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Abstract In this paper, we will analyze a three-dimensional
supersymmetric Chern–Simons theory in SI M(1) super-
space formalism. The breaking of the Lorentz symmetry
down to the SI M(1) symmetry breaks half the supersymme-
try of the Lorentz invariant theory. So, the supersymmetry
of the Lorentz invariant Chern–Simons theory with N = 1
supersymmetry will break down to N = 1/2 supersym-
metry, when the Lorentz symmetry is broken down to the
SI M(1) symmetry. First, we will write the Chern–Simons
action using SI M(1)projections ofN = 1 superfields. How-
ever, as the SI M(1) transformations of these projections are
very complicated, we will define SI M(1) superfields which
transform simply under SI M(1) transformations. We will
then express the Chern–Simons action using these SI M(1)

superfields. Furthermore, we will analyze the gauge symme-
try of this Chern–Simons theory. This is the first time that a
Chern–Simons theory with N = 1/2 supersymmetry will be
constructed on a manifold without a boundary.

1 Introduction

Chern–Simons theories are topological field theories in
which the action is proportional to the integral of the Chern–
Simons 3-form [1,2]. Chern–Simons theories have important
condensed matter applications as they are related to the frac-
tional quantum Hall effect [3–6]. In the fractional quantum
Hall effect collective state in which electrons bind magnetic
flux lines to make new quasi-particles, the excitations have
a fractional elementary charge. The supersymmetric gener-
alization of the fractional quantum Hall effect has also been
analyzed [7,8]. The Chern–Simons theory has been used for
studying inflationary cosmology [9–12]. In fact, the Chern–
Simons theory has also been used to balance potential forces
in a generic mechanism of inflation [13]. In this model of
inflation the field motion presence of a large Chern–Simons
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coupling is a direct analog of the magnetic drift of a charged
particle in a strong magnetic field. Thus, this model of infla-
tion no special assumption is needed for the kinetic energy
and the potential energy terms. All that is required is to make
the magnetic drift slow enough to generate a long inflation-
ary era. This is accomplished by making the Chern–Simons
interaction sufficiently large.

Chern–Simons theories are essential for constructing the
action of multiple M2-branes. According to the AdS/CFT
correspondence, the superconformal field theory dual to the
11-dimensional supergravity on AdS4 × S7 has N = 8
supersymmetry. This is because AdS4 × S7 ∼ [SO(2, 3)/

SO(1, 3)] × [SO(8)/SO(7)] ⊂ OSp(8|4)/[SO(1, 3) ×
SO(7)], and this supergroup OSp(8|4) gets realized as
N = 8 supersymmetry of this dual superconformal field the-
ory. Thus, a requirement for the superconformal field theory
describing multiple M2-branes is that it should have N = 8
supersymmetry. Furthermore, this theory should have eight
gauged valued scalar fields and 16 physical fermions. This
exhausts all the on-shell degrees of freedom and hence the
gauge fields of this theory cannot contribute to any on-shell
degrees of freedom. In other words, the gauge sector of this
theory should be described by a topological field theory. It is
possible to demonstrate that a matter-Chern–Simons theory,
called the BLG theory, satisfies all these properties [14–18].
The gauge sector of this theory is described by a Chern–
Simons theory in which the gauge fields take values in a Lie
3-algebra rather than a conventional Lie algebra. However,
only one finite-dimensional example of such a Lie 3-algebra
exists, so, this theory only describes two M2-branes. It is pos-
sible to relax the requirement of manifest N = 8 supersym-
metry, and use the ABJM theory to study multiple M2-branes.
The gauge sector of the ABJM theory is described by two reg-
ular Chern–Simons theories with levels k and −k [19–23].
Even though it only has manifest N = 6 supersymmetry, its
supersymmetry can be enhanced to the fullN = 8 supersym-
metry by monopole operators for k = 1 or k = 2 [24,25].
In fact, the ABJM theory coincides with the BLG theory for
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the only known example of the Lie 3-algebra. Apart from
the constructing of the gauge sector of multiple M2-branes,
Chern–Simons theories have also been used for analyzing
open strings ending on a D-brane in the A-model topological
string theory [26]. The holomorphic Chern–Simons theory
is also used for analyzing the B-model in the string theory
[27].

It may be noted that M2-branes can be coupled to
background fields [28,29]. It is well known that a non-
commutative deformation of field theories occurs due to a
constant background NS−NS B-field [30–36]. It is also
possible to study D-branes in the presence of a RR back-
ground [37–41]. In fact, a gravity dual of such a field the-
ory has been constructed [42]. This gives rise to a non-
anticommutative deformation of the field theory, which in
turn breaks half of its supersymmetry. Four-dimensional the-
ories with N = 1/2 supersymmetry have been constructed
by using non-anticommutative deformations of theories with
N = 1 supersymmetry [43–48]. On the other hand, it is
not possible to construct a three-dimensional theory with
N =1/2 supersymmetry using a non-anticommutative defor-
mation of the superspace. This is because there are not
enough degrees of freedom in the three-dimensional N = 1
superspace to perform such a deformation. However, it is
possible to use non-anticommutativity to break the super-
symmetry of a three-dimensional theory from N = 2 super-
symmetry to N = 1 supersymmetry [49]. It may be noted
that the boundary effects can break the supersymmetry of
a three-dimensional theory with N = 1 supersymmetry to
N = 1/2 supersymmetry [50]. This happens as the super-
symmetric variation of a Lagrangian with N = 1 supersym-
metry is a total derivative. In presence of a boundary, this
total derivative gives rise to a boundary piece breaking the
supersymmetry. However, it is possible to add a boundary
term to the original Lagrangian such that its supersymmet-
ric variation exactly cancels the boundary piece generated
by the supersymmetric variation of the original Lagrangian.
This way half the supersymmetry of the original theory can
be preserved. In the absence of a boundary the only known
way to construct a three-dimensional theory with N = 1/2
supersymmetry is by breaking the Lorentz group down to
the SI M(1) group [51]. This is because the breaking of the
Lorentz symmetry to the SI M(1) symmetry breaks half the
supersymmetry of the theory [51]. In fact, half the super-
symmetry of a four-dimensional supersymmetric theory is
also broken, if the Lorentz symmetry is broken down to the
SI M(2) symmetry [52].

Various approaches to quantum gravity like discrete
spacetime [53], spacetime foam models [54], spin-networks
in loop quantum gravity [55], non-commutative geome-
try [56], and Horava–Lifshitz gravity [57], predict that the
Lorentz symmetry will be broken at the Planck scale. So,
there are strong theoretical motivations to study gauge the-

ories in a spacetime where the Lorentz symmetry is spon-
taneously broken. Thus, there are strong indications that
the Lorentz symmetry might be only a low energy effec-
tive symmetry. Even in string theory spontaneous breaking
of the Lorentz symmetry occurs due to an unstable pertur-
bative string vacuum. This is because in string field theory a
tachyon field has the wrong sign for its mass squared, and this
causes the perturbative string vacuum to become unstable. If
the vacuum expectation value of the tachyon field is infi-
nite, the theory becomes ill defined. However, if the vacuum
expectation value of the tachyon field is finite and negative,
the coefficient of the quadratic term for the massless vector
field also becomes nonzero and negative. This causes spon-
taneous breaking of the Lorentz symmetry to occur [58]. It
has been demonstrated that appropriate fluxes can also break
the Lorentz symmetry in M-theory [59]. It is also possible
to argue for spontaneous breaking of the Lorentz symme-
try in string theory using the low energy effective action.
Thus, it is possible to analyze a gravitational version of the
Higgs mechanism for the low energy effective field theory
action obtained from string theory. This gravitational version
of the Higgs mechanism causes spontaneous breaking of the
Lorentz symmetry to occur [60].

