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Abstract Two families of noncommutative extensions are
given of a general space-time metric with spherical symme-
try, both based on the matrix truncation of the functions on
the sphere of symmetry. The first family uses the truncation
to foliate space as an infinite set of spheres, and it is of dimen-
sion four and necessarily time-dependent; the second can be
time-dependent or static, is of dimension five, and uses the
truncation to foliate the internal space.

1 Introduction

Finding an operator description of realistic gravitational con-
figurations is an important task of any theory aiming to
describe quantum gravity. Such a description, here referred
to as ‘quantization’, would incorporate at least effectively
properties of spacetime beyond the classical regime; it could
as well be fundamental. The basic aspect of quantization
is representation through operators: concrete representation
yields the eigenvalues and the eigenstates of the operators
of position, metric and curvature. Therefore, possible out-
comes of quantization can be discretization of spacetime, if
the spectra of coordinates are discrete, or resolution of singu-
larities, if the classically singular values do not belong to the
spectrum of curvature invariants. Another important ques-
tion, of interest in noncommutative geometry, is whether the
algebra of operators A together with the calculus which sup-
ports the given gravitational configuration can in some sense
be regarded as a ‘noncommutative space’, that is, whether
notions as connection and metric can be introduced geomet-
rically or are just quantities defined ‘externally’, as fields
with given properties.

In spite of the progress which has been made in recent
years in noncommutative geometry and in quantum gravity in
general, some important results are still lacking. For physics
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the most interesting spacetimes like the Schwarzschild black
hole or the Friedmann–Robertson–Walker (FRW) cosmol-
ogy have not been ‘quantized’ yet, at least not to common
consent. Relevant or ‘realistic’ models have been obtained
only in two dimensions and reduce essentially to the quan-
tum line and the fuzzy sphere. A generalization of the quan-
tum line has been proposed in every dimension [1], and in
every even dimension there is a simple smooth noncommu-
tative space with planar symmetry defined by the constant
commutators Jμν

0 between coordinates,

[xμ, xν] = i−k Jμν = i−k Jμν
0 . (1.1)

Usually Jμν
0 is taken to be nonsingular; the constant −k

defines the length scale at which the effects of noncommu-
tativity become significant. However, these spaces are not
isotropic except in two spatial dimensions while the impor-
tant classical configurations have spherical symmetry.

Therefore, if we aim to find ‘realistic’ quantum space-
times we need to construct four-dimensional spaces with
exact or slightly deformed spherical symmetry, and this is
the main objective of our paper. The approach we are using
is that of noncommutative differential geometry because we
believe that one should be able to describe quantum or quan-
tized gravity as in the classical way: through geometry. We
shall see that, although the noncommutative spaces which we
obtain here do not have exactly the desired classical limits,
the formalism which we use seems to be an appropriate tool.
We hope that it will be possible to find solutions yet closer to
the classical ones by dimensional extension of the algebras
here analyzed.

The structure of the paper is as follows. In Sect. 2 we
briefly introduce the frame formalism stressing mainly its
logic, constraints which it imposes, and symmetries. In
Sect. 3 we construct a four-dimensional geometry starting
from the momentum space. An analysis of the position space
and of its commutative limit shows that the corresponding
metric (3.47) is necessarily time-dependent: it describes a
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spherically symmetric non-isotropic cosmology. In Sect. 4
we find a class of static spherically symmetric spaces (4.33),
(4.39) and (4.48), (4.49), which include the Schwarzschild
black hole, by introducing an additional, Kaluza–Klein-type
internal coordinate ρ. It is shown that the corresponding
phase space has to be extended too, by an external momentum
p4. Representations of all algebras are also discussed.

In ordinary differential geometry a metric is introduced
to measure the distance between points. Since noncommuta-
tive geometry is essentially without points the concept might
seem in this case rather pointless. It is possible, however, to
carry over one of the definitions of a metric which is used
in commutative geometry and to give it a meaning in certain
noncommutative cases as a measure of distance. In ordinary
differential geometry, if ξ and η are 1-forms, then the value
of the inner product g(ξ ⊗η) at a given point does not depend
on the values of ξ and η at any other point. This condition
can be expressed as the bilinearity condition that for any
function f

g( f ξ ⊗ η) = f g(ξ ⊗ η) = g(ξ ⊗ η f ) = g(ξ ⊗ η) f. (1.2)

We assume that this condition remains valid in the noncom-
mutative case. Without the bilinearity condition it is not pos-
sible to distinguish for example in ordinary spacetime a met-
ric which assigns a function to a vector field in such a way
that the value at a given point depend only on the vector at
that point from one which is some sort of convolution over
the entire manifold.

2 General formalism

A noncommutative geometry as we define it [2] consists of an
associative algebra A (here referred to as ‘noncommutative
space’) over which we have a differential calculus �∗(A).
Within this structure we single out a set of n 1-forms θα , a
noncommutative extension of the moving frame or n-being
of classical differential geometry. Conversely one can define
the differential calculus to be such that any chosen special
set of 1-forms commute with the elements of the algebra

[xμ, θα] = 0. (2.1)

We refer to it as a frame since it seems to be the most nat-
ural generalization of the moving frame of Cartan. In fact,
the bimodule structure of the 1-forms uniquely determines a
differential calculus over the algebra through frame 1-forms
θα and their dual derivations eα ,

d f = eα f θα. (2.2)

With the frame it is relatively easy at least to first order to cal-
culate the objects of interest in differential geometry: beyond
first order more imagination will certainly be necessary.

