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Abstract We show that electrically charged solutions
within the Eddington-inspired Born–Infeld theory of grav-
ity replace the central singularity by a wormhole supported
by the electric field. As a result, the total energy associated
with the electric field is finite and similar to that found in the
Born–Infeld electromagnetic theory. When a certain charge-
to-mass ratio is satisfied, in the lowest part of the mass and
charge spectrum the event horizon disappears, yielding sta-
ble remnants. We argue that quantum effects in the matter
sector can lower the mass of these remnants from the Planck
scale down to the TeV scale.

1 Introduction

Historically, the taming of singularities in classical field mod-
els has driven a great deal of research. A particularly elegant
example is the nonlinear extension of Maxwell electrody-
namics introduced by Born and Infeld [1] to remove the diver-
gence of both the Coulomb field and the self-energy of point
particles. In this determinantal form of the classical action,
the modified field (the BIon [2]) is everywhere bounded but
generated by a distributional source. This specific form of
nonlinear electrodynamics arises in the low-energy limit of
certain string theories [3–5].

Recovering the idea of the determinantal form of the grav-
itational action suggested by Eddington [6,7], an Eddington-
inspired Born–Infeld action (EiBI) for the gravitational field
has been introduced recently [8,9]. In order to avoid troubles
with higher-order derivatives and ghosts, EiBI gravity is for-
mulated in the Palatini approach, which means that the metric
and connection are regarded as physically independent enti-
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ties [10]. This implies that the connection is determined by
the field equations, not constrained a priori to any particular
form.

The EiBI theory is a modification of the Einstein–Hilbert
action which might allow one to remove the appearance of
singularities, thus avoiding an undesirable feature of Ein-
stein’s theory of general relativity (GR). The EiBI theory is
expected to be in agreement with GR at energies well below
the Planck scale, which represents the regime where quantum
gravitational effects are expected to begin to become impor-
tant and modify the classical description. The naturalness
of EiBI gravity has been argued on the basis of canonical
procedures to construct Lagrangian densities with second-
order field equations [11]. Moreover, this theory is able to
avoid cosmological singularities [12], has been employed to
study properties of dark matter and dark energy [13–15], in
the coupling to several kinds of fields [16], as an alterna-
tive to inflation [17], and to explore the structure of compact
stars [18,19]. When coupled to a perfect fluid with a given
equation of state, it has been found that the theory can be
interpreted as GR coupled again to a perfect fluid, but with a
modified equation of state [20,21].

Though in its determinantal form the EiBI theory may
appear as lacking an intuitive motivation, here we show that,
when applied to elementary systems such as electric fields
generated by point-like sources (or elementary particles), the
theory boils down to a simple quadratic extension of GR. This
simplification occurs when the stress-energy tensor of the
matter possesses certain algebraic properties [22], namely,
when it has two double eigenvalues. We take advantage of
this property to explore in detail the internal structure of the
electrovacuum solutions of the theory and find that the central
singularity is generically replaced by a wormhole supported
by the electric field. The wormhole structure turns out to
be crucial to regularize the total energy stored in the elec-
tric field, which occurs in a way that resembles the original
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Born–Infeld electromagnetic theory. Among the solutions of
the theory, there exist a family (characterized by a certain
charge-to-mass ratio) for which curvature invariants are finite
everywhere. These solutions, whose mass exactly coincides
with the energy contained in the electric field, lose the event
horizon when the number of charges drops below a critical
value, N c

q ∼ 16, yielding remnants which are not affected by
Hawking’s quantum instability. The mass spectrum of these
remnants can be lowered from the Planck scale (∼ 1019 GeV)
down to the TeV scale if quantum matter corrections are con-
sidered. These results are derived in a four-dimensional sce-
nario.

2 Theory and field equations

The action of the EiBI theory with matter can be written
as

S = 1

κ2ε

∫
d4x

[√−|gμν+εRμν(�)|−λ√−g
]
+ vSm, (1)

where g is the determinant of the space-time metric gμν ,
|gμν + εRμν(�)| represents the determinant of a rank-two
tensor qμν ≡ gμν + εRμν(�), κ2 ≡ 8πG/c4 is a constant,
ε is a (small) parameter with dimensions of length squared,
Rμν ≡ Rρμρν is the Ricci tensor, Rαβμν = ∂μ�

α
νβ−∂ν�αμβ+

�αμλ�
λ
νβ − �ανλ�

λ
μβ is the Riemann tensor of the connection

�λμν , which is a priori independent of the metric (Palatini
formalism), and Sm is the matter action. The meaning of the
parameter λ can be obtained from the field equations and
from the leading-order terms of an expansion in ε � 1,
which reads

lim
ε→0

S = 1

2κ2

∫
d4x

√−g[R−2�e f f ]

− 1

2κ2

∫
d4x

√−g
ε

2

(−R2

2
+RμνRμν

)
+Sm . (2)

Here R ≡ gμνRμν and �e f f = λ−1
ε

. Therefore, when
ε → 0 the leading-order in (2) coincides with GR plus a
cosmological constant term, with λ = 1+ε�e f f . The action
(1) can thus be seen as a high-energy modification of Ein-
stein’s theory, including a cosmological constant as long as
λ �= 1.

Variation of (1) with respect to metric and connection
leads to√|q|√|g|qμν − λgμν = −κ2εTμν, (3)

∇α
(√

qqμν
) = 0, (4)

where qμν is the inverse of qμν . To obtain these equations
we have assumed vanishing torsion, �[μν] = 0, as well as
R[μν] = 0, which guarantees the existence of volume invari-
ants preserved by the theory [23]. The connection equation

(4) is formally identical to that found in the Palatini version
of GR and implies that �λμν can be written as the Levi-Civita
connection of qμν , which can be seen as an auxiliary metric
tensor associated with the independent connection. Similarly
as in other Palatini theories, the relation between qμν and gμν
is algebraic and given by

q̂ =
√

|̂|̂−1ĝ , q̂−1 = ĝ−1̂√
|̂|

, (5)

where we have used a hat to denote matrix representation and

have defined
√

|̂|̂−1 ≡ Î+ε P̂ , with P̂ denoting the matrix

Pαν ≡ gαμRμν(�). This definition implies |̂| = | Î + ε P̂|.
Using this notation and (3), one can easily verify that

̂ = λ Î − εκ2T̂ , (6)

where [T̂ ]μν ≡ T ναgαμ. Note that (6) allows one to obtain
the relation between gμν and qμν once the matter sources
have been specified. The field equations referred to the metric
qμν can be written in a very compact and convenient form
noting that q̂ = ĝ+ε R̂ can be written as ε R̂q̂−1 = I − ĝq̂−1.

Using (5) we find that ĝq̂−1 = ̂√
|̂| , and taking (6) we finally

get

Rμ
ν(q) = κ2

|̂|1/2
[LGδμ

ν + Tμ
ν
]
, (7)

where Rμν(q) = Rμα(�)qαν , and we have used the fact
that the gravity action in (1) can be written as SG =∫

d4x
√−gLG with LG ≡ (|̂|1/2 − λ)/(κ2ε). It is worth

noting that the representation of the field equations given in
(7) seems to be very general, since it is also valid for other
families of Palatini theories with Lagrangians of the form
f (R)/(2κ2) and f (R, RμνRμν)/(2κ2), which include GR
as a particular case (with ̂ = Î ).

From (7) one clearly sees that the metric qμν satisfies
a system of second-order differential equations with the
matter sources on the right-hand side (recall from (6) that
̂ = ̂[T̂ ]). Since qμν is algebraically related to gμν through
(5), it follows that gμν also satisfies second-order equations.
On the other hand, it is easy to see that in vacuum, Tμν = 0
and |̂| = λ4, gμν and qμν are identical up to a constant con-
formal factor and that Rμν(q) = (λ−1)

λε
δμ
ν , which is equiva-

lent to Rμν(g) = (λ−1)
ε

gμν , thus confirming that (λ−1)
ε

plays
the role of an effective cosmological constant in the full the-
ory. Since the vacuum theory is equivalent to GR with a
cosmological constant, no ghost-like instabilities are present
in the theory, which is a rather general property of Palatini
theories.
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3 Electrovacuum solutions

We now couple our gravity theory to an electromagnetic field
with action

Sm = − 1

16π

∫
d4x

√−gFμνFμν, (8)

where Fμν = ∂μAν − ∂ν Aμ is the field strength tensor.
Assuming a spherically symmetric and static electric field,
without loss of generality we can choose coordinates such
that the line element becomes

ds2 = −A(x)dt2 + 1

A(x)
dx2 + r2(x)d�2. (9)