Motivated by the theoretical developments, which predict
the breaking of the Lorentz symmetry in the ultraviolet limit,
a model for spacetime geometry has been proposed which
only preserves a subgroups of the Lorentz group [61]. How-
ever, the symmetry it preserves is enough to explain the vari-
ous experimental bounds like the constancy of the velocity of
light. This theory is called the very special relativity (VSR).
In VSR, if the CP symmetry is also postulated to be a sym-
metry of the theory, then the full Lorentz group is recovered.
In this context two subgroups of the Lorentz group that have
been analyzed are called the SI M(2) and HOM(2) groups.
The Poincaré symmetry preserved on a non-commutative
Moyal plane with light-like non-commutativity also gives
rise to VSR [59]. It may be noted that abelian gauge symme-
try has been analyzed in the context of VSR [62]. This work
has also been recently generalized to include non-abelian
gauge theories [63]. Four-dimensional supersymmetric theo-
ries with the SI M(2) symmetry have also been analyzed [64].
A superspace construction of such supersymmetric theories
has also been performed [52], and the corresponding super-
graph rules for these theories have been derived [65]. The
Yang–Mills theory in SI M(2) superspace formalism have
also been studied [66]. This work has been recently used to
motivate the study of three-dimensional Yang–Mills-matter
theory in SI M(1) superspace formalism [51]. The construc-
tion of the three-dimensional Yang–Mills-matter theory in
SI M(1) superspace formalism was simplified by use of
covariant projections. However, it is not possible to analyze
the Chern–Simons theory by using covariant projections. So,
the construction of the Chern–Simons theory in SI M(1)
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superspace requires a highly non-trivial calculation, and this
is what we aim to do in this paper.

2 Notation

The spinor notation, the form of supersymmetry generators
as well as the definition of gauge covariant derivatives will
be the same as in [51]. The supersymmetry generator and the
super-derivative for a three-dimensional theory with N = 1
supersymmetry is

Qα = ∂α − (γ aθ)α∂a = ∂α + θβ∂βα,

Dα = ∂α + (γ aθ)α∂a = ∂α − θβ∂βα, (1)

such that the anticommutator of spinor derivatives is

{Dα, Dβ} = −2∂αβ. (2)

The gauge covariant derivatives can now be expressed as

∇α = Dα − i�α, ∇αβ = ∂αβ − i�αβ, (3)

and the connections are subject to gauge transformations,

�′
α = ei K�αe−i K + iei K (Dαe−i K ),

�′
αβ = ei K�αβe−i K + iei K (∂αβe−i K ), (4)

where K is a real scalar superfield. The (anti)commutators
of gauge covariant derivatives are given by

{∇α,∇β} = −2∇αβ, (5a)

[∇α,∇βγ ] = Cα(βWγ ), (5b)

[∇αβ,∇γ δ] = −1

2
Cαγ Fβδ − 1

2
CαδFβγ

−1

2
CβδFαγ − 1

2
Cβγ Fαδ, (5c)

where the field strengths are

�αβ = −1

2

(
D(α�β) − i{�α, �β}) , (6a)

Wα = − i

2
DβDα�β − 1

2
[�β, Dβ�α]

+ i

6
[�β, {�β, �α}], ∇αWα = 0, (6b)

Fαβ = 1

2
∇(αWβ). (6c)

We would also like to recall some well-known identities,
which we are going to use a lot in this paper. We have the
super-Jacobi identity

(−1)ãc̃[[a, b]±, c]± + (−1)ãb̃[[b, c]±, a]±
+(−1)b̃c̃[[c, a]±, b]± = 0, (7)

where [·, ·]± stands for the graded commutator and the tilde
denotes the Grassmann parity. Then we have the super-

Leibniz rule (from which rules for integration by parts follow)

D(ab) = (Da)b + (−1)D̃ãa(Db),

D[a, b]± = [Da, b]± + (−1)D̃ã[a,Db]±, (8)

where for D we may substitute the Grassmann odd deriva-
tives Dα , d+ or the Grassmann even derivatives ∂αβ . We are
also going to extensively use the cyclic property of the trace

tr(ab) = (−1)ãb̃tr(ba), (9)

and the identity

tr(a[b, c]±) = tr([a, b]±c). (10)

3 SIM(1) supersymmetry

In this section, we are going to summarize some facts about
the SI M(1) supersymmetry. The detailed explanation of the
SI M(1) supersymmetry can be found in [51]. Here, we are
only going to mention some basic facts.

The SI M(1) group is a subgroup of the Lorentz group
consisting of all transformations that preserve a given null-
direction, which means that a given null-vector is preserved
up to a rescaling. This null-vector will be denoted n and
we will assume that it is chosen such that it has only one
nonzero coordinate n++ = 1. When we work with spinors it
is useful to write the Lorentz transformations with the help of
the group SL(2,R), which is a double cover of SO+(2, 1).
The Lorentz transformation of a spinor is then given as a
multiplication by a matrix from SL(2,R). The reduction of
the Lorentz group to the SI M(1) subgroup corresponds to
the reduction of the group SL(2,R) to its two-dimensional
subgroup of triangular matrices. Thus, the SI M(1) transfor-
mation of a general spinor ψ is given as
(

ψ
′+

ψ
′−

)

=
(

e−A −B
0 eA

)(
ψ+
ψ−

)

⇔
(

ψ
′
+

ψ
′
−

)

=
(

eA 0
B e−A

) (
ψ+
ψ−

)
, (11)

where A, B ∈ R.
The space of spinors S is not irreducible when the sym-

metry is reduced to the SI M(1) subgroup. There are two
irreducible spaces that are important for understanding of the
SI M(1) supersymmetry. The first one is the space Sinvariant

of all spinors that satisfy the condition n/ψ = 0, the second
one is the quotient space Squotient = S/Sinvariant. The space
Sinvariant consists of spinors that have ψ+ coordinate equal
to zero; the space Squotient can be conveniently described
if we choose in each equivalence class a representative for
which the coordinate ψ− vanish. The SI M(1) transforma-
tions change spinors from these spaces as
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(
0

ψ ′−

)
= e−A

(
0

ψ−

)
,

[(
ψ ′+
0

)]
= eA

[(
ψ+
0

)]
. (12)

The SI M(1) supersymmetry is a reduction of the super-
Poincaré supersymmetry that we get if the Lorentz symmetry
is reduced to its SI M(1) subgroup. However, it is not enough
to reduce the spacetime symmetry, the amount of supersym-
metry has to be reduced as well. We keep only half of the
N = 1 supersymmetry when we make the reduction to the
SI M(1) supersymmetry. Thus, we can say that the SI M(1)

supersymmetry describes N = 1/2 supersymmetry. Since
the amount of supersymmetry is halved, the number of anti-
commuting coordinates that parametrize SI M(1) superspace
has to be halved as well. So, in the SI M(1) supersymmetry
we have only one supercharge S+, one anticommuting coor-
dinate θ− to which corresponds the spinor derivative d+. The
supersymmetry generator and the spinor derivative can be
written as

S+ = ∂+ + iθ−∂++, d+ = ∂+ − iθ−∂++, (13)

and they satisfy

{S+, S+} = 2∂++, {S+, d+} = 0,

{d+, d+} = −2∂++, ∂+θ− = −i. (14)

The anticommuting coordinate θ− transforms under the
SI M(1) group as a spinor from Sinvariant, the supersymme-
try generator and the spinor derivative transform under the
SI M(1) group as spinors from Squotient.