2.1 Kinematics

If instead of the 1-form θα we had an element f of the algebra,
then condition (2.1) could be written to first order as

[xμ, f ] = i−k Jμν∂ν f = 0, (2.3)

and it states that the center of the algebra is trivial. With the
frame element, however, we can only state that the condition
is of first order in the derivatives. One can think of it then as
a constraint. We shall find a second condition,

eαCα
βγ = 0, (2.4)

in terms of the Ricci rotation coefficients, which one can
think of as a gauge condition.

The derivations eβ dual to θα , θα(eβ) = δα
β , are usually

assumed to be inner,

eα f = [pα, f ], pα ∈ A. (2.5)

This is the simplest case, and in some important cases [2,3],
like matrix spaces, the only choice to define vector fields.
Sometimes, however, the condition (2.5) cannot be imposed:
in the case of the quantized phase space of quantum mechan-
ics, for example, momenta pα = −i h̄ δ

μ
α ∂μ do not belong

to the algebra of coordinates. When coordinates commute
the dimension of the phase space is necessarily twice the
dimension of the configuration space. In noncommutative
geometry it need not be so: the phase space can be identi-
cal to the configuration space, that is, ‘half’ of its classical
analogon. The answer to the question: how many operators
generate A, defines as we shall see the initial conditions of
the problem which we are trying to solve.

The momenta necessarily satisfy a quadratic relation of
the form

2Pαβ
γ δ pα pβ − Fβ

γ δ pβ − Kβγ = 0. (2.6)

This ‘structure equation’ follows from the conditions which
we impose on the differential; it gives the same information
about geometry of the space as the set of derivations eα or the
set of frame elements θα . The differential d f of a function
f ∈ A is given by

d f = [pα, f ]θα = [pαθα, f ] (2.7)
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when the module of 1-forms is free and the frame is used as
basis. We can write to first order

Pαβ
γ δ = 1

2
δ
αβ
γ δ + iεQαβ

γ δ. (2.8)

The iε here is the product of i−k and the square μ2 of a macro-
scopic mass scale parameter μ, which we can relate for exam-
ple with the Schwarzschild mass m or with the cosmological
constant �. As before −k defines the scale of noncommuta-
tivity through the commutation relations

[xμ, xν] = i−k Jμν(x), (2.9)

and if we take for example −k ∼ l2
Pl and μ2 ∼ �, we obtain

ε ∼ 10−122. The coefficients Qαβ
γ δ , Fβ

γ δ , Kβγ are anti-
symmetric in the lower pair of indices, while Qαβ

γ δ is sym-
metric in the upper pair; they are hermitian elements of the
center of the algebra A. Equation (2.6) is equivalent to writ-
ing the Ricci rotation coefficients Cγ

αβ ,

[eα, eβ ] = Cγ
αβ eγ (2.10)

as linear expressions in the momenta,

Cγ
αβ = Fγ

αβ − 4iεpδ Qγ δ
αβ . (2.11)

It can also be considered as the definition of a Poisson struc-
ture, to which, as is well known [4–6], one can associate a
curvature.

All derivations here are taken in the semi-classical approx-
imation that is to leading order in ε. This is in fact the only
possibility to do concrete calculations when one is solving a
problem like ours: to find an a priori unknown algebra, that
is, commutators Jμν(x). Then we have for example

[xμ, f ] = i−k Jμν∂ν f (1 + o(ε)). (2.12)

It is important to note and easy to see that in this approxi-
mation the formalism has diffeomorphism invariance, that is,
the commutators transform as tensors. Indeed if we make the
change of variables x ′μ = x ′μ(xρ), using (2.12) we obtain

i−k J ′μν = [x ′μ, x ′ν] = ∂x ′μ

∂xρ

∂x ′ν

∂xσ
[xρ, xσ ]

= i−k ∂x ′μ

∂xρ

∂x ′ν

∂xσ
Jρσ . (2.13)

This means that the diffeomorphism symmetry is present not
only in the classical limit but also in the linear order in −k.

To define and study a noncommutative space A there are
two equivalent paths (the 2-fold way). Starting with a set of
vector fields eα on a smooth manifold which satisfy (2.10)
one can define the momenta as the solutions to the equations

[pα, xμ] = eμ
α , (2.14)

which follow from the expression

dxμ = eμ
α θα. (2.15)

Equation (2.6) then leads to a set of important consistency
conditions which one has to solve. Alternatively, one can start
from a moving frame θα on a classical manifold satisfying

dθγ = −1

2
Cγ

αβθαθβ, (2.16)

and search for an analogous noncommutative frame, extend-
ing thus �∗(C) to �∗(A). In both cases one obtains the
essential ingredients to construct a noncommutative geom-
etry, an algebra, and a compatible differential calculus. We
find, however, that there are restrictions on the ingredients
which arise from the Jacobi identities.

2.2 Dynamics

The commutator (2.9) must satisfy the Jacobi identities,
which can be written in the form

AJρ = ερλμν[xλ, Jμν] = 0, (2.17)

showing vanishing of an anomaly. We shall accept the
assumption that this condition is the only obstruction to the
associativity of the product. There are also Leibniz rules,
obtained by replacing one position generator xλ by a momen-
tum pα . As we are restricting our attention to the case when
the momenta depend on the coordinates, the additional Jacobi
identities follow from (2.17). The Leibniz rules can be writ-
ten in the form

d([xμ, xν] − i−k Jμν) = 0. (2.18)

It is easily seen that the analogous compatibility conditions
for (2.9),

d([xμ, θα]) = 0, (2.19)

are equivalent in fact to the quadratic relation (2.6) for the
momenta.