It is sometimes useful to use the function r as a radial coor-
dinate, which turns (9) into ds2 = −A(r)dt2 + dr2/B(r)+
r2d�2. This replacement is possible as long as the relation
between the coordinate x and the radial function r2(x) is
monotonic. For reasons that will become clear later, we use
x instead of r in our analysis. With this choice of coordi-
nates, one can verify that Ftx = q/r2 is the only non-zero
component of Fμν , where q is an integration constant. This

leads to Tμν = q2

8πr4 diag(−1,−1, 1, 1), which, inserted in
(6), yields

μ
ν =

(
σ
(ε)
+ Î 0̂

0̂ σ
(ε)
− Î

)
, σ

(ε)
± = λ± εκ2q2

8πr4 . (10)

The field equations (7) then become

Rμ
ν(q) = 1

ε

⎛
⎜⎝
(σ
(ε)
− −1)

σ
(ε)
−

Î 0̂

0̂
(σ
(ε)
+ −1)

σ
(ε)
+

Î

⎞
⎟⎠ . (11)

The strategy now consists on solving for qμν and then use (5)
to obtain gμν . To proceed, we write a line element for qμν ,
which according to (5) and (9) takes the form

ds̃2 =−σ (ε)− A(x)dt2+(σ (ε)− /A(x))dx2+σ (ε)+ r2(x)d�2,

(12)

and rewrite it as

ds̃2 = −C(r̃)e2ψ(r̃)dt2 + 1/C(r̃)dr̃2 + r̃2d�2, (13)

where we have defined r̃2 = σ
(ε)
+ r2, C(r̃) = σ

(ε)
− A(x), and

(dr̃/dx)2 = (σ
(ε)
− )2. Plugging this ansatz into (11), we find

that ψ(r̃) is a constant. With the typical ansatz C = 1 −
2G M(r̃)

c2r̃
we obtain

Mr ≡ dM

dr
= r2(σ

(ε)
+ − 1)σ (ε)−

2εσ (ε)1/2+
, (14)

where the relation dr̃/dr = σ
(ε)
− /

√
σ
(ε)
+ , which follows from

r̃2 = r2σ
(ε)
+ , has been used. This relation also allows one

to find that (dr/dx)2 = σ
(ε)
+ . We thus conclude that the line

element (9) is completely determined by

A(x) = 1

σ
(ε)
−

⎛
⎝1 − 2G M(r)

c2r
√
σ
(ε)
+

⎞
⎠ ,

(
dr

dx

)2

= σ
(ε)
+ , (15)

with M(r) given by the integration of (14). Note that, though
this solution is formally equivalent to that obtained by Baña-
dos and Ferreira in [8], in the following sections we shall
discuss the physical properties of those solutions with ε < 0.
Therefore the claims of [8] regarding the presence of singu-
larities in this theory when ε > 0 do not apply in our case, as
we will explicitly show below. For a more detailed discussion
on the influence of signs of the parameters in the theory see
[24].

4 EiBI as quadratic gravity

To discuss the physics behind the above solutions, we note
that (7), (10), (14), and (15) exactly coincide with those cor-
responding to the quadratic Palatini theory

S = 1

2κ2

∫
d4x

√−g

[
R − 2�+ a

(
− R2

2
+ RμνRμν

)]

+ Sm (16)

with the identifications ε = −2a and λ = 1 + ε� [compare
with (2)]. The reason for this equivalence lies on the algebraic
properties of the action (1). Given the linear relation between
Tμν and μν , in a basis in which Tμν is diagonal the matrix
P̂ will also be diagonal. If P̂ has two double eigenvalues (in
our case P̂ = diag[p1, p1, p2, p2]) then the fourth-order
polynomial defined by |̂| = | Î +ε P̂| turns into the second-
order polynomial appearing in (16) when the squared root
is evaluated. Note that this quadratic polynomial coincides
exactly with the series expansion of (2), thus implying that
all other higher-order terms vanish identically when P̂ has
this structure.