4 Chern–Simons theory with SIM(1) projections

In most application of the Chern–Simons theory, like the
BLG theory [14–18] and the ABJM theory [19–23], the
Chern–Simons theory is coupled to matter fields. We can
write the total action for a simple matter-Chern–Simons the-
ory as

S = SM + SCS, (15)

where SM is the action for matter fields, and SCS is the action
for the Chern–Simons theory. The action for the Chern–
Simons theory in N = 1 superspace can be written as

SCS = k

4π
tr

∫
d3xD2

(
�αWα − 1

6
{�α, �β}�αβ

)
, (16)

where k is the level of the Chern–Simons theory. The matter
fields coupled to gauge fields have already been studied in
SI M(1) superspace [51], and the analysis here will not be
very different. It is possible to break the Lorentz symmetry
down to the SI M(1) symmetry by adding a suitable mass
term [51]

Sm = −m2
∫

d3x∇+
(

φ† ∇+
∇++

φ

)
. (17)

It may be noted that the mass deformed BLG theory is thought
to be related to the theory of M5-branes [67]. In this paper,
we will not analyze the detail construction of the BLG theory
and the ABJM theory, but we will just assume that the Chern–
Simons theory is suitably coupled to a term that breaks the
Lorentz invariance to the SI M(1) invariance. We will thus
construct a Chern–Simons theory in SI M(1) superspace with
N = 1/2 supersymmetry and explicitly demonstrate that this
theory is gauge invariant.

So, we are going to write the Chern–Simons action in
SI M(1) superspace. We are going to do this in two steps.
In the first step, we are going to write the Chern–Simons
action using SI M(1) projections of �α , �αβ and SI M(1)

projections of field strengths Wα , Fαβ . In this case SI M(1)

projection means that we set the anticommuting coordinate
θ+, which was removed when we made the reduction to
SI M(1) superspace, to zero. In the second step, we are going
to replace these projections with SI M(1) superfields which
will have nicer transformation properties with respect to the
SI M(1) group. The gauge transformations will be very com-
plicated for these SI M(1) superfields.

Let us start with step one. We define SI M(1) projections

γ+ = �+|θ+=0, γ− = �−|θ+=0,

γ++ = �++|θ+=0, γ+− =�+−|θ+=0, γ−− =�−−|θ+=0.

(18)

of connections and SI M(1) projections

w+ = W+|θ+=0, w− = W−|θ+=0,

f++ =F++|θ+=0, f+− = F+−|θ+=0, f−− =F−−|θ+=0,

(19)

of field strengths.
In the SI M(1) formulation of the gauge theory we will

use the projections γ+, γ−, γ++, γ+−, and γ−−. We will see
that this set of projections contains all the information we
need. The only constraint that this set of projections has to
satisfy is

d+γ+ = −γ++ + i

2
{γ+, γ+}, (20)

which follows from {∇+,∇+} = −2∇++. The projections of
the field strengths (19) can be expressed as (anti)commutators
of ∇+|θ+=0, ∇++|θ+=0, ∇+−|θ+=0, and ∇−−|θ+=0

w+ = i[∇+,∇+−]|θ+=0 = d+γ+− − ∂+−γ+ − i[γ+, γ+−],
w− = i

2
[∇+,∇−−]|θ+=0

= 1

2
(d+γ−− − ∂−−γ+ − i[γ+, γ−−]) ,

f++ = −i[∇++,∇+−]|θ+=0 = −∂++γ+− + ∂+−γ++
+ i[γ++, γ+−],
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f+− = − i

2
[∇++,∇−−]|θ+=0

= 1

2
(−∂++γ−− + ∂−−γ++ + i[γ++, γ−−]) ,

f−− = −i[∇+−,∇−−]|θ+=0 = −∂+−γ−− + ∂−−γ+−
+i[γ+−, γ−−]. (21)

The projections of D− derivatives of the connections
D−�α|θ+=0 and D−�αβ |θ+=0 can be calculated as

(D−�+)|θ+=0 = −2γ+− − d+γ− + i{γ+, γ−},
(D−�−)|θ+=0 = −γ−− + i

2 {γ−, γ−},
(D−�++)|θ+=0 = ∂++γ− − 2w+ + i[γ−, γ++],
(D−�+−)|θ+=0 = ∂+−γ− − w− + i[γ−, γ+−],
(D−�−−)|θ+=0 = ∂−−γ− + i[γ−, γ−−]. (22)

The fact that we know projections of all connections and pro-
jections of their D− derivatives allows us to reconstruct the
original connections. A Lorentz superfield � can be written
with the help of its projection �|θ+=0 and projection of its
D− derivative (D−�)|θ+=0 as

� = (�|θ+=0) − iθ+
[
((D−�)|θ+=0) + iθ−∂+−(�|θ+=0)

]
.

(23)

The same thing can also be done in the case of connections.
The projection γ− does not appear in any of our results and
we do not need it to calculate any of field strengths.

The infinitesimal gauge transformations of the projections
(18) are quite simple:

δgγ+ = i[k, γ+] + d+k, δgγ− = i[k, γ−] + κ−,

δgγ++ = i[k, γ++] + ∂++k, δgγ+− = i[k, γ+−] + ∂+−k,
δgγ−− = i[k, γ−−] + ∂−−k, (24)

where k is the SI M(1) projection k = K |θ+=0 of a real
scalar superfield K and κ− = (D−K )|θ+=0 is a projection
of its derivative.

The SI M(1) projections of the field strengths (19) trans-
form covariantly, thus their infinitesimal gauge transforma-
tions are just commutators with k

δgw+ = i[k, w+], δgw− = i[k, w−],
δg f++ = i[k, f++], δg f+− = i[k, f+−],

δg f−− = i[k, f−−]. (25)

The infinitesimal SI M(1) transformations of superfields can
be split into two parts, δs = δ̂s + δ′

s . The first part δ̂s corre-
sponds to the change that can be attributed to the representa-
tion carried by the superfield, the second part δ′

s corresponds
to the change caused by the transformation of the superspace
coordinates. We will focus on the first part because the invari-
ance of the action with respect to the second part is ensured
by integration over superspace. The infinitesimal SI M(1)

transformations of the projections (18), (19) follow directly
from (11)

δ̂sγ+ = Aγ+, δ̂sγ− = −Aγ− + Bγ+,

δ̂sγ++ = 2Aγ++, δ̂sγ+− = Bγ++,

δ̂sγ−− = −2Aγ−− + 2Bγ+−,

δ̂sw+ = Aw+, δ̂sw− = −Aw− + Bw+,

δ̂s f++ = 2A f++, δ̂s f+− = B f++,

δ̂s f−− = −2A f−− + 2B f+−, (26)

and for derivatives we have

δsd+ = Ad+, δs∂++ = 2A∂++, δs∂+− = B∂++,

δs∂−− = −2A∂−− + 2B∂+−. (27)

4.1 Chern–Simons action with SI M(1) projections

In this section, we are going to write down the Chern–Simons
action (16) in SI M(1) superspace. This SI M(1) action
should depend only on SI M(1) superfields γα , γαβ , wα , fαβ ,
and their d+, ∂αβ derivatives. Moreover, it should be written
as a SI M(1) superspace integral of a SI M(1) Lagrangian.
Since we do not have the θ− coordinate in SI M(1) super-
space, there is no integration over θ− in the SI M(1) super-
space integral.