3 Real-space foliation

The simplest spherically symmetric noncommutative space
is the fuzzy sphere [7,8]. Anticipating that isotropic spaces
in higher dimensions contain it as a subspace, we will review
its basic properties. Two angular variables of the polar coor-
dinate system on the fuzzy sphere are described by three
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Cartesian coordinates which satisfy commutation relations of
the algebra of rotations. The Lie algebra so3 has irreducible
representations by three n × n complex matrices J a ∈ Mn ,
which we normalize such that

[J a, J b] = iεabc Jc, J 2 = 1
4 (n2 − 1). (3.1)

Let xa , a = 1, 2, 3 be the quantized coordinates. Quantiza-
tion of the sphere is defined by the relation

xa =
−k
r

J a, (3.2)

which is an analog of the Bohr quantization and postulates
that the area of the quantum sphere contains an integer num-
ber of elementary cells of area −k. It also defines the radius r
since from the Casimir relation of so3 for large n we obtain

r2 = δabxa xb =
−kn

2
. (3.3)

The commutator of the coordinates is then given by

[xa, xb] = i−kCab
cxc = i−k

r
εabcxc. (3.4)

Equation (3.3) suggests that the three-dimensional space in
polar coordinates is, or can be represented as, a direct sum

A3 =
⊕

n

Mn (3.5)

of all irreducible representations of so3: this model is called
the ‘onion model’. As we need a four-dimensional mani-
fold we shall not use it; simple extensions by one alge-
bra generator do not have the desired properties and limits
too [9,10]. Therefore we add the radius and the time as coor-
dinates independent on xa . That is, we consider the space-
time A = A′ ⊗ A′′ to be the tensor product of the fuzzy-
sphere algebra A′ and an algebra A′′ generated by r and t .

The momenta on the fuzzy sphere can be identified with
the coordinates,

i−kpa = δabxb. (3.6)

We have therefore

[pa, pb] = Cab
c pc, Cabc = 1

r
εabc (3.7)

and if we let πa
b = δa

b − 1

r2 xa xb be the radial projection onto

the sphere, we obtain from definition (2.7) the expression for
the differentials dxa ,

dxa = 1

r
εa

bcxbθc, (3.8)

and inversely

πa
b θb = −1

r
εa

bcxbdxc + i−k
r2 δa

c dxc. (3.9)

In the leading order in −k we can write

dxa = Ca
bcxbπc

d θd , πa
b θb = −Ca

bcxbdxc. (3.10)

3.1 The momentum algebra

Since the information as regards symmetries is contained in
the frame derivatives eα that is in pα , the momentum algebra1

is the best starting point to search for A. It has in addition a
fixed quadratic form which reduces the number of possible
Ansätze. We investigate then the extensions of the so3 algebra
by the two operators p0 and p4 which we introduce in place
of r and t as generators of A′′ . We start with an algebra of a
general form

[pa, pb] = iε

2
εab

c (�pc + pc�), (3.11)

[p0, pc] = iε

2
(π0 pc + pcπ0), (3.12)

[p4, pc] = iε

2
(π4 pc + pcπ4), (3.13)

[p0, p4] = iε �, (3.14)

[�, pc] = iε

2
(ϒpc + pcϒ) (3.15)

which manifestly respects rotational symmetry. In accor-
dance with the requirement that the algebra be quadratic we
write

� = a + bp0 + cp4, (3.16)

π0 = a0 + b0 p0 + c0 p4, (3.17)

π4 = a4 + b4 p0 + c4 p4. (3.18)

The ak , bk , and ck are constants, while � is a general
quadratic polynomial in p0 and p4. When we impose Jacobi
identities on (3.11–3.15) we obtain various restrictions. For
example we find

ϒ = (b0 + c4)�, c � = 1

2
(π0� + �π0),

b � = −1

2
(π4� + �π4), (3.19)

and from these relations we conclude that π0 and π4 are
mutually proportional,

bπ0 + cπ4 = 0. (3.20)

1 We refer to the algebras generated by the coordinates and the
momenta, respectively, as the position algebra and the momentum alge-
bra although we assume in this section they are one and the same algebra.
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The constants are also not independent: we have

ba0 + ca4 = 0, bb0 + cb4 = 0, bc0 + cc4 = 0. (3.21)

The most important implication of the Jacobi constraints
is that there always exists a linear combination of p0 and p4

which commutes with pa : it is in fact equal to �. Using �,
the momentum algebra simplifies to

[pa, pb] = iεεab
c �pc, [�, pc] = 0,

[π4, pc] = iε

2
c(π4 pc + pcπ4),

[π4,�] = iε

2
c(π4� + �π4) (3.22)

where we substituted

bc0

c
− b0 → c. (3.23)

We adopt here the convention that the momenta are antiher-
mitian operators.

It is easy to rewrite the algebra (3.22) in the tensor-product
form by introducing the hermitian frame components ζ a of
a vector (which we will later use as coordinate),

ζa = �−1 pa . (3.24)

We have

[ζa, ζb] = iεεab
cζc, [�, ζa] = 0,

[π4, ζa] = 0, [�,π4] = iεc

2
(�π4 + π4�). (3.25)

We see that A indeed contains an so3 as a subalgebra; A
is a tensor product of the so3 generated by three ζa and a
quadratic A′′ defined by the relation

�π4 = qπ4�, (3.26)

with

q = 2 + iεc

2 − iεc
. (3.27)

However, differential calculus defined by (pa,�, π4) is not a
tensor-product calculus because the momenta do not belong
to the factor algebras. This property is desired as otherwise
for the metric we would obtain a simple product metric.

We mentioned already that within the frame formalism
the momentum algebra determines space-time geometry. Of
course there is a freedom in the choice of the linear connec-
tion, which then uniquely gives the torsion and the curvature;
these expressions one can show are generically quadratic in
the momenta, [2,11]. But momenta are a priori unknown

functions of coordinates. Therefore although our model is
essentially fixed, to understand it in more detail and to find
its classical limit we need to determine coordinates.

