑧⟩

(3)

(3) positive definiteness: ⟨𝑥, 𝑥⟩ > 0 for all 𝑥 ̸= 0,

two vectors 𝑢, 𝑣 ∈ 𝑉 are said to be orthogonal if ⟨𝑢, 𝑣⟩ =

0.
The following theorem defines a real inner product on

space C𝑚×𝑛 over the field R.

Theorem 2 (see [32]). In the space C𝑚×𝑛 over the field R, an
inner product can be defined as

⟨𝐴, 𝐵⟩ = Re [tr (𝐴𝐻𝐵)] . (4)

3. The Main Result

In this section, we propose an iterative solution to a com-
plex matrix equation with conjugate and transpose of two
unknowns:
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defined in (1) where 𝐴
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∈ C𝑟×𝑛 are given matrices, while 𝑉, 𝑊 ∈ C𝑟×𝑠 are

matrices to be determined.
The following finite iterative algorithm is presented to

solve it.

Algorithm 3. (1) Input𝐴
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1
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(3) Set
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(4) If 𝑅
𝑘
= 0, then stop; else go to Step 5;
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(7)

(6) If 𝑅
𝑘+1

= 0, then stop; else let 𝑘 = 𝑘 + 1 go to Step 5.
To prove the convergence property of Algorithm 3, we

first establish the following basic properties.

Lemma 4. Suppose that the matrix equation (1) is consistent
and 𝑉

∗, 𝑊∗ are arbitrary solutions of (1). Then for any initial
matrices 𝑉

1
and𝑊

1
, we have

Re {tr [𝑃𝐻
𝑖

(𝑉
∗
− 𝑉
𝑖
) + 𝑄
𝐻

𝑖
(𝑊
∗
− 𝑊
𝑖
)]} =

𝑅𝑖


2

, (8)

where the sequence {𝑉
𝑖
}, {𝑃
𝑖
}, {𝑊
𝑖
}, {𝑄
𝑖
}, and {𝑅

𝑖
} are gener-

ated by Algorithm 3 for 𝑖 = 1, 2, . . ..

Proof. We applymathematical induction to prove the conclu-
sion.

For 𝑖 = 1, from Algorithm 3 we have

Re {tr [𝑃𝐻
1

(𝑉
∗
− 𝑉
1
) + 𝑄
𝐻

1
(𝑊
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− 𝑊
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𝑅
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𝐵
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2
𝑅
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𝐴
4
𝐵
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2
)

𝐻

(𝑉
∗
− 𝑉
1
)
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𝐻

1
𝑅
1
𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
1
𝐷
𝐻

2

+𝐷
3
𝑅
𝐻

1
𝐶
3
+ 𝐷
4
𝑅
𝑇

1
𝐶
4
𝐷
𝐻

2
)

𝐻

× (𝑊
∗
− 𝑊
1
) ]}

= Re {tr [𝑅𝐻
1
𝐴
1
(𝑉
∗
− 𝑉
1
) 𝐵
1
+ 𝑅
1

𝐻

𝐴
2
(𝑉
∗
− 𝑉
1
) 𝐵
2

+ 𝑅
1
𝐵
𝐻

3
(𝑉
∗
− 𝑉
1
) 𝐴
𝐻
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1
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𝐻

4
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1
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4
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𝐻

1
𝐶
1
(𝑊
∗
− 𝑊
1
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+ 𝑅
1

𝐻

𝐶
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(𝑊
∗
− 𝑊
1
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2

+ 𝑅
1
𝐷
𝐻

3
(𝑊
∗
− 𝑊
1
) 𝐶
𝐻

3

+ 𝑅
1
𝐷
𝐻

4
(𝑊
∗
− 𝑊
1
) 𝐶
𝐻

4
]} .

(9)

From properties of trace and conjugate

Re {tr [𝑃𝐻
1

(𝑉
∗
− 𝑉
1
) + 𝑄
𝐻

1
(𝑊
∗
− 𝑊
1
)]}

= Re{tr [𝑅𝐻
1
𝐴
1
(𝑉
∗
− 𝑉
1
) 𝐵
1
+ 𝑅
1

𝐻

𝐴
2
(𝑉∗ − 𝑉

1
) 𝐵
2

+ 𝐴
3
(𝑉
∗
− 𝑉
1
)
𝐻

𝐵
3
𝑅
𝐻

1
+ 𝐴
4
(𝑉
∗
− 𝑉
1
)
𝑇

𝐵
4
𝑅
𝐻

1

+ 𝑅
𝐻

1
𝐶
1
(𝑊
∗
− 𝑊
1
)𝐷
1

+ 𝑅
1

𝐻

𝐶
2
(𝑊∗ − 𝑊

1
)𝐷
2

+ 𝐶
3
(𝑊
∗
− 𝑊
1
)
𝐻

𝐷
3
𝑅
𝐻

1

+ 𝐶
4
(𝑊
∗
− 𝑊
1
)
𝑇

𝐷
4
𝑅
𝐻

1
]}

= Re {tr [𝑅𝐻
1
𝐴
1
(𝑉
∗
− 𝑉
1
) 𝐵
1
+ 𝑅
𝐻

1
𝐴
2
(𝑉∗ − 𝑉

1
)𝐵
2

+ 𝑅
𝐻

1
𝐴
3
(𝑉
∗
− 𝑉
1
)
𝐻

𝐵
3

+ 𝑅
𝐻

1
𝐴
4
(𝑉
∗
− 𝑉
1
)
𝑇

𝐵
4

+ 𝑅
𝐻

1
𝐶
1
(𝑊
∗
− 𝑊
1
)𝐷
1

+ 𝑅
𝐻

1
𝐶
2
(𝑊∗ − 𝑊

1
)𝐷
2

+ 𝑅
𝐻

1
𝐶
3
(𝑊
∗
− 𝑊
1
)
𝐻

𝐷
3

+ 𝑅
𝐻

1
𝐶
4
(𝑊
∗
− 𝑊
1
)
𝑇

𝐷
4
]}
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= Re {tr [𝑅𝐻
1
(𝐴
1
𝑉
∗
𝐵
1
+ 𝐶
1
𝑊
∗
𝐷
1
+ 𝐴
2
𝑉∗𝐵
2

+ 𝐶
2
𝑊∗𝐷
2
+ 𝐴
3
𝑉
∗𝐻

𝐵
3
+ 𝐶
3
𝑊
∗𝐻

𝐷
3

+ 𝐴
4
𝑉
∗𝑇

𝐵
4
+ 𝐶
4
𝑊
∗𝑇

𝐷
4
− 𝐴
1
𝑉
1
𝐵
1

− 𝐶
1
𝑊
1
𝐷
1
− 𝐴
2
𝑉
1
𝐵
2
− 𝐶
2
𝑊
1
𝐷
2

− 𝐴
3
𝑉
𝐻

1
𝐵
3
− 𝐶
3
𝑊
𝐻

1
𝐷
3

− 𝐴
4
𝑉
𝑇

1
𝐵
4
− 𝐶
4
𝑊
𝑇

1
𝐷
4
)]} .

(10)

In view that 𝑉∗ and 𝑊
∗ are solutions of matrix equation (1),

with this relation we have

Re {tr [𝑃𝐻
1

(𝑉
∗
− 𝑉
1
) + 𝑄
𝐻

1
(𝑊
∗
− 𝑊
1
)]}

= Re {tr [𝑅𝐻
1
(𝐸 − 𝐴

1
𝑉
1
𝐵
1
− 𝐶
1
𝑊
1
𝐷
1

− 𝐴
2
𝑉
1
𝐵
2

− 𝐶
2
𝑊
1
𝐷
2

− 𝐴
3
𝑉
𝐻

1
𝐵
3

− 𝐶
3
𝑊
𝐻

1
𝐷
3

− 𝐴
4
𝑉
𝑇

1
𝐵
4
− 𝐶
4
𝑊
𝑇

1
𝐷
4
)]}

= Re {tr [𝑅𝐻
1
𝑅
1
]} =

𝑅1


2

.