The first step to obtain the SI M(1) action is the reduction
of the integration measure. We expand the summation in the
action and write everything with lower indices

SCS = k

4π
tr

∫
d3xD+D−

(
−�+W− + �−W+

− i

6
{�+, �+}�−− + i

3
{�+, �−}�+−

− i

6
{�−, �−}�++

)
, (28)

and then we integrate over D−

SCS = k

4π
tr

∫
d3xD+

(
−(D−�+)W− + �+(D−W−)

+(D−�−)W+ − �−(D−W+)

− i

6
(D−{�+, �+})�−− − i

6
{�+, �+}(D−�−−)

+ i

3
(D−{�+, �−})�+− + i

3
{�+, �−}(D−�+−)

− i

6
(D−{�−, �−})�++ − i

6
{�−, �−}(D−�++)

)
.

(29)

The integration measure can now be written as d3xd+ and
the expression inside the integral can be expressed with
SI M(1) superfields. If there is no D− derivative acting on
the Lorentzian superfield, then we can replace it with its pro-
jection (18), (19). If the D− derivative acts on one of the
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connections �α , �αβ , then we use the substitutions (22). In
the case where the D− derivative acts on the field strength
Wα , we calculate the projection from (6c),

D−W+|θ+=0 = f+− + i{γ−, w+},
D−W−|θ+=0 = f−− + i{γ−, w−}. (30)

What remains is to calculate the projection of the D− deriva-
tive of the anticommutator {�α, �β}. In the case of {�+, �+}
we get

D−{�+, �+}|θ+=0 = −2[�+, D−�+]|θ+=0

= −2[γ+,−2γ+− − d+γ− + i{γ+, γ−}]
= 4[γ+, γ+−] − 2d+{γ+, γ−} − 2[γ++, γ−]

+i[{γ+, γ+}, γ−] + 2i[{γ+, γ−}, γ+]
= 4[γ+, γ+−] − 2d+{γ+, γ−} − 2[γ++, γ−], (31)

where we used

[γ+, d+γ−] = −d+{γ+, γ−} + [d+γ+, γ−]
= −d+{γ+, γ−} + [−γ++ + i

2 {γ+, γ+}, γ−],
(32)

and the super-Jacobi identity 2[{γ+, γ−}, γ+] + [{γ+, γ+},
γ−] = 0. In the case of {�+, �−} we get

D−{�+, �−}|θ+=0 = ([D−�+, �−] − [�+, D−�−]) |θ+=0

= [−2γ+− − d+γ− + i{γ+, γ−}, γ−]
−[γ+,−γ−− + i

2 {γ−, γ−}]
= 2[γ−, γ+−] + [γ+, γ−−] − 1

2d+{γ−, γ−}, (33)

where we used the super-Jacobi identity 2[{γ+, γ−}, γ+] +
[{γ+, γ+}, γ−] = 0 and the identity [d+γ−, γ−] = 1

2
d+{γ−, γ−}. Finally, in the case of {�−, �−}we get

D−{�−, �−}|θ+=0 = −2[�−, D−�−]|θ+=0

= −2[γ−,−γ−− + i
2 {γ−, γ−}] = 2[γ−, γ−−]. (34)

When we substitute all the above expressions in (29), we
obtain

SCS = k

4π
tr

∫
d3xd+

(
2γ+−w− + (d+γ−)w−

− i{γ+, γ−}w− + γ+ f−− + iγ+{γ−, w−}
− γ−−w+ + i

2 {γ−, γ−}w+ − γ− f+− − iγ−{γ−, w+}
− 2i

3 [γ+, γ+−]γ−− − i
3 [γ−, γ++]γ−−

+ i
3 (d+{γ+, γ−})γ−− − i

6 {γ+, γ+}(∂−−γ−)

+ 1
6 {γ+, γ+}[γ−, γ−−] + 2i

3 [γ−, γ+−]γ+−
+ i

3 [γ+, γ−−]γ+− − i
6 (d+{γ−, γ−})γ+−

+ i
3 {γ+, γ−}(∂+−γ−) − i

3 {γ+, γ−}w−
− 1

3 {γ+, γ−}[γ−, γ+−] − i
3 [γ−, γ−−]γ++

− i
6 {γ−, γ−}(∂++γ−) + i

3 {γ−, γ−}w+
+ 1

6 {γ−, γ−}[γ−, γ++]
)
. (35)

This result satisfies all the requirements that we expect from
the SI M(1) action. It is expressed as a SI M(1) superspace
integral and it is expressed with the help of SI M(1) super-
fields and their derivatives. This action can be further sim-
plified if we use the fact that all surface terms vanish. We are
going to need the surface terms that are total d+ derivatives

tr
∫

d3xd+
(
d+(γ−w−)

)

= tr
∫

d3xd+
(
(d+γ−)w− − γ− f+− − iγ−{γ+, w−}),

tr
∫

d3xd+
(
d+({γ+, γ−}γ−−)

)

= tr
∫

d3xd+
(
(d+{γ+, γ−})γ−−

+{γ+, γ−}(∂−−γ+) + 2{γ+, γ−}w−
+i{γ+, γ−}[γ+, γ−−]),

tr
∫

d3xd+
(
d+({γ−, γ−}γ+−)

)

= tr
∫

d3xd+
(
(d+{γ−, γ−})γ+−

+{γ−, γ−}(∂+−γ+) + {γ−, γ−}w+
+i{γ−, γ−}[γ+, γ+−]), (36)

and also some surface terms that are total spacetime deriva-
tives

tr
∫

d3xd+
[
∂−−({γ+, γ+}γ−)

]

= tr
∫

d3xd+
[
2{γ+, γ−}(∂−−γ+) + {γ+, γ+}(∂−−γ−)

]
,

tr
∫

d3xd+
[
∂+−({γ−, γ−}γ+)

]

= tr
∫

d3xd+
[
2{γ+, γ−}(∂+−γ−) + {γ−, γ−}(∂+−γ+)

]
,

tr
∫

d3xd+
[ 1

3∂++({γ−, γ−}γ−)
]

= tr
∫

d3xd+
[{γ−, γ−}(∂++γ−)

]
. (37)

If appropriate multiples of these surface terms are added to
the action (35), all terms that contain derivatives are elimi-
nated. This gives us the action

SCS = k

4π
tr

∫
d3xd+

(
2γ+−w− + γ+ f−− − γ−−w+

− iγ+[γ+−, γ−−]
+ 1

3 {γ+, γ−}[γ+, γ−−] + 1
6 {γ+, γ+}[γ−, γ−−]

− 1
6 {γ−, γ−}[γ+, γ+−] − 1

3 {γ+, γ−}[γ−, γ+−]
+ 1

6 {γ−, γ−}[γ−, γ++]
)
, (38)
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which could also be written as

SCS = k

4π
tr

∫
d3xd+

(
2γ+−w− + γ+ f−− − γ−−w+

− iγ+[γ+−, γ−−]
+ 1

3 [{γ+, γ−}, γ+]γ−− + 1
6 [{γ+, γ+}, γ−]γ−−

− 1
6 [{γ−, γ−}, γ+]γ+− − 1

3 [{γ+, γ−}, γ−]γ+−
+ 1

6 [{γ−, γ−}, γ−]γ++
)
. (39)