3.2 The position algebra

The functional dependence of pα on xμ is not unique, but as
everything else it is constrained by the algebraic structure of
A and the required properties of the commutative limit. In the
present case there is only one spatial 3-vector in the algebra
so it is natural to assume that coordinates xa are proportional
to it. In fact, we already introduced the hermitian ζ a , pa =
�ζa , as generators which provide the tensor-product form
of the algebra (3.25). We can thus choose ζ a as coordinates,
xa = ζ a ; one can see easily from (3.43) that the choice of
the proportionality factor does not influence the form of the
angular part of the line element. Of course, only two of the
ζ a are independent because ζ 2 = ζ aζa is the Casimir of A.
The operators � and π4 have to be mutually independent
functions of r and t . An almost obvious Ansatz for these
functions is

iε� = F(r) = 1

r
, iεπ4 = G(t). (3.28)

The coordinate components of the (inverse) metric can be
found from the relation

gμν = eμ
α eν

βηαβ, (3.29)

where the frame components eμ
α are given by eμ

α (x) =
[pα, xμ]. One can also use the inverse θα

μ of eμ
α ,

gμν = θα
μθβ

ν ηαβ. (3.30)

The two given expressions are equivalent, within the preci-
sion we are working with, that is, as regards the operator-
ordering ambiguities. We can also write the line element as

ds2 = ηαβ θα ⊗ θβ, (3.31)

and then express the frame 1-forms through the differentials,
θα = θα

μ(x) dxμ, to obtain gμν . The constant frame metric
gαβ = ηαβ here has the signature (− + + + +) .

The commutator of r and t ,

[r, t] = i−k J (t, r) (3.32)

can be obtained from compatibility of (3.22) with (3.32).
Using it we find easily

J = −cμ2r
G

Ġ
. (3.33)
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For the differentials of the coordinates we have

dζ i = [pb, ζ
i ]θb + [�, ζ i ]θ0 + [π4, ζ

i ]θ4

= 1

r
δiaεabcζ

bθc, (3.34)

dr = crG θ4, (3.35)

dt = c

r

G

Ġ
(δiaζ iθa + θ0), (3.36)

where we introduced ζ i = δi
aζ a . From these expressions we

obtain the frame components

ei
c = 1

r
δiaεabcζ

b, e4
4 = crG, e0

a = c

r

G

Ġ
ζa e0

0 = c

r

G

Ġ
.

(3.37)

We can calculate the metric by applying (3.30); the nonzero
elements are

gi j = ei
ae j

bδab = 1

r2 (δi jδbd −δidδ jb)ζbζd = 1

r2 δi
aδ

j
bζ 2πab,

(3.38)

g44 = (crG)2 , (3.39)

g00 = −(1 − ζ 2)

(
c

r

G

Ġ

)2

, (3.40)

g0i = i−k c

r2

G

Ġ
ζ i . (3.41)

We see immediately that in the classical limit −k → 0 off-
diagonal terms g0i vanish. Further, since we can assume that
the Casimir ζ 2 = 1

4 ε2(n2 −1) is small, we have 1− ζ 2 > 0.
The angular part of the metric is, as expected, proportional
to the projector on the sphere πab,

πab = δab − ζ aζ b

ζ 2 . (3.42)

The prefactor in (3.38) is also correct: the inverse of gi j is
on the sphere given by

gi j = r2

ζ 2 δa
i δb

j πab, (3.43)

and therefore the angular part of the line element is

ds2
� = gab dζ adζ b = r2d�. (3.44)

In the classical limit we obtain

ds2 = − r2

c2(1 − ζ 2)

Ġ2

G2 dt2 + 1

c2r2G2 dr2 + r2d�.

(3.45)

We have a time-dependent metric. Namely, we cannot assume
that G(t) = G0, a constant, because the momenta � and π4

have to be functionally independent. Introducing instead of
t a new variable τ ,

Ġ

G
dt = −λdτ, G = e−λτ , (3.46)

we can simplify the line element to

ds2 = − λ2r2

c2(1 − ζ 2)
dτ 2 + 1

c2r2 e2λτ dr2 + r2d�, (3.47)

with the curvature scalar R

R = 2(1 + c2 − c2ζ 2)

r2 − 12c2e−2λτ . (3.48)

This metric, though spherically symmetric is obviously not
homogeneous. The universe expands differently in different
directions: if we define the Hubble parameter H as the rate
of expansion in the radial direction we find that H = λ. The
λ on the other hand is related to the noncommutativity of
space-time,

[r, τ ] = − i−kc

λ
r. (3.49)

An interesting change of variables, η = G(t), χ = 1

r
,

transforms the line element (3.47) to an almost conformally
flat form,

ds2 = 1

c2η2χ2

(
− 1

1 − ζ 2 dη2 + dχ2 + c2η2d�

)
. (3.50)

Since the Ansatz (3.28) which we used does not give a
static metric which could be interpreted as an extension of the
Schwarzschild black hole, perhaps it is possible to modify it
to obtain the extension of the FRW cosmology? Then instead
of (3.44) we would need the angular line element ds2

� =
a2(t)r2d� . This corresponds presumably to a more general
dependence,

iε� = F(r)N (t), iεπ4 = L(r)G(t). (3.51)

Let us analyse this possibility leaving the commutator Ansatz
the same; see (3.32). A comparison of (3.51) with (3.22) gives
the compatibility equation

− Ṅ

N

L ′

L
+ Ġ

G

F ′

F
= cμ2

I0 I4
. (3.52)

As the variables r and t are separated it is not difficult to find
a solution to the last equation. We have

− F ′

F
= α

I4
, − L ′

L
= β

I4
,

Ṅ

N
= γ

I0
,

Ġ

G
= λ

I0
, (3.53)