(11)

This implies that (8) holds for 𝑖 = 1.
Assume that (8) holds for = 𝑘. That is,

Re {tr [𝑃𝐻
𝑘

(𝑉
∗
− 𝑉
𝑘
) + 𝑄
𝐻

𝑘
(𝑊
∗
− 𝑊
𝑘
)]} =

𝑅𝑘


2

. (12)

Then we have to prove that the conclusion holds for 𝑖 = 𝑘+ 1;
it follows from Algorithm 3 that

Re {tr [𝑃𝐻
𝑘+1

(𝑉
∗
− 𝑉
𝑘+1

) + 𝑄
𝐻

𝑘+1
(𝑊
∗
− 𝑊
𝑘+1

)]}

= Re
{

{

{

tr[

[

(𝐴
𝐻

1
𝑅
𝑘+1

𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
𝑘+1

𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑘+1
𝐴
3
+ 𝐵
4
𝑅
𝑇

𝑘+1
𝐴
4

+

𝑅𝑘+1


2

𝑅𝑘


2
𝑃
𝑘
)

𝐻

(𝑉
∗
− 𝑉
𝑘+1

)

+ (𝐶
𝐻

1
𝑅
𝑘+1

𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
𝑘+1

𝐷
𝐻

2

+ 𝐷
3
𝑅
𝐻

𝑘+1
𝐶
3
+ 𝐷
4
𝑅
𝑇

𝑘+1
𝐶
4

+

𝑅𝑘+1


2

𝑅𝑘


2
𝑄
𝑘
)

𝐻

(𝑊
∗
− 𝑊
𝑘+1

)]

]

}

}

}

= Re{tr[𝑅𝐻
𝑘+1

𝐴
1
(𝑉
∗
− 𝑉
𝑘+1

) 𝐵
1

+ 𝑅
𝑇

𝑘+1
𝐴
2
(𝑉
∗
− 𝑉
𝑘+1

) 𝐵
2

+ 𝑅
𝑘+1

𝐵
𝐻

3
(𝑉
∗
− 𝑉
𝑘+1

) 𝐴
𝐻

3

+ 𝑅
𝑘+1

𝐵
4

𝐻

(𝑉
∗
− 𝑉
𝑘+1

) 𝐴
4

𝐻

+ 𝑅
𝐻

𝑘+1
𝐶
1
(𝑊
∗
− 𝑊
𝑘+1

)𝐷
1

+ 𝑅
𝑇

𝑘+1
𝐶
2
(𝑊
∗
− 𝑊
𝑘+1

)𝐷
2

+ 𝑅
𝑘+1

𝐷
𝐻

3
(𝑊
∗
− 𝑊
𝑘+1

) 𝐶
𝐻

3

+ 𝑅
𝑘+1

𝐷
4

𝐻

(𝑊
∗
− 𝑊
𝑘+1

) 𝐶
4

𝐻

+

𝑅𝑘+1


2

𝑅𝑘


2
(𝑃
𝐻

𝑘
(𝑉
∗
− 𝑉
𝑘+1

)

+ 𝑄
𝐻

𝑘
(𝑊
∗
− 𝑊
𝑘+1

))]} .

(13)

From properties of trace and conjugate we get

Re {tr [𝑃𝐻
𝑘+1

(𝑉
∗
− 𝑉
𝑘+1

) + 𝑄
𝐻

𝑘+1
(𝑊
∗
− 𝑊
𝑘+1

)]}

= Re{tr[𝑅𝐻
𝑘+1

𝐴
1
(𝑉
∗
− 𝑉
𝑘+1

) 𝐵
1

+ 𝑅
𝑇

𝑘+1
𝐴
2
(𝑉∗ − 𝑉

𝑘+1
) 𝐵
2

+ 𝐴
3
(𝑉
∗
− 𝑉
𝑘+1

)
𝐻

𝐵
3
𝑅
𝐻

𝑘+1

+ 𝐴
4
(𝑉
∗
− 𝑉
𝑘+1

)
𝑇

𝐵
4
𝑅
𝐻

𝑘+1

+ 𝑅
𝐻

𝑘+1
𝐶
1
(𝑊
∗
− 𝑊
𝑘+1

)𝐷
1

+ 𝑅
𝑇

𝑘+1
𝐶
2
(𝑊∗ − 𝑊

𝑘+1
)𝐷
2

+ 𝐶
3
(𝑊
∗
− 𝑊
𝑘+1

)
𝐻

𝐷
3
𝑅
𝐻

𝑘+1

+ 𝐶
4
(𝑊
∗
− 𝑊
𝑘+1

)
𝑇

𝐷
4
𝑅
𝐻

𝑘+1
+

𝑅𝑘+1


2

𝑅𝑘


2

× (𝑃
𝐻

𝑘
(𝑉
∗
− 𝑉
𝑘+1

)

+ 𝑄
𝐻

𝑘
(𝑊
∗
− 𝑊
𝑘+1

))]}



Journal of Discrete Mathematics 5

= Re {tr [𝑅𝐻
𝑘+1

𝐴
1
(𝑉
∗
− 𝑉
𝑘+1

) 𝐵
1

+ 𝑅
𝐻

𝑘+1
𝐴
2
(𝑉∗ − 𝑉

𝑘+1
)𝐵
2

+ 𝑅
𝐻

𝑘+1
𝐴
3
(𝑉
∗
− 𝑉
𝑘+1

)
𝐻

𝐵
3

+ 𝑅
𝐻

𝑘+1
𝐴
4
(𝑉
∗
− 𝑉
𝑘+1

)
𝑇

𝐵
4

+ 𝑅
𝐻

𝑘+1
𝐶
1
(𝑊
∗
− 𝑊
𝑘+1

)𝐷
1

+ 𝑅
𝐻

𝑘+1
𝐶
2
(𝑊∗ − 𝑊

𝑘+1
)𝐷
2

+ 𝑅
𝐻

𝑘+1
𝐶
3
(𝑊
∗
− 𝑊
𝑘+1

)
𝐻

𝐷
3

+ 𝑅
𝐻

𝑘+1
𝐶
4
(𝑊
∗
− 𝑊
𝑘+1

)
𝑇

𝐷
4
]} +

𝑅𝑘+1


2

𝑅𝑘


2

× Re{tr[𝑃𝐻
𝑘

(𝑉
∗
− 𝑉
𝑘
−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑃
𝑘
)

+ 𝑄
𝐻

𝑘
(𝑊
∗
− 𝑊
𝑘

−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑄
𝑘
)]}

= Re {tr [𝑅𝐻
𝑘+1

(𝐴
1
𝑉
∗
𝐵
1
+ 𝐶
1
𝑊
∗
𝐷
1

+ 𝐴
2
𝑉∗𝐵
2
+ 𝐶
2
𝑊∗𝐷
2

+ 𝐴
3
𝑉
∗𝐻

𝐵
3
+ 𝐶
3
𝑊
∗𝐻

𝐷
3

+ 𝐴
4
𝑉
∗𝑇

𝐵
4
+ 𝐶
4
𝑊
∗𝑇

𝐷
4

− 𝐴
1
𝑉
𝑘+1

𝐵
1
− 𝐶
1
𝑊
𝑘+1

𝐷
1
− 𝐴
2
𝑉
𝑘+1

𝐵
2

− 𝐶
2
𝑊
𝑘+1

𝐷
2

− 𝐴
3
𝑉
𝐻

𝑘+1
𝐵
3

− 𝐶
3
𝑊
𝐻

𝑘+1
𝐷
3
− 𝐴
4
𝑉
𝑇

𝑘+1
𝐵
4

− 𝐶
4
𝑊
𝑇

𝑘+1
𝐷
4
)]}

+

𝑅𝑘+1


2

𝑅𝑘


2
Re{tr[𝑃𝐻

𝑘
(𝑉
∗
− 𝑉
𝑘
) + 𝑄

𝐻

𝑘
(𝑊
∗
− 𝑊
𝑘
)

−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
(𝑃
𝐻

𝑘
𝑃
𝑘
+ 𝑄
𝐻

𝑘
𝑄
𝑘
)]} .

(14)

In view that 𝑉∗ and 𝑊
∗ are solutions of matrix equation (1),

with relation (14) one has

Re {tr [𝑃𝐻
𝑘+1

(𝑉
∗
− 𝑉
𝑘+1

) + 𝑄
𝐻

𝑘+1
(𝑊
∗
− 𝑊
𝑘+1

)]}

= Re {tr [𝑅𝐻
𝑘+1

(𝐸 − 𝐴
1
𝑉
𝑘+1

𝐵
1
− 𝐶
1
𝑊
𝑘+1

𝐷
1

− 𝐴
2
𝑉
𝑘+1

𝐵
2
− 𝐶
2
𝑊
𝑘+1

𝐷
2

− 𝐴
3
𝑉
𝐻

𝑘+1
𝐵
3
− 𝐶
3
𝑊
𝐻

𝑘+1
𝐷
3

− 𝐴
4
𝑉
𝑇

𝑘+1
𝐵
4
− 𝐶
4
𝑊
𝑇

𝑘+1
𝐷
4
)]}

+

𝑅𝑘+1


2

𝑅𝑘


2
[
𝑅𝑘



2

−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
(
𝑃𝑘



2

+
𝑄𝑘



2

)]

= Re {tr [𝑅𝐻
𝑘+1

𝑅
𝑘+1

]} =
𝑅𝑘+1



2

.