The terms that contain two (anti)commutators vanish because
of the super-Jacobi identities

2[{γ+, γ−}, γ+] + [{γ+, γ+}, γ−] = 0,

2[{γ+, γ−}, γ−] + [{γ−, γ−}, γ+] = 0 (40)

and the identity [{γ−, γ−}, γ−] = 0. The final expression for
the Chern–Simons action in SI M(1) superspace is

SCS = k

4π
tr

∫
d3xd+(2γ+−w− + γ+ f−− − γ−−w+

− iγ+[γ+−, γ−−]). (41)

4.2 Gauge invariance of the action

In this section, we are going to verify the gauge invariance
of the SI M(1) superspace Chern–Simons action (41) that
we have derived in the previous section. According to (24),
(25), the change in the Chern–Simons action caused by an
infinitesimal gauge transformation is

δgSCS = k

4π
tr

∫
d3xd+

(
2 (i[k, γ+−] + ∂+−k) w−

+ 2γ+− (i[k, w−]) + (i[k, γ+] + d+k) f−−
+ γ+ (i[k, f−−]) − (i[k, γ−−] + ∂−−k) w+
− γ−− (i[k, w+]) − i (i[k, γ+] + d+k) [γ+−, γ−−]
− iγ+

[
i[k, γ+−] + ∂+−k, γ−−

]

− iγ+
[
γ+−, i[k, γ−−] + ∂−−k

] )
. (42)

As expected, all terms that contain commutator i[k, ·] cancel
due to the cyclic property of the trace and the super-Jacobi
identity, so we are left with

δgSCS = k

4π
tr

∫
d3xd+(2(∂+−k)w− + (d+k) f−−

− (∂−−k)w+ − i(d+k)[γ+−, γ−−]
− iγ+[∂+−k, γ−−] − iγ+[γ+−, ∂−−k]). (43)

Now, we integrate by parts to move the derivatives away from
the superfield k

δgSCS = k

4π
tr

∫
d3xd+[k(−2∂+−w− − d+ f−− + ∂−−w+

+ id+[γ+−, γ−−] − i∂+−[γ+, γ−−]
+ i∂−−[γ+, γ+−])]
+ k

4π
tr

∫
d3xd+[d+(k f−− − ik[γ+−, γ−−])

+ ∂+−(2kw− + ik[γ+, γ−−])
+ ∂−−(−kw+ − ik[γ+, γ+−])]. (44)

The above expression consists of two parts, the bulk part and
the surface part. When we substitute for the field strengths
(21) and their derivatives

∂−−w+ = ∂−−d+γ+− − ∂−−∂+−γ+ − i∂−−[γ+, γ+−],
∂+−w− = 1

2
(∂+−d+γ−− − ∂+−∂−−γ+ − i∂+−[γ+, γ−−]) ,

d+ f−− = −∂+−d+γ−− + ∂−−d+γ+− + id+[γ+−, γ−−],
(45)

then the terms in the bulk part cancel one another and only
the surface term remains,

δgSCS = k

4π
tr

∫
d3xd+

[
d+ (−k(∂+−γ−−) + k(∂−−γ+−))

+∂+− (k(d+γ−−) − k(∂−−γ+))

+∂−− (−k(d+γ+−) + k(∂+−γ+))
]
. (46)

This surface term vanishes because we assume that we are
working on a manifold without a boundary, so our action is
gauge invariant.

4.3 SI M(1) invariance of the action

In the Lorentz invariant setting, the Lorentz invariance is
manifest. It follows from the fact that upper indices are
summed with lower indices. In the SI M(1) setting, the
invariance under SI M(1) transformations is not manifest,
its verification is a non-trivial task. In this section, we are
going to verify the SI M(1) invariance of the Chern–Simons
action (41).

According to (26) and (27), the infinitesimal change of the
action is

δs SCS = k

4π
tr

∫
d3xd+(A(2γ+−w− + γ+ f−− − γ−−w+

− iγ+[γ+−, γ−−]) + 2Bγ++w− − 2Aγ+−w−
+ 2Bγ+−w+ + Aγ+ f−− − 2Aγ+ f−−
+ 2Bγ+ f+− + 2Aγ−−w+ − 2Bγ+−w+
− Aγ−−w+ − i Aγ+[γ+−, γ−−]
− i Bγ+[γ++, γ−−] + 2i Aγ+[γ+−, γ−−]
− 2i Bγ+[γ+−, γ+−]). (47)

The terms with A cancel one another because each term
(including d+ from the integration measure) contains the
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same number of plus and minus indices, so, for each +A
term there is one −A term. Thus, we are left with

δs SCS = B
k

4π
tr

∫
d3xd+(2γ++w− + 2γ+ f+−

− iγ+[γ++, γ−−]). (48)

After we substitute for the field strengths (21), we obtain

δs SCS = B
k

4π
tr

∫
d3xd+(γ++(d+γ−−)

− γ++(∂−−γ+) − γ+(∂++γ−−)

+ γ+(∂−−γ++) + i[γ+, γ++]γ−−). (49)

We will show that the above expression can be written as a
surface term. In order to do that we will need the following
total d+ derivatives:

tr[d+(γ+(d+γ−−))] = tr[(d+γ+)(d+γ−−) − γ+(d+d+γ−−)]
= tr[−γ++(d+γ−−) + i

2 {γ+, γ+}(d+γ−−)

+ γ+(∂++γ−−)], (50)

and

tr[d+(γ+(∂−−γ+))] = tr[(d+γ+)(∂−−γ+) − γ+(∂−−d+γ+)]
= tr[−γ++(∂−−γ+) + i

2 {γ+, γ+}(∂−−γ+) + γ+(∂−−γ++)

− i
2γ+(∂−−{γ+, γ+})]

= tr[−γ++(∂−−γ+) + γ+(∂−−γ++)

− i
6∂−−(γ+{γ+, γ+})]. (51)

Here we used (20), the identity d+d+ = −∂++ and

tr[∂−−(γ+{γ+, γ+})] = 3tr[(∂−−γ+){γ+, γ+}]
= 3

2
tr[γ+(∂−−{γ+, γ+})]. (52)

Now, the infinitesimal change of the action (49) can be writ-
ten as

δs SCS = B
k

4π
tr

∫
d3xd+(−d+(γ+(d+γ−−))

+ d+(γ+(∂−−γ+)) + i

2
{γ+, γ+}(d+γ−−)

+ i

6
∂−−(γ+{γ+, γ+}) + i

2
(d+{γ+, γ+})γ−−),

(53)

where we also used the identity

d+{γ+, γ+} = −2[γ+, d+γ+] = 2[γ+, γ++]
− i[γ+, {γ+, γ+}] = 2[γ+, γ++]. (54)

The above expression for δs SCS can be written as a sum of a
total ∂−− derivative and a total d+ derivative

δs SCS = B
k

4π
tr

∫
d3xd+

[
∂−−

(
i

6
γ+{γ+, γ+}

)

+ d+ (−γ+(d+γ−−) + γ+(∂−−γ+)

+ i

2
{γ+, γ+}γ−−

)]
. (55)

This term vanishes since we assume that we are working on
a manifold without a boundary, so the Chern–Simons action
(41) is SI M(1) invariant.

5 Chern–Simons theory with redefined superfields

The superfields that have been used to write down the action
(41) have non-trivial SI M(1) transformation properties. The
matrix that appear in (11) is not diagonal, so the SI M(1)

transformations mix the superfields with minus indices with
those that have plus indices. However, it is possible to rede-
fine SI M(1) superfields such that they do not suffer from
this deficiency [51]. The SI M(1) transformation properties
of these redefined superfields are simpler because they do
not carry representation of S, they carry representation of
Sinvariant and Squotient instead.