123



Eur. Phys. J. C (2014) 74:2820 Page 7 of 12 2820

where the constants α, β, γ , and λ satisfy

βγ − αλ = cμ2 �= 0. (3.54)

The change the variables to

ρ(r) = −
∫

dr

I4(r)
, τ (t) =

∫
dt

I0(t)
, (3.55)

drastically simplifies all equations and we can solve (4.17):

F = eαρ, L = eβρ, N = eγ τ , G = eλτ . (3.56)

Now it is possible to calculate the metric. From the differ-
entials

dζ a = F Nεabcζ
bθc, (3.57)

dr = −J
(

F Ṅζbθ
b + F Ṅθ0 + LĠθ4

)
, (3.58)

dt = J
(

F ′Nζbθ
b + F ′Nθ0 + L ′Gθ4

)
, (3.59)

we obtain the nonvanishing components of the frame,

ei
c = F Nδiaεabcζ

b,

e4
a = −J F Ṅ ζa, e4

0 = −J F Ṅ , e4
4 = −J LĠ, (3.60)

e0
a = J F ′N ζa, e0

0 = J F ′N , e0
4 = J L ′G.

Using (3.30) we find

gi j = (F N )2ζ 2δi
aδ

j
b πab, (3.61)

g44 = J 2
(
−(F Ṅ )2(1 − ζ 2) + (LĠ)2

)
, (3.62)

g00 = J 2
(
−(F ′N )2(1 − ζ 2) + (L ′G)2

)
, (3.63)

g04 = J 2
(

F ′N F Ṅ (1 − ζ 2) − L ′GLĠ
)

, (3.64)

g0i = −i−k J F F ′N 2ζ i , (3.65)

g4i = i−k J F2 N Ṅ ζ i . (3.66)

Again the off-diagonal components g0i and g4i vanish in
the commutative limit and the angular part is proportional to
the projector on the sphere: the corresponding classical met-
ric is spherically symmetric, non-static, and block-diagonal.
Inverting the angular part we get

gab = (F N )−2ζ−2 πab, (3.67)

that is,

ds2
� = gab dζ adζ b = (F N )−2d�. (3.68)

The (r, t) part on the other hand gives

g00 = 1

c2 I 2
0

(
γ 2

(LG)2 − λ2

(1 − ζ 2)(F N )2

)
, (3.69)

g44 = 1

c2 I 2
4

(
α2

(LG)2 − β2

(1 − ζ 2)(F N )2

)
, (3.70)

g04 = 1

c2 I0 I4

(
αγ

(LG)2 − βλ

(1 − ζ 2)(F N )2

)
. (3.71)

One can further simplify using the variables ρ and τ and
obtain

ds2
ρ = − 1

c2(1 − ζ 2)(F N )2 (λdτ + βdρ)2

+ 1

c2(LG)2 (γ dτ + αdρ)2. (3.72)

Having the line element written as this, it is easy to rec-
ognize that the change of coordinates

F N → 1

r
, LG → e−λτ (3.73)

gives back the metric (3.47). This is a manifestation of diffeo-
morphism invariance of the formalism, and it shows that the
noncommutative space which we obtained is in fact unique.

3.3 A representation

The coordinates of the solution (3.28) satisfy the commuta-
tion relation

eλτ r = q−1 reλτ . (3.74)

Parameter q defined in (3.27) is unitary because the constant
c is real, while r and τ are hermitian operators. Equation
(3.74) can be rewritten as

eλτ re−λτ =r + λ[τ, r ]+ λ2

2! [τ, [τ, r ]]+· · · = q−1r, (3.75)

and we see that it holds for

[τ, r ] = ikr (3.76)

with tan(kλ/2) = εc/2: the algebra is formally equivalent
to the Heisenberg algebra.

The spectrum of τ is the real line and that of r the positive
real line. A representation on the Hilbert space of square
integrable functions of one variable s is given by

τ = ik

4

(
s

d

ds
+ d

ds
s

)
, r = s2, (3.77)
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where τ is the dilatator, or by

τ = ik
d

ds
, r = es . (3.78)

We have here an indication of the importance of the calculi
in the description of the geometries: the differential calculus
usually introduced on a space described by the Heisenberg
algebra is flat, while here the subspace (r, τ ) has a constant
negative curvature, [12]. One can find even an example of
an algebra over which there are two different calculi with
geometries having as the commutative limit two different
topologies.

4 Internal-space foliation

We have seen that in the previous section geometry of the
space-time was fully determined by momenta and by their
commutators. Such a situation is typical when we apply the
noncommutative frame formalism in its ‘minimal’ version,
that is, when all pα ∈ A. A close relation between the alge-
braic and the geometric structures is, however, a general fea-
ture of any noncommutative geometry, also in cases when we
need to extend the space-time in order to obtain the appro-
priate phase space or the prescribed symmetries.

We shall attempt now to find a static spherically symmetric
metric starting from the algebra of coordinates. This means
that we will first make an Ansatz for the position commutators
and for the frame, and then analyze the implied consistency
relations. This approach is perhaps more intuitive and seems
easier because the position algebra is not restricted in its form
like the momentum algebra. However, the overall number of
equations remains the same if we constrain the momenta to
belong to A: a real advance comes if we allow for some of
the derivations to be external. As a result, we shall find a way
to extend A and to obtain static solutions.

4.1 The position algebra

Assume that A is generated by operators xμ = (ξa, ρ, r, t)
with for some large n

ξa = 2

n
J a . (4.1)

Variable ρ is a fifth generator which we can consider as a
Kaluza–Klein extension. We expect a general spherically
symmetric solution to depend on ρ, r , and t , but we shall
restrict our attention to the static case.