(15)

Then relation (8) holds by mathematical induction.

Lemma 5. Suppose that the matrix equation (1) is consis-
tent and the sequences {𝑅

𝑖
}, {𝑃
𝑖
}, and {𝑄

𝑖
} are generated

by Algorithm 3 with any initial matrices 𝑉
1
, 𝑊
1
, such that

𝑅
𝑖

̸= 0 for all 𝑖 = 1, 2, . . . , 𝑘, and then

Re {tr (𝑅𝐻
𝑗
𝑅
𝑖
)} = 0,

Re {tr (𝑃𝐻
𝑗
𝑃
𝑖
+ 𝑄
𝐻

𝑗
𝑄
𝑖
)} = 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑘, 𝑖 ̸= 𝑗.

(16)

Proof. We apply mathematical induction.
Step 1. We prove that

Re {tr (𝑅𝐻
𝑖+1

𝑅
𝑖
)} = 0, (17)

Re {tr (𝑃𝐻
𝑖+1

𝑃
𝑖
+ 𝑄
𝐻

𝑖+1
𝑄
𝑖
)} = 0, 𝑖 = 1, 2, . . . , 𝑘. (18)

First from Algorithm 3 we have

𝑅
𝑘+1

= 𝐸 − 𝐴
1
𝑉
𝑘+1

𝐵
1
− 𝐶
1
𝑊
𝑘+1

𝐷
1
− 𝐴
2
𝑉
𝑘+1

𝐵
2

− 𝐶
2
𝑊
𝑘+1

𝐷
2
− 𝐴
3
𝑉
𝐻

𝑘+1
𝐵
3

− 𝐶
3
𝑊
𝐻

𝑘+1
𝐷
3
− 𝐴
4
𝑉
𝑇

𝑘+1
𝐵
4
− 𝐶
4
𝑊
𝑇

𝑘+1
𝐷
4
,

𝑅
𝑘+1

= 𝐸 − 𝐴
1
(𝑉
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑃
𝑘
)𝐵
1

− 𝐶
1
(𝑊
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑄
𝑘
)𝐷
1

− 𝐴
2
(𝑉
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑃
𝑘
)𝐵
2

− 𝐶
2
(𝑊
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑄
𝑘
)𝐷
2

− 𝐴
3
(𝑉
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑃
𝑘
)

𝐻

𝐵
3

− 𝐶
3
(𝑊
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑄
𝑘
)

𝐻

𝐷
3

− 𝐴
4
(𝑉
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑃
𝑘
)

𝑇

𝐵
4
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− 𝐶
4
(𝑊
𝑘
+

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
𝑄
𝑘
)

𝑇

𝐷
4

= 𝐸 − 𝐴
1
𝑉
𝑘
𝐵
1
− 𝐶
1
𝑊
𝑘
𝐷
1
− 𝐴
2
𝑉
𝑘
𝐵
2
− 𝐶
2
𝑊
𝑘
𝐷
2

− 𝐴
3
𝑉
𝐻

𝑘
𝐵
3
− 𝐶
3
𝑊
𝐻

𝑘
𝐷
3
− 𝐴
4
𝑉
𝑇

𝑘
𝐵
4

− 𝐶
4
𝑊
𝑇

𝑘
𝐷
4
−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2

× (𝐴
1
𝑃
𝑘
𝐵
1
+ 𝐶
1
𝑄
𝑘
𝐷
1
+ 𝐴
2
𝑃
𝑘
𝐵
2

+ 𝐶
2
𝑄
𝑘
𝐷
2
+ 𝐴
3
𝑃
𝐻

𝑘
𝐵
3

+ 𝐶
3
𝑄
𝐻

𝑘
𝐷
3
+ 𝐴
4
𝑃
𝑇

𝑘
𝐵
4
+ 𝐶
4
𝑄
𝑇

𝑘
𝐷
4
) ,

𝑅
𝑘+1

= 𝑅
𝑘
−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2

× (𝐴
1
𝑃
𝑘
𝐵
1
+ 𝐶
1
𝑄
𝑘
𝐷
1
+ 𝐴
2
𝑃
𝑘
𝐵
2

+ 𝐶
2
𝑄
𝑘
𝐷
2
+ 𝐴
3
𝑃
𝐻

𝑘
𝐵
3

+ 𝐶
3
𝑄
𝐻

𝑘
𝐷
3
+ 𝐴
4
𝑃
𝑇

𝑘
𝐵
4
+ 𝐶
4
𝑄
𝑇

𝑘
𝐷
4
) .

(19)

For 𝑖 = 1, it follows from (19) that

Re {tr (𝑅𝐻
2
𝑅
1
)}

= Re
{

{

{

tr[

[

(𝑅
1
−

𝑅1


2

𝑃1


2

+
𝑄1



2

× (𝐴
1
𝑃
1
𝐵
1
+ 𝐶
1
𝑄
1
𝐷
1

+ 𝐴
2
𝑃
1
𝐵
2
+ 𝐶
2
𝑄
1
𝐷
2

+ 𝐴
3
𝑃
𝐻

1
𝐵
3
+ 𝐶
3
𝑄
𝐻

1
𝐷
3

+ 𝐴
4
𝑃
𝑇

1
𝐵
4
+ 𝐶
4
𝑄
𝑇

1
𝐷
4
))

𝐻

𝑅
1
]

]

}

}

}

= Re{tr (𝑅𝐻
1
𝑅
1
) −

𝑅1


2

𝑃1


2

+
𝑄1



2

× tr (𝑃𝐻
1
𝐴
𝐻

1
𝑅
1
𝐵
𝐻

1
+ 𝑄
𝐻

1
𝐶
𝐻

1
𝑅
1
𝐷
𝐻

1

+ 𝑃
1

𝐻

𝐴
𝐻

2
𝑅
1
𝐵
𝐻

2
+ 𝑄
1

𝐻

𝐶
𝐻

2
𝑅
1
𝐷
𝐻

2

+ 𝑃
1
𝐴
𝐻

3
𝑅
1
𝐵
𝐻

3
+ 𝑄
1
𝐶
𝐻

3
𝑅
1
𝐷
𝐻

3

+ 𝑃
1
𝐴
𝐻

4
𝑅
1
𝐵
𝐻

4
+ 𝑄
1
𝐶
𝐻

4
𝑅
1
𝐷
𝐻

4
)}

=
𝑅1



2

−

𝑅1


2

𝑃1


2

+
𝑄1



2

× Re {tr [𝑃𝐻
1
𝐴
𝐻

1
𝑅
1
𝐵
𝐻

1
+ 𝑄
𝐻

1
𝐶
𝐻

1
𝑅
1
𝐷
𝐻

1

+ 𝑃
1

𝐻

𝐴
𝐻

2
𝑅
1
𝐵
𝐻

2
+ 𝑄
1

𝐻

𝐶
𝐻

2
𝑅
1
𝐷
𝐻

2

+ 𝐵
3
𝑅
𝐻

1
𝐴
3
𝑃
𝐻

1
+ 𝐷
3
𝑅
𝐻

1
𝐶
3
𝑄
𝐻

1

+ 𝐵
4
𝑅
𝑇

1
𝐴
4
𝑃
𝐻

1
+ 𝐷
4
𝑅
𝑇

1
𝐶
4
𝑄
𝐻

1
]}

=
𝑅1



2

−

𝑅1


2

𝑃1


2

+
𝑄1



2

× Re {tr [𝑃𝐻
1

(𝐴
𝐻

1
𝑅
1
𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
1
𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

1
𝐴
3
+ 𝐵
4
𝑅
𝑇

1
𝐴
4
)

+ 𝑄
𝐻

1
(𝐶
𝐻

1
𝑅
1
𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
1
𝐷
𝐻

2

+ 𝐷
3
𝑅
𝐻

1
𝐶
3
+ 𝐷
4
𝑅
𝑇

1
𝐶
4
)]}

=
𝑅1



2

−

𝑅1


2

𝑃1


2

+
𝑄1



2
Re {tr (𝑃𝐻

1
𝑃
1
+ 𝑄
𝐻

1
𝑄
1
)} ,

Re {tr (𝑅𝐻
2
𝑅
1
)}

=
𝑅1



2

−

𝑅1


2

𝑃1


2

+
𝑄1



2
(
𝑃1



2

+
𝑄1



2

) = 0.