The idea behind these redefined SI M(1) superfields could
be most easily understood on an example of a spinor super-
field. Let us consider a spinor superfield � and its projections

ψ+ = �+|θ+=0, ψ− = �−|θ+=0, (56)

which transform under the infinitesimal SI M(1) transforma-
tions as

δ̂sψ+ = Aψ+, δ̂sψ− = −Aψ+ + Bψ+. (57)

The transformation rule for the projection ψ+ is a conse-
quence of the fact that the projection ψ+ carries the same
representation that we have on the space Sinvariant (12). The
SI M(1) transformation of the ψ− projection mixes it with
ψ+ projection. Instead of the SI M(1) superfield ψ− we are
going to use the redefined SI M(1) superfield ψ× that carries
the same representation as we have on Squotient (12). For this
purpose we define the operator

∂×α = ∂+α

∂++
, (58)

or in components

∂×+ = 1, ∂×− = ∂+−
∂++

. (59)

The superfield ψ× is defined with the help of this operator as

ψ× = i∂×α�α|θ+=0 = ψ− − ∂×−ψ+. (60)

123



Eur. Phys. J. C (2015) 75 :592 Page 9 of 14 592

The infinitesimal SI M(1) transformation of this superfield,
does not mix it with ψ+,

δ̂sψ× = −Aψ×. (61)

The SI M(1) superfields that we are going to use in this sec-
tion will be defined in exactly the same way. Although the
above example used a superfield that carries only one index,
the procedure that has been described can easily be general-
ized for superfields that carry more than one index. If there
are multiple indices, we just need to repeat the above proce-
dure for each index.

Instead of SI M(1) superfields γ+, γ−, γ++, γ+−, γ−−
that has been used to describe the Chern–Simons in section
4, we are going to use the superfields γ+, γ++, which were
defined in (18) and

γ× = i(∂×α�α)|θ+=0 = γ− − ∂×−γ+,

γ×+ = i(∂×α�α+)|θ+=0 = γ+− − ∂×−γ++,

γ×× = −(∂×α∂×β�αβ)|θ+=0 = γ−− − 2∂×−γ+− + ∂2×−γ++.

(62)

The infinitesimal gauge transformations of these superfields
are more complicated than the ones for γ−, γ+−, γ−−,

δgγ× = i[k, γ×] − ∂×α[k, ∂×αγ+] + κ×,

δgγ×+ = i[k, γ×+] − ∂×α[k, ∂×αγ++],
δgγ×× = i[k, γ××] − 2∂×α[k, ∂×αγ×+]

− i∂×α∂×β [k, ∂×α∂×βγ++] + �
∂++ k, (63)

where we use the redefined SI M(1) superfield

κ× = i
(
∂×αDαK

) |θ+=0 = κ− − ∂×−d+k, (64)

instead of κ−. The SI M(1) transformations of redefined
superfields are very simple

δ̂sγ+ = Aγ+, δ̂sγ++ = 2Aγ++, δ̂sγ×+ = 0,

δ̂sγ×× = −2Aγ××. (65)

In fact, we can treat × as a new type of index. Each of the
indices +, −, and × have a specific transformation law (57),
(61) attached to it. The action of the SI M(1) group on a
SI M(1) superfield is fully determined by the types of indices
it carries.

5.1 Chern–Simons action with redefined superfields

In this section, we are going to rewrite the action (41) such
that it is expressed with the help of redefined SI M(1) super-
fields that have been introduced in the previous section.

Before we start our calculations, we would like to men-
tion few properties of the operator ∂×− that we are going to
need. There are two identities that follow directly from the
definition of this operator:

∂−− = �
∂++

+ ∂++∂2×−, ∂+− = ∂++∂×−, (66)

and there is a rule for integration by parts
∫

d3x ((∂×− f )g) =
∫

d3x ( f (∂×−g)) . (67)

In order to eliminate γ+−, γ−− from the action (41), we
have to make the substitutions

γ+− = γ×+ + ∂×−γ++,

γ−− = γ×× + 2∂×−γ×+ + ∂2×−γ++, (68)

which are just inverse relations to (62). We also have to sub-
stitute for the field strengths w+ and w− (21)

w+ = d+γ×+ − i[γ+, γ×+] + ∂×α[γ+, ∂×αγ++], (69)

where

∂×α[γ+, ∂×αγ++]= i∂×−[γ+, γ++]−i[γ+, ∂×−γ++] (70)

and

w− = 1
2d+γ×× − i

2 [γ+, γ××] − 1
2

�
∂++ γ+ + ∂×−d+γ×+

− i[γ+, ∂×−γ×+] + i
2∂2×−[γ+, γ++]

− i
2 [γ+, ∂2×−γ++]. (71)

The field strength f−− is given by

f−− = �
∂++ γ×+ + i[γ×+, γ××] − [∂×αγ×+, ∂×αγ×+]
− ∂++∂×−γ×× − ∂++∂2×−γ×+
+ �

∂++ ∂×−γ++ + i[γ×+, ∂2×−γ++]
+ i[∂×−γ++, γ××] + 2i[∂×−γ++, ∂×−γ×+]
+ i[∂×−γ++, ∂2×−γ++], (72)

where

[∂×αγ×+, ∂×αγ×+] = −2i[γ×+, ∂×−γ×+]. (73)

Now, we are ready to evaluate each of the four terms that
appear in the action (41). The first term is

2γ+−w− = γ×+(d+γ××)
A1

−iγ×+[γ+, γ××]
A2

− γ×+
(

�
∂++ γ+

)

A3

+2γ×+(∂×−d+γ×+)
A4

− 2iγ×+[γ+, ∂×−γ×+]
A5

+iγ×+(∂2×−[γ+, γ++])
A6

− iγ×+[γ+, ∂2×−γ++]
A7

+(∂×−γ++)(d+γ××)
A8

− i(∂×−γ++)[γ+, γ××]
A9

−(∂×−γ++)
(

�
∂++ γ+

)

A10

+ 2(∂×−γ++)(∂×−d+γ×+)
A11
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− 2i(∂×−γ++)[γ+, ∂×−γ×+]
A12

+i(∂×−γ++)(∂2×−[γ+, γ++])
A13

− i(∂×−γ++)[γ+, ∂2×−γ++]
A14

, (74)

the second term is

2γ+ f−− = γ+
(

�
∂++ γ×+

)

B1

+iγ+[γ×+, γ××]
B2

− γ+[∂×αγ×+, ∂×αγ×+]
B3

−γ+(∂++∂×−γ××)
B4

− γ+(∂++∂2×−γ×+)
B5

+ γ+
(

�
∂++ ∂×−γ++

)