The multiplication table is

[ξa, ξb] = 2i

n
εabc ξc, [ξa, ρ] = [ξa, r ] = [ξa, t] = 0,

(4.2)

[ρ, t] = i−k J 0ρ, [r, t] = i−k J , (4.3)

[ρ, r ] = i−k J 4ρ, (4.4)

and to ensure spherical symmetry we assume that J =
J (ρ, r, t), J 0 = J 0(ρ, r, t), J 4 = J 4(ρ, r, t). The posi-
tion algebra (4.2–4.3) is restricted by Jacobi identities. The
nontrivial one is

[ρ, [r, t]] + [r, [t, ρ]] + [t, [ρ, r ]] = 0, (4.5)

and it gives to first order the equation

J 0 J̇−J J̇ 0+J 4 J ′−J J 4′+J 4ρ∂ρ J 0−J 0ρ∂ρ J 4 = 0, (4.6)

or if we introduce γ0 and γ4 as J 0 = Jγ0, J 4 = Jγ4,

γ̇0 + γ ′
4 + γ0ρ ∂ργ4 − γ4ρ ∂ργ0 = 0. (4.7)

As a convenient solution we can choose

J 4 = 0, γ4 = 0, (4.8)

which implies

γ̇0 = 0. (4.9)

The last equation is identically fulfilled in the static case.
For comparison with the previous section we introduce

xa = ρξa , xa xbδab = ρ2 and the intermediate variable
L = 2ρ2/n−k . Then we have

[xa, xb] = i−k
ρ

Lεab
c xc. (4.10)

4.2 The frame

As the angular part of the frame we choose the Mauer–Cartan
frame of the group multiplied by a function h to account for
the change in volume of the 3-sphere as we move along the
radial; the radial and the time-like components of the frame
are, we suppose, diagonal. We obtain for the frame in five
dimensions

θa = −hρ−1 εa
bc xbdxc

+ρ−2 xbθ
bxa, dxa = (hρ)−1 εa

bc xbθc,

θ4 = gdr, dr = g−1θ4,

θ0 = f dt, dt = f −1θ0.

(4.11)

The f , g, and h are functions of ρ, r , and t . As on the
fuzzy sphere this Ansatz gives

ρ dρ + dρ ρ = 0 (4.12)

which is unusual because it implies dρ = 0 in linear order
even though ρ is not in the center. In particular, dρ = 0 in
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the classical limit. This is a specific feature of our calculus
(4.11) and is a consequence of the fact that the algebra of
coordinates, as we shall see, is different from the algebra of
momenta.

To be consistent, the differential calculus (4.11) has to be
compatible with the algebra (4.2–4.3), and this compatibility
is expressed by (2.18). To leading order the right-hand side
of these equations is given by

dJμν = ∂ρ Jμνdxρ = ∂ρ Jμν eρ
αθα, (4.13)

while to calculate the left-hand side we use the property that
the elements of the frame basis commute with A,

[dxμ, xν] = [eμ
α θα, xν] = [eμ

α , xν]θα. (4.14)

An analysis of all constraints which follow from these
requirement yields:

L̇ = 0, L ′ = 0,

J̇ 4 = 0, J 0′ = 0, h′ J 4 + ḣ J 0 = 0
(4.15)

and

J 4′ + g−1(g′ J 4 + ġ J 0) = 0, (h + ρ∂ρh)J 4 − ḣ J = 0,

J 0′ + f −1( f ′ J 4 + ḟ J 0) = 0, (h + ρ∂ρh)J 0 + h′ J = 0,

J̇ + f −1( ḟ J − ρ∂ρ J 4) = 0, J ′ + g−1(g′ J + ρ∂ρ J 0) = 0.

(4.16)

We must impose additional relations, which ensure that the
exterior multiplication of two frame 1-forms is well defined.
These relations follow from the definition of the wedge prod-
uct [2],

θαθβ = Pαβ
γ δθ

γ θδ. (4.17)

In lowest order we obtain

[θα, θβ ] = i−kμ2 Qαβ
γ δθ

γ θδ, (4.18)

where Qαβ
γ δ are the constants introduced in (2.8). In our

case, (4.18) becomes the following equations:

[θa, θb] = 0, (4.19)

[θ0, θ0] = i−k f g−1∂r ( f −1 f ′ J + ρ f −1∂ρ f J 0)θ4θ0,

(4.20)

[θ4, θ4] = −i−k g f −1∂t (g
−1ġ J − ρg−1∂ρg J 4)θ0θ4,

(4.21)

[θ0, θ4] + ( f g)−1[ f, g] θ4θ0

= i−k ∂t

(
g−1g′ J + ρg−1∂ρg J 0

)
θ0θ4, (4.22)

= −i−k ∂r

(
f −1 ḟ J − ρ f −1∂ρ f J 4

)
θ4θ0. (4.23)

There is one remaining relation for [θa, θ0] , which can
be obtained from

[dxa, dt] = 1

ρh f
εa

bcxb [θc, θ0]

+ 1

ρh2 f 2 εa
bcxb [h, f ]θcθ0

= − i−k
ρh f

εa
bcxb J f −1(γ4 f ′ + γ0 ḟ )θcθ0

− i−k
f g

xa ∂r

(
J f −1(γ4 f ′ + γ0 ḟ )

)
θ4θ0

= i−k
ρh f

εa
bcxb ∂t

(
J h−1(h′ + γ0ρ∂ρh)

)
θ0θc

+ i−k
ρhg

εa
bcxb ∂r

(
J h−1(h′ + γ0ρ∂ρh)

)
θ4θc.