(20)

This implies that (17) is satisfied for 𝑖 = 1.
From Algorithm 3 we have

Re {tr (𝑃𝐻
2
𝑃
1
+ 𝑄
𝐻

2
𝑄
1
)}

= Re
{

{

{

tr[

[

(𝐴
𝐻

1
𝑅
2
𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
2
𝐵
𝐻

2
+ 𝐵
3
𝑅
𝐻

2
𝐴
3

+ 𝐵
4
𝑅
𝑇

2
𝐴
4
+

𝑅2


2

𝑅1


2
𝑃
1
)

𝐻

𝑃
1

+ (𝐶
𝐻

1
𝑅
2
𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
2
𝐷
𝐻

2
+ 𝐷
3
𝑅
𝐻

2
𝐶
3

+𝐷
4
𝑅
𝑇

2
𝐶
4
+

𝑅2


2

𝑅1


2
𝑄
1
)

𝐻

𝑄
1
]

]

}

}

}
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= Re{tr[𝑅𝐻
2
𝐴
1
𝑃
1
𝐵
1
+ 𝑅
2

𝐻

𝐴
2
𝑃
1
𝐵
2
+ 𝑅
2
𝐵
𝐻

3
𝑃
1
𝐴
𝐻

3

+ 𝑅
2
𝐵
4

𝐻

𝑃
1
𝐴
4

𝐻

+

𝑅2


2

𝑅1


2
𝑃
𝐻

1
𝑃
1
+ 𝑅
𝐻

2
𝐶
1
𝑄
1
𝐷
1

+ 𝑅
2

𝐻

𝐶
2
𝑄
1
𝐷
2
+ 𝑅
2
𝐷
𝐻

3
𝑄
1
𝐶
𝐻

3

+ 𝑅
2
𝐷
4

𝐻

𝑄
1
𝐶
4

𝐻

+

𝑅2


2

𝑅1


2
𝑄
𝐻

1
𝑄
1
]}

= Re{tr[𝑅𝐻
2
𝐴
1
𝑃
1
𝐵
1
+ 𝑅
2

𝐻

𝐴
2
𝑃
1
𝐵
2
+ 𝐴
3
𝑃
𝐻

1
𝐵
3
𝑅
𝐻

2

+ 𝐴
4
𝑃
𝑇

1
𝐵
4
𝑅
𝐻

2
+ 𝑅
𝐻

2
𝐶
1
𝑄
1
𝐷
1

+ 𝑅
2

𝐻

𝐶
2
𝑄
1
𝐷
2
+ 𝐶
3
𝑄
𝐻

1
𝐷
3
𝑅
𝐻

2

+ 𝐶
4
𝑄
𝑇

1
𝐷
4
𝑅
𝐻

2
+

𝑅2


2

𝑅1


2
(𝑃
𝐻

1
𝑃
1
+ 𝑄
𝐻

1
𝑄
1
)]}

= Re{tr[𝑅𝐻
2
𝐴
1
𝑃
1
𝐵
1
+ 𝑅
𝐻

2
𝐴
2
𝑃
1
𝐵
2
+ 𝑅
𝐻

2
𝐴
3
𝑃
𝐻

1
𝐵
3

+ 𝑅
𝐻

2
𝐴
4
𝑃
𝑇

1
𝐵
4
+ 𝑅
𝐻

2
𝐶
1
𝑄
1
𝐷
1

+ 𝑅
𝐻

2
𝐶
2
𝑄
1
𝐷
2
+ 𝑅
𝐻

2
𝐶
3
𝑄
𝐻

1
𝐷
3

+ 𝑅
𝐻

2
𝐶
4
𝑄
𝑇

1
𝐷
4
+

𝑅2


2

𝑅1


2
(𝑃
𝐻

1
𝑃
1
+ 𝑄
𝐻

1
𝑄
1
)]}

= Re{tr[𝑅𝐻
2
(𝐴
1
𝑃
1
𝐵
1
+ 𝐶
1
𝑄
1
𝐷
1
+ 𝐴
2
𝑃
1
𝐵
2

+ 𝐶
2
𝑄
1
𝐷
2
+ 𝐴
3
𝑃
𝐻

1
𝐵
3
+ 𝐶
3
𝑄
𝐻

1
𝐷
3

+𝐴
4
𝑃
𝑇

1
𝐵
4
+ 𝐶
4
𝑄
𝐻

1
𝐷
4
) ]}

+

𝑅2


2

𝑅1


2
(
𝑃1



2

+
𝑄1



2

)

=

𝑃1


2

+
𝑄1



2

𝑅1


2
Re {tr [𝑅𝐻

2
(𝑅
1
− 𝑅
2
)]}

+

𝑅2


2

𝑅1


2
(
𝑃1



2

+
𝑄1



2

)

= −

𝑃1


2

+
𝑄1



2

𝑅1


2
(
𝑅2



2

)

+

𝑅2


2

𝑅1


2
(
𝑃1



2

+
𝑄1



2

) = 0.

(21)
This implies that (18) is satisfied for 𝑖 = 1.

Assume that (17) and (18) hold for 𝑖 = 𝑘 − 1, from
Algorithm 3 we have

Re {tr (𝑅𝐻
𝑘+1

𝑅
𝑘
)}

= Re
{

{

{

tr[

[

(𝑅
𝑘
−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2

× (𝐴
1
𝑃
𝑘
𝐵
1
+ 𝐶
1
𝑄
𝑘
𝐷
1
+ 𝐴
2
𝑃
𝑘
𝐵
2

+ 𝐶
2
𝑄
𝑘
𝐷
2
+ 𝐴
3
𝑃
𝐻

𝑘
𝐵
3
+ 𝐶
3
𝑄
𝐻

𝑘
𝐷
3

+ 𝐴
4
𝑃
𝑇

𝑘
𝐵
4
+ 𝐶
4
𝑄
𝑇

𝑘
𝐷
4
))

𝐻

𝑅
𝑘
]

]

}

}

}

,

Re {tr (𝑅𝐻
𝑘+1

𝑅
𝑘
)}

= Re{tr (𝑅𝐻
𝑘
𝑅
𝑘
) −

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2

× tr (𝑃𝐻
𝑘
𝐴
𝐻

1
𝑅
𝑘
𝐵
𝐻

1
+ 𝑄
𝐻

𝑘
𝐶
𝐻

1
𝑅
𝑘
𝐷
𝐻

1

+ 𝑃
𝑘

𝐻

𝐴
𝐻

2
𝑅
𝑘
𝐵
𝐻

2
+ 𝑄
𝑘

𝐻

𝐶
𝐻

2
𝑅
𝑘
𝐷
𝐻

2

+ 𝑃
𝑘
𝐴
𝐻

3
𝑅
𝑘
𝐵
𝐻

3
+ 𝑄
𝑘
𝐶
𝐻

3
𝑅
𝑘
𝐷
𝐻

3

+ 𝑃
𝑘
𝐴
𝐻

4
𝑅
𝑘
𝐵
𝐻

4
+ 𝑄
𝑘
𝐶
𝐻

4
𝑅
𝑘
𝐷
𝐻

4
)}

=
𝑅𝑘



2

−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2

× Re {tr (𝑃𝐻
𝑘
𝐴
𝐻

1
𝑅
𝑘
𝐵
𝐻

1
+ 𝑄
𝐻

𝑘
𝐶
𝐻

1
𝑅
𝑘
𝐷
𝐻

1

+ 𝑃
𝑘

𝐻

𝐴
𝐻

2
𝑅
𝑘
𝐵
𝐻

2
+ 𝑄
𝑘

𝐻

𝐶
𝐻

2
𝑅
𝑘
𝐷
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑘
𝐴
3
𝑃
𝐻

𝑘
+ 𝐷
3
𝑅
𝐻

𝑘
𝐶
3
𝑄
𝐻

𝑘

+ 𝐵
4
𝑅
𝑇

𝑘
𝐴
4
𝑃
𝐻

𝑘
+ 𝐷
4
𝑅
𝑇

𝑘
𝐶
4
𝑄
𝐻

𝑘
)}

=
𝑅1



2

−

𝑅1


2

𝑃𝑘


2

+
𝑄𝑘



2

× Re {tr [𝑃𝐻
𝑘

(𝐴
𝐻

1
𝑅
𝑘
𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
𝑘
𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑘
𝐴
3
+ 𝐵
4
𝑅
𝑇

𝑘
𝐴
4
)

+ 𝑄
𝐻

𝑘
(𝐶
𝐻

1
𝑅
𝑘
𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
𝑘
𝐷
𝐻

2

+ 𝐷
3
𝑅
𝐻

𝑘
𝐶
3
+ 𝐷
4
𝑅
𝑇

𝑘
𝐶
4
)]}
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=
𝑅𝑘



2

−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2

× Re{tr[𝑃𝐻
𝑘

(𝑃
𝑘
−

𝑅𝑘


2

𝑅𝑘−1


2
𝑃
𝑘−1

)

+ 𝑄
𝐻

𝑘
(𝑄
𝑘
−

𝑅𝑘


2

𝑅𝑘−1


2
𝑄
𝑘−1

)]}

=
𝑅𝑘



2

−

𝑅𝑘


2

𝑃𝑘


2

+
𝑄𝑘



2
(
𝑃𝑘



2

+
𝑄𝑘



2

) = 0.