B6

+ iγ+[γ×+, ∂2×−γ++]
B7

+iγ+[∂×−γ++, γ××]
B8

+ 2iγ+[∂×−γ++, ∂×−γ×+]
B9

+ iγ+[∂×−γ++, ∂2×−γ++]
B10

, (75)

the third term is

−γ−−w+ = −γ××(d+γ×+)
C1

+iγ××[γ+, γ×+]
C2

− γ××(∂×α[γ+, ∂×αγ++])
C3

− 2(∂×−γ×+)(d+γ×+)
C4

+2i(∂×−γ×+)[γ+, γ×+]
C5

+ 2i(∂×−γ×+)[γ+, ∂×−γ++]
C6

− 2i(∂×−γ×+)(∂×−[γ+, γ++])
C7

−(∂2×−γ++)(d+γ×+)
C8

+ i(∂2×−γ++)[γ+, γ×+]
C9

+ i(∂2×−γ++)[γ+, ∂×−γ++]
C10

−i(∂2×−γ++)(∂×−[γ+, γ++])
C11

,

(76)

and finally the fourth term is

−iγ+[γ+−, γ−−] = −iγ+[γ×+, γ××]
D1

− 2iγ+[γ×+, ∂×−γ×+]
D2

− iγ+[γ×+, ∂2×−γ++]
D3

− iγ+[∂×−γ++, γ××]
D4

−2iγ+[∂×−γ++, ∂×−γ×+]
D5

− iγ+[∂×−γ++, ∂2×−γ++]
D6

. (77)

We placed a designation consisting of an uppercase letter
followed by a number under each term on the right side so
we can easily identify them in later calculations. We are going
to use the equivalence sign to denote that expressions differ
by something that has trace equal to a surface term,

f ∼ g ⇔ tr
∫

d3xd+ f = tr
∫

d3xd+g. (78)

The sum of the above terms constitutes the integrand of the
Chern–Simons action. We are going to split this sum into

smaller pieces, such that each piece is separately SI M(1)

invariant. The terms

−γ×+
(

�
∂++ γ+

)

A3

+γ+
(

�
∂++ γ×+

)

B1

(79)

will be kept as they are, the terms

2γ×+(∂×−d+γ×+)
A4

−2(∂×−γ×+)(d+γ×+)
C4

∼ 0, (80)

and we also have

−iγ×+[γ+, γ××]
A2

+iγ+[γ×+, γ××]
B2

+iγ××[γ+, γ×+]
C2

−iγ+[γ×+, γ××]
D1

∼ 2iγ+[γ×+, γ××],
γ×+(d+γ××)

A1
−γ××(d+γ×+)

C1
∼ 2γ×+(d+γ××). (81)

Other expressions that are easy to handle are

−2iγ×+[γ+, ∂×−γ×+]
A5

−γ+[∂×αγ×+, ∂×αγ×+]
B3

+ 2i(∂×−γ×+)[γ+, γ×+]
C5

− 2iγ+[γ×+, ∂×−γ×+]
D2

∼ 4iγ+[γ×+, ∂×−γ×+]
∼ −2γ+[∂×αγ×+, ∂×αγ×+] (82)

and

(∂×−γ++)(d+γ××)
A8

−i(∂×−γ++)[γ+, γ××]
A9

− γ+(∂++∂×−γ××)
B4

+ iγ+[∂×−γ++, γ××]
B8

−γ××(∂×α[γ+, ∂×αγ++])
C3

− iγ+[∂×−γ++, γ××]
D4

∼ 2iγ+[∂×−γ++, γ××] − iγ+[γ++, ∂×−γ××]
+ (−d+γ++ + ∂++γ+)(∂×−γ××)

∼ 2iγ+[∂×−γ++, γ××] − 2iγ+[γ++, ∂×−γ××]
∼ 2γ+[∂×αγ++, ∂×αγ××], (83)

where we used the identity (24), (54),

d+γ++ = ∂++γ+ + i[γ+, γ++]. (84)

We also have

iγ×+(∂2×−[γ+, γ++])
A6

−iγ×+[γ+, ∂2×−γ++]
A7

+ 2(∂×−γ++)(∂×−d+γ×+)
A11

− 2i(∂×−γ++)[γ+, ∂×−γ×+]
A12

−γ+(∂++∂2×−γ×+)
B5

+ iγ+[γ×+, ∂2×−γ++]
B7

+ 2iγ+[∂×−γ++, ∂×−γ×+]
B9

+2i(∂×−γ×+)[γ+, ∂×−γ++]
C6

− 2i(∂×−γ×+)(∂×−[γ+, γ++])
C7

−(∂2×−γ++)(d+γ×+)
C8
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+ i(∂2×−γ++)[γ+, γ×+]
C9

−iγ+[γ×+, ∂2×−γ++]
D3

− 2iγ+[∂×−γ++, ∂×−γ×+]
D5

∼ −2iγ+[∂2×−γ++, γ×+] + 4iγ+[∂×−γ++, ∂×−γ×+]
− 2iγ+[γ++, ∂2×−γ×+]

∼ 2iγ+[∂×α∂×βγ++, ∂×α∂×βγ×+], (85)

where we used (84) to show that

2(∂×−γ++)(∂×−d+γ×+)
A11

−γ+(∂++∂2×−γ×+)
B5

− (∂2×−γ++)(d+γ×+)
C8

∼ (−d+γ++ + ∂++γ+)(∂2×−γ×+)

∼ −iγ+[γ++, ∂2×−γ×+]. (86)

The terms that we have not used yet could be arranged into
the expressions

−(∂×−γ++)
(

�
∂++ γ+

)

A10

+γ+
(

�
∂++ ∂×−γ++

)

B6

∼ 2γ+
(

�
∂++ ∂×−γ++

)
(87)

and

i(∂×−γ++)(∂2×−[γ+, γ++])
A13

−i(∂×−γ++)[γ+, ∂2×−γ++]
A14

+ iγ+[∂×−γ++, ∂2×−γ++]
B10

+i(∂2×−γ++)[γ+, ∂×−γ++]
C10

− i(∂2×−γ++)(∂×−[γ+, γ++])
C11

− iγ+[∂×−γ++, ∂2×−γ++]
D6

∼ 2iγ+[∂×−γ++, ∂2×−γ++]. (88)

These two expressions do not lead to contributions to the
action that are separately SI M(1) invariant, however, we can
combine them into a SI M(1) invariant expression. In (87),
we use (20) to replace γ++ with an expression that contains
only γ+,

2γ+
(

�
∂++ ∂×−γ++

)
= −2γ+

(
�

∂++ ∂×−d+γ+
)

+ iγ+
(

�
∂++ ∂×−{γ+, γ+}

)
. (89)

Next we will show that the first term on the right hand side is
a surface term. We integrate by parts to move all derivatives
and the propagator such that they act on the first term, and
then we use the cyclic property of the trace to show that

γ+
(

�
∂++ ∂×−γ++

)
∼ −

(
�

∂++ ∂×−d+γ+
)

γ+

∼ −γ+
(

�
∂++ ∂×−d+γ+

)
∼ 0. (90)

In the second term on the right hand side of (89) we are going
to use the identity (66) to express �

∂++ with ∂−−, ∂×−, and
∂++, then we are going to use integration by parts to move

some derivatives and propagators. Finally, we are going to
use the identity (66) again, this time to get �

∂++ back into our
expression,

iγ+
(

�
∂++ ∂×−{γ+, γ+}

)
∼ i(∂×−γ+)(∂−−{γ+, γ+}

− ∂2×−∂++{γ+, γ+})
∼ 2i(∂×−γ+){∂−−γ+, γ+} − 2i(∂3×−γ+){∂++γ+, γ+}
∼ 2i(∂×−γ+)

{
�

∂++ γ+, γ+
}
+2i(∂×−γ+){∂++∂2×−γ+, γ+}

− 2i(∂3×−γ+){∂++γ+, γ+}. (91)

Now we take two thirds of the second term on the right hand
side of (89) and two thirds of the expression that we obtained
in (91)