The first set of (4.19–4.23) gives the following constraints:

f g−1∂r

(
J f −1( f ′ + γ0ρ ∂ρ f )

)
= C, (4.24)

g f −1∂t

(
Jg−1(ġ − γ4ρ ∂ρg)

)
= C2,

( f g)−1[ f, g] + i−k∂t

(
Jg−1(g′ + γ0ρ ∂ρg)

)

= ( f g)−1 [ f, g] + i−k∂r

(
J f −1( ḟ − γ4ρ ∂ρ f )

)
= C3,

(4.25)

and from the second set we obtain

f g−1∂r

(
J h−1(h′ + γ0ρ ∂ρh)

)
= C4, (4.26)

∂r

(
J f −1(γ4 f ′ + γ0 ḟ )

)
= 0, (4.27)

(h f )−1[h, f ] − i−k
(

J f −1(γ4 f ′ + γ0 ḟ )
)

= C5, (4.28)

where the Ck are constants.

4.3 Solutions

We obtained a relatively complicated set of equations, but
as we are looking for static solutions we can assume that no
function depends on time. In fact, the proposed choice J 4 =
0, L = 2ρ2/n−k satisfies almost all of the equations. The first
nontrivial constraint is J 0′ = 0 and it implies J 0 = J 0(ρ).
The remaining ones are

γ0h + h′ + γ0ρ∂ρh = 0, (4.29)

J−1 J ′ + g−1(g′ + γ0ρ∂ρg) = 0, (4.30)

f g−1
(

J f −1( f ′ + γ0ρ ∂ρ f )
)′ = C, (4.31)

whereas (4.26) is satisfied identically with C4 = 0. We have
three equations for three frame functions f , g, and h.

When we are solving (4.29–4.31) we should not forget the
diffeomorphism invariance. There are essentially two differ-
ent cases. In the simplest case the frame does not depend on
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ρ, and the equations reduce to ordinary differential equations.
We can define the radial coordinate arbitrarily, for example
by fixing the frame function as g = 1; or h = r ; or f g = 1.
Let us briefly review these choices and the corresponding
solutions.

For g = 1, the radius r is the geodesic normal coordinate
and (4.29–4.31) become

g = 1, J = const, γ0 = const = γ,

f (log f )′′ = const, γ + (log h)′ = 0. (4.32)

The solution is

h = h0e−γ r , f = f0(cosh 2βr + 1), (4.33)

where β, h0, and f0 are the integration constants.
The corresponding classical limit is easily derived,

ds2 = − f 2dt2 + dr2 + h2d� = − f 2
0 (cosh 2βr + 1)2dt2

+ dr2 + h2
0 e−2γ r d�, (4.34)

and it has the scalar curvature

R = −8β2 − 6γ 2 + 2

h2
0

e2γ r + 4β
β + γ sinh 2βr

cosh2 βr
. (4.35)

If the radius r is defined such that the area of the sphere is
4πr2, that is, h = r , we obtain

h = r, γ0 = J0

J
= −1

r
,

1

r
+ (log g)′ = 0,

f (r(log f )′)′ = − C

J0
g. (4.36)

Denoting the integration constant of the third equation by γ

we find

g = 1

γ r
, (4.37)

and clearly we have the same metric as (4.34) expressed in
variable r̄ = h0e−γ r → r . We further get

f =
(

r

h0
+ h0

r

)2

(4.38)

as a solution for f corresponding to nonvanishing C =
−8h0μJ 0γ �= 0. For C = 0 the solution is

f = βrα. (4.39)

In particular for values α = 1 and β = γ the metric has the
Schwarzschild form, f = g−1.

For the third definition of r , f g = 1, the equations become

f g = 1, (log Jg)′ = 0, f 2 f ′′ = C, γ0 + (log h)′ = 0.

(4.40)

We have

g = f −1, J = α f, log h = − J 0

α

∫
f −1dr, (4.41)

where f obeys

1

2

d f ′2

d f
= C

f 2 . (4.42)

A solution to the last equation is, for example,

f = (γ r + β)p for p = 1,
2

3
, (4.43)

but the integral (4.42) can be as well solved in general and
yields the implicit solution

γ r + β = 2C

γ 2

(
− x

x2 + 1
+ arctan x

)
, f = 2C

γ 2

x2

x2 + 1
.

(4.44)

We have therefore in case when the metric does not depend on
ρ three families of solutions: essentially they represent one
noncommutative space, except perhaps for singular values of
the integration constants when the spaces might differ. This
space is static and curved and, since everything depends on
just one variable r , it has a straightforward classical limit.

What happens when we include the dependence on ρ in
the frame functions? We have seen that ρ is essentially a
quantum variable, so perhaps we can expect solutions which
are physically more interesting. The set of (4.29–4.31) is in
this case a set of partial equations in r and ρ.2 This implies
that we have many more solutions, and we shall here restrict
our considerations to the case when both conditions h = r
and f g = 1 are fulfilled. The equation for h then gives

γ0 = −1

r
, J = −J0r, (4.45)

where J0 is an arbitrary function J0 = J0(ρ) of ρ. Impos-
ing f g = 1 we see that the remaining two equations are
consistent for C = 0 and

(r∂r − ρ∂ρ) log f = 1. (4.46)

We have already found a particular solution to this equation,
f = γ r ; we need therefore in addition to solve the corre-
sponding homogeneous equation

(r∂r − ρ∂ρ) log F = 0, (4.47)

2 Note that derivatives ∂ρ in these equations only come from evaluating
commutators with ρ.
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which is easy: the solution is an arbitrary function F =
F(ρr). Thus the general solution to (4.46) is

f = g−1 = γ r F(ρr), (4.48)

with the corresponding metric

ds2 = − f 2dt2 + 1

f 2 dr2 + r2d�. (4.49)

Although the solution (4.48) is restricted in its form, in the
classical limit it gives practically all static metrics, because
classically ρ as a constant. For example, taking

F(x) =
√

1

x2 − 2mγ

x3 (4.50)

and assuming that ρ = γ we obtain the Schwarzschild
metric.