(22)

Thus (17) holds for 𝑖 = 𝑘.
Also, from Algorithm 3 we have

Re {tr (𝑃𝐻
𝑘+1

𝑃
𝑘
+ 𝑄
𝐻

𝑘+1
𝑄
𝑘
)}

= Re
{

{

{

tr [

[

(𝐴
𝐻

1
𝑅
𝑘+1

𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
𝑘+1

𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑘+1
𝐴
3
+ 𝐵
4
𝑅
𝑇

𝑘+1
𝐴
4

+

𝑅𝑘+1


2

𝑅𝑘


2
𝑃
𝑘
)

𝐻

𝑃
𝑘

+ (𝐶
𝐻

1
𝑅
𝑘+1

𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
𝑘+1

𝐷
𝐻

2

+ 𝐷
3
𝑅
𝐻

𝑘+1
𝐶
3
+ 𝐷
4
𝑅
𝑇

𝑘+1
𝐶
4

+

𝑅𝑘+1


2

𝑅𝑘


2
𝑄
𝑘
)

𝐻

𝑄
𝑘
]

]

}

}

}

= Re{tr[𝑅𝐻
𝑘+1

𝐴
1
𝑃
𝑘
𝐵
1
+ 𝑅
𝑘+1

𝐻

𝐴
2
𝑃
𝑘
𝐵
2

+ 𝑅
𝑘+1

𝐵
𝐻

3
𝑃
𝑘
𝐴
𝐻

3
+ 𝑅
𝑘+1

𝐵
4

𝐻

𝑃
𝑘
𝐴
4

𝐻

+

𝑅𝑘+1


2

𝑅𝑘


2
𝑃
𝐻

𝑘
𝑃
𝑘
+ 𝑅
𝐻

𝑘+1
𝐶
1
𝑄
𝑘
𝐷
1

+ 𝑅
𝑘+1

𝐻

𝐶
2
𝑄
𝑘
𝐷
2
+ 𝑅
𝑘+1

𝐷
𝐻

3
𝑄
𝑘
𝐶
𝐻

3

+ 𝑅
𝑘+1

𝐷
4

𝐻

𝑄
𝑘
𝐶
4

𝐻

+

𝑅𝑘+1


2

𝑅𝑘


2
𝑄
𝐻

𝑘
𝑄
𝑘
]}

= Re{tr[𝑅𝐻
𝑘+1

𝐴
1
𝑃
𝑘
𝐵
1
+ 𝑅
𝑘+1

𝐻

𝐴
2
𝑃
𝑘
𝐵
2

+ 𝐴
3
𝑃
𝐻

𝑘
𝐵
3
𝑅
𝐻

𝑘+1
+ 𝐴
4
𝑃
𝑇

𝑘
𝐵
4
𝑅
𝐻

𝑘+1

+

𝑅𝑘+1


2

𝑅𝑘


2
𝑃
𝐻

𝑘
𝑃
𝑘
+ 𝑅
𝐻

𝑘+1
𝐶
1
𝑄
𝑘
𝐷
1

+ 𝑅
𝑘+1

𝐻

𝐶
2
𝑄
𝑘
𝐷
2
+ 𝐶
3
𝑄
𝐻

𝑘
𝐷
3
𝑅
𝐻

𝑘+1

+ 𝐶
4
𝑄
𝑇

𝑘
𝐷
4
𝑅
𝐻

𝑘+1
+

𝑅𝑘+1


2

𝑅𝑘


2
𝑄
𝐻

𝑘
𝑄
𝑘
]}

= Re{tr[𝑅𝐻
𝑘+1

(𝐴
1
𝑃
𝑘
𝐵
1
+ 𝐶
1
𝑄
𝑘
𝐷
1

+ 𝐴
2
𝑃
𝑘
𝐵
2
+ 𝐶
2
𝑄
𝑘
𝐷
2
+ 𝐴
3
𝑃
𝐻

𝑘
𝐵
3

+𝐶
3
𝑄
𝐻

𝑘
𝐷
3
+ 𝐴
4
𝑃
𝑇

𝑘
𝐵
4
+ 𝐶
4
𝑄
𝑇

𝑘
𝐷
4
)

+

𝑅𝑘+1


2

𝑅𝑘


2
(𝑃
𝐻

𝑘
𝑃
𝑘
+ 𝑄
𝐻

𝑘
𝑄
𝑘
)]}

=

𝑃𝑘


2

+
𝑄𝑘



2

𝑅𝑘


2
Re {tr (𝑅𝐻

𝑘+1
(𝑅
𝑘
− 𝑅
𝑘+1

))}

+

𝑅𝑘+1


2

𝑅𝑘


2
(
𝑃𝑘



2

+
𝑄𝑘



2

)

= −

𝑃𝑘


2

+
𝑄𝑘



2

𝑅𝑘


2
(
𝑅𝑘+1



2

)

+

𝑅𝑘+1


2

𝑅𝑘


2
(
𝑃𝑘



2

+
𝑄𝑘



2

) = 0.

(23)

This implies that (17) and (18) hold for 𝑖 = 𝑘.
Then relations (17) and (18) holds bymathematical induc-

tion.
Step 2. We want to show that

Re (tr (𝑅𝐻
𝑖+𝑙
𝑅
𝑖
)) = 0,

Re (tr (𝑃𝐻
𝑖+𝑙
𝑃
𝑖
+ 𝑄
𝐻

𝑖+𝑙
𝑄
𝑖
)) = 0

(24)

holds for 𝑙 ≥ 1. We will prove this conclusion by induction.
The case of 𝑙 = 1 has been proven in Step 1. Now we assume
that (24) holds for 𝑙 ≤ 𝑠, 𝑠 ≥ 1. The aim is to show that

Re (tr (𝑅𝐻
𝑖+𝑠+1

𝑅
𝑖
)) = 0,

Re (tr (𝑃𝐻
𝑖+𝑠+1

𝑃
𝑖
+ 𝑄
𝐻

𝑖+𝑠+1
𝑄
𝑖
)) = 0.

(25)

First we prove the following:

Re (tr (𝑅𝐻
𝑠+1

𝑅
0
)) = 0,

Re (tr (𝑃𝐻
𝑠+1

𝑃
0
+ 𝑄
𝐻

𝑠+1
𝑄
0
)) = 0.