2γ+
(

�
∂++ ∂×−γ++

)
∼ − 2i

3

(
�

∂++ γ+
)

(∂×−{γ+, γ+})
+ 2i

3

(
�

∂++ γ+
)

{γ+, ∂×−γ+}
+ 2i

3 (∂×−γ+){∂++∂2×−γ+, γ+}
− 2i

3 (∂3×−γ+){∂++γ+, γ+}. (92)

The first two terms can be written as

− 2
3

(
�

∂++ γ+
)

(∂×α{γ+, ∂×αγ+}) (93)

which, when traced and integrated over SI M(1) superspace,
gives SI M(1) invariant contribution to the action. The third
term in (92) is a surface term. In order to show that we use
the identity

0 ∼ ∂++((∂×−γ+){∂×−γ+, ∂×−γ+})
∼ 3(∂++∂×−γ+){∂×−γ+, ∂×−γ+}, (94)

and the identity

0 ∼ ∂+−(γ+{∂×−γ+, ∂×−γ+})
∼ (∂++∂×−γ+){∂×−γ+, ∂×−γ+}

+ 2(∂++∂2×−γ+){γ+, ∂×−γ+}. (95)

To prove this identity, we used the second identity from (66).
The first term in (95) vanishes according to identity (94), so
the second term, which is the same as the third term in (92),
must vanish,

(∂++∂2×−γ+){γ+, ∂×−γ+} ∼ 0. (96)

As for the last term in (92), we have the identity

0 ∼ d+((d+{γ+, γ+})(∂3×−γ+))

= −(∂++{γ+, γ+})(∂3×−γ+) − (d+{γ+, γ+})(∂3×−d+γ+)

= −2{∂++γ+, γ+}(∂3×−γ+) + 2[γ+, γ++](∂3×−γ++)

− i
2 (d+{γ+, γ+})(∂3×−{γ+, γ+}), (97)

where we used (20) and (54). The last term (d+{γ+, γ+})
(∂3×−{γ+, γ+}) in (97) is a surface term. In order to prove
it, we use the cyclic property of the trace to exchange

123



592 Page 12 of 14 Eur. Phys. J. C (2015) 75 :592

d+{γ+, γ+} with ∂3×−{γ+, γ+}, integrate by parts to move
d+ from the first anticommutator to the second anticommu-
tator and to move ∂3×− from the second anticommutator to
the first anticommutator. The result that we obtain in this
way is the same as the original expression, but with opposite
sign, hence it must be a surface term. Thus (97) gives us the
identity

(∂3×−γ+){∂++γ+, γ+} ∼ γ+[γ++, ∂3×−γ++]. (98)

Now, with the help of this identity, we combine the last term
in (92) with (88),

2iγ+[∂×−γ++, ∂2×−γ++] − 2i
3 γ+[γ++, ∂3×−γ++]

= − 1
3γ+[∂×α∂×β∂×γ γ++, ∂×α∂×β∂×γ γ++], (99)

which also leads to a SI M(1) invariant contribution to the
action. This completes our work because the action (100) is
a sum of (79), (80), (81), (82), (83), (85), (93), and (99). The
Chern–Simons action can now be written as

SCS = k

4π
tr

∫
d3xd+

(
− 2γ×× (d+γ×+) −

(
�

∂++ γ+
)

γ×+

+ γ+
(

�
∂++ γ×+

)
− 2

3

(
�

∂++ γ+
) (

∂×α {γ+, ∂×αγ+})

+ 2iγ+
[
γ×+, γ××

] − 2γ+
[
∂×αγ×+, ∂×αγ×+

]

+ 2γ+
[
∂×αγ++, ∂×αγ××

]

+ 2iγ+
[
∂×α∂×βγ++, ∂×α∂×βγ×+

]

− 1

3
γ+

[
∂×α∂×β∂×γ γ++, ∂×α∂×β∂×γ γ++

]
)

. (100)

Thus, we have been able to write the Chern–Simons action
explicitly using redefined SI M(1) superfields. As we have
expressed the Chern–Simons theory using redefined SI M(1)

superfields, it is manifestly SI M(1) invariant.

6 Conclusion

In this paper, we analyzed the Chern–Simons theory in
SI M(1) superspace. We started with the Lorentz invari-
ant Chern–Simons theory with N = 1 supersymmetry. We
broke the Lorentz symmetry down to the SI M(1) symme-
try, and this in turn broke half the supersymmetry of the
original theory. Thus, we obtained a Chern–Simons theory
with N = 1/2 supersymmetry. This was the first time that
a Chern–Simons theory with N = 1/2 supersymmetry has
been constructed on a manifold without a boundary. Theo-
ries with N = 1/2 supersymmetry are usually constructed
by imposing non-anticommutativity. A non-anticommutative
deformation of a four-dimensional theory withN = 1 super-
symmetry breaks down half of its supersymmetry, and we get
a theory with N = 1/2 supersymmetry. However, there are
not enough degrees of freedom in three dimensions to per-
form such a deformation. Thus, it is not possible to construct

a Chern–Simons theory with N = 1/2 supersymmetry by
imposing non-anticommutativity. It may be noted that we ini-
tially expressed the Chern–Simons theory using SI M(1)pro-
jections of superfields. However, the transformation proper-
ties of these SI M(1) projections were very complicated. So,
we redefined these superfields to the ones which have simple
SI M(1) transformation properties. Finally, we expressed the
Chern–Simons theory using these redefined SI M(1) super-
fields.

It may be noted that the gauge sector of both the BLG
theory [14–18] and the ABJM theory [19–23] comprises a
Chern–Simons theory. Furthermore, it is well known that in
string theory spontaneous breaking of the Lorentz symmetry
occurs due to an unstable perturbative string vacuum [68]. It
is expected that such a mechanism can operate even in M-
theory. It has been demonstrated that appropriate fluxes can
break the Lorentz symmetry in M-theory [58]. The sponta-
neous breaking of the Lorentz symmetry can also be achieved
by using a gravitational version of the Higgs mechanism for
the low energy effective action of string theory [60]. A simi-
lar procedure can be followed for the 11-dimensional super-
gravity action, which is the low energy effective action of
M-theory. Thus, it could be possible to study spontaneous
symmetry breaking the Lorentz symmetry in for M-theory.
It would be interesting to use the results of this paper to study
such a spontaneous symmetry breaking. It may be noted that
another way to break the Lorentz symmetry would be to cou-
ple the BLG theory to a mass term, in such a way that only
SI M(1) invariance is left. The mass deformed BLG the-
ory is thought to be related to the theory of multiple M5-
branes [67], hence, it would be interesting to study such a
system. It could also be interesting to generalize the analysis
of this paper to Chern–Simons theories with higher amount
of supersymmetry. In fact, SI M(2) superspace has already
been constructed [64], and from a supersymmetric point of
view N = 1 supersymmetry in four dimensions is equiva-
lent toN = 2 supersymmetry in three dimensions. So, it will
be possible to use the results obtained in the construction of
SI M(2) superspace to analyze breaking of the Lorentz sym-
metry down to the SI M(1) symmetry, for a Chern–Simons
theory with N = 2 supersymmetry. It would be interest-
ing to use these results for analyzing a system of multiple
M2-branes. In this case, we can start by writing the ABJM
theory or the BLG theory in N = 2 superspace, and then
spontaneously break the Lorentz symmetry to the SI M(1)

symmetry. It could also be interesting to investigate various
mechanisms which can cause such a spontaneous breaking
of the Lorentz symmetry.
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