4.4 A representation

Noncommutative spaceA is a tensor productA = A′⊗A′′ of
a first factor generated by the ξa and a second factor generated
by ρ, r , and t . To represent it we choose a Hilbert space H
which is a tensor product H = H′ ⊗ H′′, with H′ given
by a representation J a of so3 and H′′ = L2(R2). To be
explicit we consider the case defined by (4.45) and J0 = 1;
the commutation relations are

[ρ, t] = i−kρ, [r, t] = −i−kr, [ρ, r ] = 0. (4.51)

In this particular case the coordinates satisfy a Lie bracket
relation and the corresponding Lie algebra is a singular con-
traction of sl2(R): the five position generators are closely
related to the six generators of the Lie algebra of the Lorentz
group. The A′′ can be represented, for example, on the Hilbert
space H′′ of square integrable functions of two variables
(s, u), in analogy with the representation discussed in the
previous section,

ξa 	→ 2

n
J a ⊗ 1 ⊗ 1, ρ 	→ 1 ⊗ s−2 ⊗ u,

t 	→ 1 ⊗ i−k
4

(
s

d

ds
+ d

ds
s

)
⊗ 1, r 	→ 1 ⊗ s2 ⊗ 1.

(4.52)

5 Conclusions

We found in this paper two families of noncommutative
spherically symmetric geometries which can be considered
as extensions of static and cosmological solutions to the
Einstein equations. The problem of extending of a classical

spherically symmetric geometry to a noncommutative space
(associative algebra A) might seem at first sight easy. How-
ever, the simplest way of extension, the tensor product, is
not satisfactory because no classically relevant metric is a
product metric. Therefore one has to extend both the algebra
and the associated differential calculus nontrivially, and that
gives a nontrivial set of constraints.

Following the intuition that gravity is related to geome-
try we used a noncommutative version of the Cartan frame
formalism [2]. The main input in this formalism is the set of
tetrads or the frame. In the basis of the frame 1-forms the met-
ric components are constants and the differential is defined
naturally, with respect to the given or required gravitational
configuration. However, the algebraic structures are rigid and
there are constraints: first, the Jacobi constraints in the alge-
bra, and second, the consistency constraints necessary for the
compatibility of the algebra with the calculus.

These constraints were solved here to first order in non-
commutativity. It is clearly possible to iterate and find the
second and higher order equations, but it is hard to give
any general statement on the existence of solutions. Another
perhaps viable approach is to solve the constraints exactly,
within an algebra given in advance; the problem, however, is
the guessing of the initial algebra.

One of the significant features of the formalism is the
possibility to generalize the diffeomorphism invariance. To
first order in noncommutativity this invariance is exactly the
same as in the Einstein gravity and one is allowed to choose
the most convenient set of coordinates.

Our concrete problem was formulated thus: how should
one extend the fuzzy sphere to a four-dimensional static
or cosmological space? We first started by extending the
symmetry, that is, the momentum algebra, assuming at the
same time that the frame derivations are inner. This assump-
tion gave an essentially unique solution for A: an algebra
generated by five coordinates (ζ a, r, t) or by five momenta
(pa,�, π4) constrained by one relation, that is, possessing
one Casimir operator, ζ 2. This algebra with the associated
calculus describes a spherically symmetric non-static space,
which, however, is not spatially homogeneous, that is, not
isotropic. Nonetheless the space has some interesting prop-
erties; for example the Hubble parameter is given by noncom-
mutativity. Everything in the model was essentially fixed: the
Jacobi constraints behaved as field equations.

In the second part of the paper we extended the original
algebra by adding one variable, so A was generated by six
coordinates (ξa, ρ, r, t) constrained by one constraint, or by
five unconstrained coordinates (xa, r, t). In this setup, as we
have seen, one could obtain practically all static spherically
symmetric configurations as classical limits. The price to pay
was an additional variable ρ with somewhat unusual prop-
erties: the differential calculus implied that dρ = 0 in the
classical limit while ρ was not a constant (we have for exam-

123



2820 Page 12 of 12 Eur. Phys. J. C (2014) 74:2820

ple [ρ, t] �= 0). In principle one would consider the existence
of an element of the algebra which is not a constant and nev-
ertheless has vanishing differential—an undesirable feature.
However, such elements are not uncommon, we mention as
an example the dilatator � of the quantum line. The exact
role of ρ in this specific case remains to be understood better,
along with the question of the appropriate representation; in
any case the classical relation dρ = 0 suggests that a natural
way to interpret ρ is as a Kaluza–Klein parameter which mea-
sures the internal space. In addition, one can rather easily see
that in this model the momenta cannot belong to A. Namely,
solving (2.14) for pα we obtain the solution i−kpa = δabξ

b,
p0 = p0(ρ, r), but the remaining p4 = p4(ρ, r, t) is incon-
sistent with the assumption ea

4 = 0, which gives a diagonal
and static metric.

Momentum operators are, in classical gravity, always
external, pα = eμ

α ∂μ. In addition when we deal with com-
mutative space, the Jacobi identities and the de Rham consis-
tency conditions are trivially satisfied. In the opposite, maxi-
mally constrained noncommutative case when the phase and
the configuration spaces are identical, the Jacobi identities
and the compatibility conditions practically fix the dynamics
and the geometry. Here we observe that, with the increase of
the phase space, constraints become less restrictive and we
have more freedom to choose solutions: more noncommu-
tative geometries can be defined consistently. It is certainly
possible to continue along these lines and find other interest-
ing quantum spaces with nondegenerate noncommutativity,
correct symmetries, and the desired commutative limits; and
that is what we plan to investigate in our future work.
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