(26)
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By using Algorithm 3, from (19) and induction we have

Re {tr (𝑅𝐻
𝑠+1

𝑅
0
)}

= Re
{

{

{

tr[

[

(𝑅
𝑠
−

𝑅𝑠


2

𝑃𝑠


2

+
𝑄𝑠



2

× (𝐴
1
𝑃
𝑠
𝐵
1
+ 𝐶
1
𝑄
𝑠
𝐷
1
+ 𝐴
2
𝑃
𝑠
𝐵
2

+ 𝐶
2
𝑄
𝑠
𝐷
2
+ 𝐴
3
𝑃
𝐻

𝑠
𝐵
3
+ 𝐶
3
𝑄
𝐻

𝑠
𝐷
3

+ 𝐴
4
𝑃
𝑇

𝑠
𝐵
4
+ 𝐶
4
𝑄
𝑇

𝑠
𝐷
4
))

𝐻

𝑅
0
]

]

}

}

}

= Re{ tr (𝑅𝐻
𝑠
𝑅
0
) −

𝑅𝑠


2

𝑃𝑠


2

+
𝑄𝑠



2

× tr (𝑃𝐻
𝑠
𝐴
𝐻

1
𝑅
0
𝐵
𝐻

1
+ 𝑄
𝐻

𝑠
𝐶
𝐻

1
𝑅
0
𝐷
𝐻

1

+ 𝑃
𝑠

𝐻

𝐴
𝐻

2
𝑅
0
𝐵
𝐻

2
+ 𝑄
𝑠

𝐻

𝐶
𝐻

2
𝑅
0
𝐷
𝐻

2

+ 𝑃
𝑠
𝐴
𝐻

3
𝑅
0
𝐵
𝐻

3
+ 𝑄
𝑠
𝐶
𝐻

3
𝑅
0
𝐷
𝐻

3

+ 𝑃
𝑠
𝐴
𝐻

4
𝑅
0
𝐵
𝐻

4
+ 𝑄
𝑠
𝐶
𝐻

4
𝑅
0
𝐷
𝐻

4
)} ,

Re {tr (𝑅𝐻
𝑠+1

𝑅
0
)}

= Re {tr (𝑅𝐻
𝑠
𝑅
0
)} −

𝑅𝑠


2

𝑃𝑠


2

+
𝑄𝑠



2

× Re {tr (𝑃𝐻
𝑠
𝐴
𝐻

1
𝑅
0
𝐵
𝐻

1
+ 𝑄
𝐻

𝑠
𝐶
𝐻

1
𝑅
0
𝐷
𝐻

1

+ 𝑃
𝑠

𝐻

𝐴
𝐻

2
𝑅
0
𝐵
𝐻

2
+ 𝑄
𝑠

𝐻

𝐶
𝐻

2
𝑅
0
𝐷
𝐻

2

+ 𝐵
3
𝑅
𝐻

0
𝐴
3
𝑃
𝐻

𝑠
+ 𝐷
3
𝑅
𝐻

0
𝐶
3
𝑄
𝐻

𝑠

+ 𝐵
4
𝑅
𝑇

0
𝐴
4
𝑃
𝐻

𝑠
+ 𝐷
4
𝑅
𝑇

0
𝐶
4
𝑄
𝐻

𝑠
)}

= −

𝑅𝑠


2

𝑃𝑠


2

+
𝑄𝑠



2

× Re {tr (𝑃𝐻
𝑠

(𝐴
𝐻

1
𝑅
0
𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
0
𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

0
𝐴
3
+ 𝐵
4
𝑅
𝑇

0
𝐴
4
)

+ 𝑄
𝐻

𝑠
(𝐶
𝐻

1
𝑅
0
𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
0
𝐷
𝐻

2

+𝐷
3
𝑅
𝐻

0
𝐶
3
+ 𝐷
4
𝑅
𝑇

0
𝐶
4
))}

= −

𝑅𝑠


2

𝑃𝑠


2

+
𝑄𝑠



2
Re {tr (𝑃𝐻

𝑠
𝑃
0
+ 𝑄
𝐻

𝑠
𝑄
0
)} = 0,

Re {tr (𝑃𝐻
𝑠+1

𝑃
0
+ 𝑄
𝐻

𝑠+1
𝑄
0
)}

= Re{tr[(𝐴
𝐻

1
𝑅
𝑠+1

𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
𝑠+1

𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑠+1
𝐴
3
+ 𝐵
4
𝑅
𝑇

𝑠+1
𝐴
4

+

𝑅𝑠+1


2

𝑅𝑠


2
𝑃
𝑠
)

𝐻

𝑃
0

+ (𝐶
𝐻

1
𝑅
𝑠+1

𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
𝑠+1

𝐷
𝐻

2

+ 𝐷
3
𝑅
𝐻

𝑠+1
𝐶
3
+ 𝐷
4
𝑅
𝑇

𝑘+1
𝐶
4

+

𝑅𝑠+1


2

𝑅𝑠


2
𝑄
𝑠
)

𝐻

𝑄
0
]

]

}

}

}

= Re{tr[𝑅𝐻
𝑠+1

𝐴
1
𝑃
0
𝐵
1
+ 𝑅
𝑠+1

𝐻

𝐴
2
𝑃
0
𝐵
2

+ 𝑅
𝑠+1

𝐵
𝐻

3
𝑃
0
𝐴
𝐻

3
+ 𝑅
𝑠+1

𝐵
4

𝐻

𝑃
0
𝐴
4

𝐻

+

𝑅𝑠+1


2

𝑅𝑠


2
𝑃
𝐻

𝑠
𝑃
0
+ 𝑅
𝐻

𝑠+1
𝐶
1
𝑄
0
𝐷
1

+ 𝑅
𝑠+1

𝐻

𝐶
2
𝑄
0
𝐷
2
+ 𝑅
𝑠+1

𝐷
𝐻

3
𝑄
0
𝐶
𝐻

3

+ 𝑅
𝑠+1

𝐷
4

𝐻

𝑄
0
𝐶
4

𝐻

+

𝑅𝑠+1


2

𝑅𝑠


2
𝑄
𝐻

𝑠
𝑄
0
]}

= Re{tr[𝑅𝐻
𝑠+1

𝐴
1
𝑃
0
𝐵
1
+ 𝑅
𝑠+1

𝐻

𝐴
2
𝑃
0
𝐵
2

+ 𝐴
3
𝑃
𝐻

0
𝐵
3
𝑅
𝐻

𝑠+1
+ 𝐴
4
𝑃
𝑇

0
𝐵
4
𝑅
𝐻

𝑠+1

+

𝑅𝑠+1


2

𝑅𝑠


2
𝑃
𝐻

𝑠
𝑃
0
+ 𝑅
𝐻

𝑠+1
𝐶
1
𝑄
0
𝐷
1

+ 𝑅
𝑠+1

𝐻

𝐶
2
𝑄
0
𝐷
2
+ 𝐶
3
𝑄
𝐻

0
𝐷
3
𝑅
𝐻

𝑠+1

+ 𝐶
4
𝑄
𝑇

0
𝐷
4
𝑅
𝐻

𝑠+1
+

𝑅𝑠+1


2

𝑅𝑠


2
𝑄
𝐻

𝑠
𝑄
0
]}

= Re{tr[𝑅𝐻
𝑠+1

(𝐴
1
𝑃
0
𝐵
1
+ 𝐶
1
𝑄
0
𝐷
1
+ 𝐴
2
𝑃
0
𝐵
2

+ 𝐶
2
𝑄
0
𝐷
2
+ 𝐴
3
𝑃
𝐻

0
𝐵
3

+ 𝐶
3
𝑄
𝐻

0
𝐷
3
+ 𝐴
4
𝑃
𝑇

0
𝐵
4

+ 𝐶
4
𝑄
𝑇

0
𝐷
4
)

+

𝑅𝑠+1


2

𝑅𝑠


2
(𝑃
𝐻

𝑠
𝑃
0
+ 𝑄
𝐻

𝑠
𝑄
0
)]}

=

𝑃0


2

+
𝑄0



2

𝑅0


2
Re {tr (𝑅𝐻

𝑠+1
(𝑅
0
− 𝑅
1
))}= 0.

(27)

Then (26) is holds.
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From Algorithm 3 we have

Re {tr (𝑃𝐻
𝑖+𝑠+1

𝑃
𝑖
+ 𝑄
𝐻

𝑖+𝑠+1
𝑄
𝑖
)}

= Re{tr[(𝐴
𝐻

1
𝑅
𝑖+𝑠+1

𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
𝑖+𝑠+1

𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑖+𝑠+1
𝐴
3
+ 𝐵
4
𝑅
𝑇

𝑖+𝑠+1
𝐴
4

+

𝑅𝑖+𝑠+1


2

𝑅𝑖+𝑠


2
𝑃
𝑖+𝑠

)

𝐻

𝑃
𝑖

+ (𝐶
𝐻

1
𝑅
𝑖+𝑠+1

𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
𝑖+𝑠+1

𝐷
𝐻

2

+ 𝐷
3
𝑅
𝐻

𝑖+𝑠+1
𝐶
3
+ 𝐷
4
𝑅
𝑇

𝑖+𝑠+1
𝐶
4

+

𝑅𝑖+𝑠+1


2

𝑅𝑖+𝑠


2
𝑄
𝑖+𝑠

)

𝐻

𝑄
𝑖
]

]

}

}

}

= Re{tr[𝑅𝐻
𝑖+𝑠+1

𝐴
1
𝑃
𝑖
𝐵
1
+ 𝑅
𝑖+𝑠+1

𝐻

𝐴
2
𝑃
𝑖
𝐵
2

+ 𝑅
𝑖+𝑠+1

𝐵
𝐻

3
𝑃
𝑖
𝐴
𝐻

3
+ 𝑅
𝑖+𝑠+1

𝐵
4

𝐻

𝑃
𝑖
𝐴
4

𝐻

+

𝑅𝑖+𝑠+1


2

𝑅𝑖+𝑠


2
𝑃
𝐻

𝑖+𝑠
𝑃
𝑖
+ 𝑅
𝐻

𝑖+𝑠+1
𝐶
1
𝑄
𝑖
𝐷
1

+ 𝑅
𝑖+𝑠+1

𝐻

𝐶
2
𝑄
𝑖
𝐷
2
+ 𝑅
𝑖+𝑠+1

𝐷
𝐻

3
𝑄
𝑖
𝐶
𝐻

3

+ 𝑅
𝑖+𝑠+1

𝐷
4

𝐻

𝑄
𝑖
𝐶
4

𝐻

+

𝑅𝑖+𝑠+1


2

𝑅𝑖+𝑠


2
𝑄
𝐻

𝑖+𝑠
𝑄
𝑖
]}

= Re{tr[𝑅𝐻
𝑖+𝑠+1

𝐴
1
𝑃
𝑖
𝐵
1
+ 𝑅
𝑖+𝑠+1

𝐻

𝐴
2
𝑃
𝑖
𝐵
2

+ 𝐴
3
𝑃
𝐻

𝑖
𝐵
3
𝑅
𝐻

𝑖+𝑠+1
+ 𝐴
4
𝑃
𝑇

𝑖
𝐵
4
𝑅
𝐻

𝑖+𝑠+1

+

𝑅𝑖+𝑠+1


2

𝑅𝑖+𝑠


2
𝑃
𝐻

𝑖+𝑠
𝑃
𝑖
+ 𝑅
𝐻

𝑖+𝑠+1
𝐶
1
𝑄
𝑖
𝐷
1

+ 𝑅
𝑖+𝑠+1

𝐻

𝐶
2
𝑄
𝑖
𝐷
2
+ 𝐶
3
𝑄
𝐻

𝑖
𝐷
3
𝑅
𝐻

𝑖+𝑠+1

+ 𝐶
4
𝑄
𝑇

𝑘
𝐷
4
𝑅
𝐻

𝑖+𝑠+1
+

𝑅𝑖+𝑠+1


2

𝑅𝑖+𝑠


2
𝑄
𝐻

𝑖+𝑠
𝑄
𝑖
]}

= Re{tr[𝑅𝐻
𝑖+𝑠+1

(𝐴
1
𝑃
𝑖
𝐵
1
+ 𝐶
1
𝑄
𝑖
𝐷
1

+ 𝐴
2
𝑃
𝑖
𝐵
2
+ 𝐶
2
𝑄
𝑖
𝐷
2

+ 𝐴
3
𝑃
𝐻

𝑖
𝐵
3
+ 𝐶
3
𝑃
𝐻

𝑖
𝐷
3

+ 𝐴
4
𝑃
𝑇

𝑖
𝐵
4
+ 𝐶
4
𝑄
𝑇

𝑖
𝐷
4
)

+

𝑅𝑖+𝑠+1


2

𝑅𝑖+𝑠


2
(𝑃
𝐻

𝑖+𝑠
𝑃
𝑖
+ 𝑄
𝐻

𝑖+𝑠
𝑄
𝑖
)]}

=

𝑃𝑖


2

+
𝑄𝑖



2

𝑅𝑖


2
Re {tr (𝑅𝐻

𝑖+𝑠+1
(𝑅
𝑖
− 𝑅
𝑖+1

))}

=

𝑃𝑖


2

+
𝑄𝑖



2

𝑅𝑖


2
Re {tr (𝑅𝐻

𝑖+𝑠+1
𝑅
𝑖
)} .

(28)

Also from (19) we have

Re {tr (𝑅𝐻
𝑖+𝑠+1

𝑅
𝑖
)}

= Re
{

{

{

tr[

[

(𝑅
𝑖+𝑠

−

𝑅𝑖+𝑠


2

𝑃𝑖+𝑠


2

+
𝑄𝑖+𝑠



2

× (𝐴
1
𝑃
𝑖+𝑠

𝐵
1
+ 𝐶
1
𝑄
𝑖+𝑠

𝐷
1

+ 𝐴
2
𝑃
𝑖+𝑠

𝐵
2
+ 𝐶
2
𝑄
𝑖+𝑠

𝐷
2

+ 𝐴
3
𝑃
𝐻

𝑖+𝑠
𝐵
3
+ 𝐶
3
𝑄
𝐻

𝑖+𝑠
𝐷
3

+ 𝐴
4
𝑃
𝑇

𝑖+𝑠
𝐵
4
+ 𝐶
4
𝑄
𝑇

𝑖+𝑠
𝐷
4
))

𝐻

𝑅
𝑖
]

]

}

}

}

= Re{tr (𝑅𝐻
𝑖+𝑠

𝑅
𝑖
) −

𝑅𝑖+𝑠


2

𝑃𝑖+𝑠


2

+
𝑄𝑖+𝑠



2

× tr (𝑃𝐻
𝑖+𝑠

𝐴
𝐻

1
𝑅
𝑖
𝐵
𝐻

1
+ 𝑄
𝐻

𝑖+𝑠
𝐶
𝐻

1
𝑅
𝑖
𝐷
𝐻

1

+ 𝑃
𝑖+𝑠

𝐻

𝐴
𝐻

2
𝑅
𝑖
𝐵
𝐻

2
+ 𝑄
𝑖+𝑠

𝐻

𝐶
𝐻

2
𝑅
𝑖
𝐷
𝐻

2

+ 𝑃
𝑖+𝑠

𝐴
𝐻

3
𝑅
𝑖
𝐵
𝐻

3
+ 𝑄
𝑖+𝑠

𝐶
𝐻

3
𝑅
𝑖
𝐷
𝐻

3

+ 𝑃
𝑖+𝑠

𝐴
𝐻

4
𝑅
𝑖
𝐵
𝐻

4
+ 𝑄
𝑖+𝑠

𝐶
𝐻

4
𝑅
𝑖
𝐷
𝐻

4
)} ,

Re {tr (𝑅𝐻
𝑖+𝑠+1

𝑅
𝑖
)}

= −

𝑅𝑖+𝑠


2

𝑃𝑖+𝑠


2

+
𝑄𝑖+𝑠



2

× Re{tr(𝑃𝐻
𝑖+𝑠

𝐴
𝐻

1
𝑅
𝑖
𝐵
𝐻

1
+ 𝑄
𝐻

𝑖+𝑠
𝐶
𝐻

1
𝑅
𝑖
𝐷
𝐻

1

+ 𝑃
𝑖+𝑠

𝐻

𝐴
𝐻

2
𝑅
𝑖
𝐵
𝐻

2
+ 𝑄
𝑖+𝑠

𝐻

𝐶
𝐻

2
𝑅
𝑖
𝐷
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑖
𝐴
3
𝑃
𝐻

𝑖+𝑠
+ 𝐷
3
𝑅
𝐻

𝑖
𝐶
3
𝑄
𝐻

𝑖+𝑠

+ 𝐵
4
𝑅
𝑇

𝑖
𝐴
4
𝑃
𝐻

𝑖+𝑠
+ 𝐷
4
𝑅
𝑇

𝑖
𝐶
4
𝑄
𝐻

𝑖+𝑠
)}
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𝑅𝑖+𝑠


2

𝑃𝑖+𝑠


2

+
𝑄𝑖+𝑠



2

× Re {tr [𝑃𝐻
𝑖+𝑠

(𝐴
𝐻

1
𝑅
𝑖
𝐵
𝐻

1
+ 𝐴
𝐻

2
𝑅
𝑖
𝐵
𝐻

2

+ 𝐵
3
𝑅
𝐻

𝑖
𝐴
3
+ 𝐵
4
𝑅
𝑇

𝑖
𝐴
4
)

+ 𝑄
𝐻

𝑖+𝑠
(𝐶
𝐻

1
𝑅
𝑖
𝐷
𝐻

1
+ 𝐶
𝐻

2
𝑅
𝑖
𝐷
𝐻

2

+ 𝐷
3
𝑅
𝐻

𝑖
𝐶
3
+ 𝐷
4
𝑅
𝑇

𝑖
𝐶
4
)]}

= −

𝑅𝑖+𝑠


2

𝑃𝑖+𝑠


2

+
𝑄𝑖+𝑠



2

× Re {tr[𝑃𝐻
𝑖+𝑠

(𝑃
𝑖
−

𝑅𝑖


2

𝑅𝑖−1


2
𝑃
𝑖−1

)

+ 𝑄
𝐻

𝑖+𝑠
(𝑄
𝑖
−

𝑅𝑖


2

𝑅𝑖−1


2
𝑄
𝑖−1

)]}

=

𝑅𝑖+𝑠


2

𝑃𝑖+𝑠


2

+
𝑄𝑖+𝑠



2

𝑅𝑖


2

𝑅𝑖−1


2

× Re {tr (𝑃𝐻
𝑖+𝑠

𝑃
𝑖−1

+ 𝑄
𝐻

𝑖+𝑠
𝑄
𝑖−1

)} .

(29)

Repeating (28) and (29), one can easily obtain for certain 𝛼

and 𝛽

tr (𝑃𝐻
𝑖+𝑠+1

𝑃
𝑖
+ 𝑄
𝐻

𝑖+𝑠+1
𝑄
𝑖
) = 𝛼 [tr (𝑃𝐻

𝑠+1
𝑃
1
+ 𝑄
𝐻

𝑠+1
𝑄
1
)] ,

tr (𝑅𝐻
𝑖+𝑠+1

𝑅
𝑖
) = 𝛽 [tr (𝑅𝐻

𝑠+1
𝑅
1
)] .

(30)

Combining these two relations with (26) implies that (24)
holds for 𝑙 = 𝑠 + 1. From Steps 1 and 2 the conclusion holds
by the principle of induction.With the above two lemmas, we
have the following theorem.

Theorem 6 (see [32]). If the matrix equation (1) is consistent,
then a solution can be obtained within finite iteration steps by
using Algorithm 3 for any initial matrices 𝑉

1
,𝑊
1
.

4. Numerical Example

In this section, we present numerical example to illustrate the
application of our proposed methods.

Example 7. In this example we illustrate our theoretical
results of Algorithm 3 for solving the system of matrix
equation:

𝐴
1
𝑉𝐵
1
+ 𝐶
1
𝑊𝐷
1
+ 𝐴
2
𝑉𝐵
2
+ 𝐶
2
𝑊𝐷
2
+ 𝐴
3
𝑉
𝐻
𝐵
3

+ 𝐶
3
𝑊
𝐻
𝐷
3
+ 𝐴
4
𝑉
𝑇
𝐵
4
+ 𝐶
4
𝑊
𝑇
𝐷
4
= 𝐸.

(31)

Because of the influence of the error of calculation, the
residual 𝑅(𝑘) is usually unequal to zero in this process of
the iteration. We regard the matrix 𝑅(𝑘) as a zero matrix if
𝑅(𝑘) < 10

−10.
Given

𝐴
1
= [

2 + 3𝑖 −𝑖 1 + 𝑖

5 1 + 2𝑖 −3
] ,

𝐴
2
= [

2 + 3𝑖 −𝑖 1 + 𝑖

5 1 + 2𝑖 −3
] ,

𝐴
3
= [

0 2 − 𝑖 𝑖

−1 + 3𝑖 2 0
] , 𝐴

4
=[

0 1 − 3𝑖 1 + 𝑖

0 4 + 𝑖 −3𝑖
] ,

𝐶
1
= [

1 + 2𝑖 3 − 𝑖 4

−𝑖 2𝑖 −3
] , 𝐶

2
=[

3 + 2𝑖 0 1 + 𝑖

0 4𝑖 1 − 2𝑖
] ,

𝐶
3
= [

1 − 3𝑖 2𝑖 −3𝑖

1 2 + 3𝑖 4𝑖
] , 𝐶

4
=[

1 − 2𝑖 0 2

3 − 𝑖 1 + 𝑖 −1
] ,

𝐵
1
= [

[

4 + 𝑖 −𝑖

0 1 − 𝑖

4𝑖 2 + 2𝑖

]

]

, 𝐵
2
= [

[

0 𝑖

1 + 𝑖 0

−1 − 𝑖 3𝑖

]

]

,

𝐵
3
= [

[

0 1

−3𝑖 4 + 𝑖

5 1 + 2𝑖

]

]

, 𝐵
4
=[

[

3 + 𝑖 −1 − 𝑖

0 2 − 𝑖

−1 + 𝑖 2

]

]

,

𝐷
1
= [

[

0 0

1 − 3𝑖 −𝑖

2𝑖 −3𝑖

]

]

, 𝐷
2
= [

[

0 𝑖

1 + 𝑖 0

−1 − 𝑖 3𝑖

]

]

,

𝐷
3
= [

[

0 1

−3𝑖 4 + 𝑖

5 1 + 2𝑖

]

]

, 𝐷
4
= [

[

3𝑖 −2 + 𝑖

0 𝑖

−2𝑖 −4𝑖

]

]

,

𝐸 = [
42 + 55𝑖 115 + 25𝑖

−38 − 𝑖 132 + 44𝑖
] .

(32)

Taking 𝑉
1
= [
0 0

0 0

0 0

] and 𝑊
1
= [
0 0

0 0
] we apply Algorithm 3

to compute 𝑉
𝑘
,𝑊
𝑘
.

And iterating 42 steps we get

𝑉

=[

[

0.0126 + 1.8415𝑖 0.0827 + 0.6381𝑖 1.1221 − 0.9428𝑖

−0.6903 + 1.0185𝑖 1.8818 + 1.0203𝑖 0.9208 + 0.4569𝑖

0.5344 − 0.4909𝑖 0.9280 + 0.7169𝑖 0.4872 − 0.2734𝑖

]

]

,

𝑊

=[

[

0.4218 − 0.9710𝑖 0.1763 + 0.5183𝑖 1.1331 − 0.0432𝑖

0.6273 − 0.1216𝑖 −0.3902 + 0.4313𝑖 0.6240 + 0.9828𝑖

−0.7011 − 0.3418𝑖 0.3695 + 1.7627𝑖 −0.3032 + 0.7073𝑖

]

]

(33)

which satisfy the matrix equation:

𝐴
1
𝑉𝐵
1
+ 𝐶
1
𝑊𝐷
1
+ 𝐴
2
𝑉𝐵
2
+ 𝐶
2
𝑊𝐷
2
+ 𝐴
3
𝑉
𝐻
𝐵
3

+ 𝐶
3
𝑊
𝐻
𝐷
3
+ 𝐴
4
𝑉
𝑇
𝐵
4
+ 𝐶
4
𝑊
𝑇
𝐷
4
= 𝐸.

(34)
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Figure 1:The relation between the number of iterations and residual
for the example.

With the corresponding residual
𝑅42



=

𝐸 − 𝐴

1
𝑉
42
𝐵
1
− 𝐶
1
𝑊
42
𝐷
1
− 𝐴
2
𝑉
42
𝐵
2
− 𝐶
2
𝑊
42
𝐷
2

− 𝐴
3
𝑉
𝐻

42
𝐵
3
− 𝐶
3
𝑊
𝐻

42
𝐷
3
− 𝐴
4
𝑉
𝑇

42
𝐵
4
− 𝐶
4
𝑊
𝑇

42
𝐷
4



= 6.6115 × 10
−11

.

(35)

5. Conclusions

The above Figure 1 shows the convergence curve for the
residual function 𝑅(𝑘). In this paper, an iterative algorithm
constructed to solve a complex matrix equation with conju-
gate and transpose of two unknowns of the form: 𝐴

1
𝑉𝐵
1
+

𝐶
1
𝑊𝐷
1
+𝐴
2
𝑉𝐵
2
+𝐶
2
𝑊𝐷
2
+𝐴
3
𝑉
𝐻
𝐵
3
+𝐶
3
𝑊
𝐻
𝐷
3
+𝐴
4
𝑉
𝑇
𝐵
4
+

𝐶
4
𝑊
𝑇
𝐷
4

= 𝐸 is presented. We proved that the iterative
algorithms always converge to the solution for any initial
matrices. We stated and proved some lemmas and theorems
where the solutions are obtained. The proposed method
is illustrated by numerical example where the obtained
numerical results show that our technique is very neat and
efficient.
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