The intimate relation existing between the quadratic Pala-
tini theory and the EiBI theory can be used to shed useful
new light on the physics of the corresponding solutions. To
see this, let us focus on the case ε = −2l2

ε , with lε some
small length scale, for which exact solutions can be found
for arbitrary λ [25]. For simplicity, we consider here only the
case λ = 1 [26–28]. The function M(r) appearing in (15)
can be written as M(r) = M0(1 + δ1G(r)), where M0 is an
integration constant representing the Scharzschild mass of
the uncharged case, while

δ1 = 1

2rS

√
r3

q/ lε (17)

is a dimensionless constant that controls the charge-to-mass
ratio, and G(r) encodes the electric field contribution. For
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convenience, we replace M0 and q by the length scales
rS = 2G M0/c2 and r2

q = κ2q2/4π , and measure the
radial function r(x) in units of rc ≡ √

rqlε by defining
z = z(x) = r(x)/rc. For z 	 1, G(z) ≈ −1/z leads to

the expected GR limit A(x) ≈
(

1 − rS
r + r2

q

2r2

)
+ O( r4

c
r4 )

and, therefore, does not exhibit any pathological behavior1.
For z → 1, however, the geometry strongly departs from
the low-energy limit represented by GR. To understand the
relevance of this region, one should look at the behavior of
the function z(x) = r(x)/rc:
(

dz

dx

)2

= 1

r2
c

(
1 − 1

z4

)
. (18)

For z 	 1 the relation between z and x is linear, but z reaches
a minimum at z(xc) = 1. This minimum (or bounce) of the
radial function z(x) is a clear signal of the presence of a
wormhole. In fact, (18) can be integrated to get the curve
shown in Fig. 1, where dz/dx = (1 − 1

z4 )
1/2/rc if x ≥ xc

and dz/dx = −(1 − 1
z4 )

1/2/rc if x ≤ xc.
Therefore, our space-time can be seen as consisting on

two identical pieces connected through a (spherical) hole
(the wormhole throat) of area A = 4πr2

c . Around z ≈ 1,
G(z) can be expanded as

G(z) ≈ β + 2
√

z − 1 − 11

6
(z − 1)3/2 + · · · (19)

where β ≈ −1.74804 is an integration constant. With G(z)
and z(x) known, the geometry can be explored in detail. One
then finds that, in general, there exist curvature divergences
at z = 1, the leading order being dominated by ∼ 1/(z −
1)3 in the case of Rμν(g)Rμν(g) and Rαβμν(g)Rαβμν(g)

1 It has been reported recently that stellar models with certain poly-
tropic equations of state may develop curvature divergences at their
surface [19], where the interior geometry is matched to an external
Schwarzschild metric. Similar problems were already found in the con-
text of Palatini f (R) theories (see [29] for a discussion). We support
the view that when curvature divergences arise, a refined (microscopic)
description of the troublesome region might help better understand their
physical significance. In this sense, the absence of such pathologies in
elementary charged systems, as found here, suggests that the results of
[19] might be an artifact of the approximations employed in the contin-
uum description of statistical/macroscopic systems. In fact, since a star
is made out of elementary particles, our results indicate that nothing
special should happen as the outermost regions are approached, where
the effective separation between particles increases and the “isolated-
particle description” of its constituents becomes more and more accu-
rate. The average energy density and gradients in those regions cannot
be larger than in the region close to an individual particle because the
volumes involved differ by orders of magnitude. In our view, therefore,
a microscopic description of a stellar surface, seen as a collection of ele-
mentary particles, seems to be free of the pathologies described in [19].
As another way out of this problem, it has been recently argued [30]
that when the gravitational backreaction on the matter dynamics at the
star surface is considered, the effective equation of state gets modified
with the consequence that surfaces are no longer singular.

z z x

x0

dG

dx

3 2 1 1 2 3 4
x

1

2

3

4

Fig. 1 Plot of z(x) and dG/dx (with rc = 1). The wormhole throat is
at the minimum of z(x) (maximum of Gx )

(which contrasts with the much stronger divergences found
in GR, ∼ 1/r8). However, if the charge-to-mass ratio defined
by the constant δ1 is tuned to the value δ∗1 = −1/β, the
z = 1 divergences disappear yielding a completely regular
geometry.

5 Charge without charges and mass without masses

One can now wonder about the nature of the sources that
generate the charge q and the mass M0 that characterize our
solutions2. As first shown by Misner and Wheeler [31], an
electric flux through a wormhole can define by itself an elec-
tric charge3 without the need for sources of the electric field.
Therefore, the charge q appearing in our solutions is entirely
given by the electric flux through any two-surface S enclos-
ing one of the sides of the wormhole, i.e.,

q = 1

4π

∫

S
∗F, (20)

where ∗F is the two-form dual to Faraday’s tensor. This
charge is conserved as long as the topology does not change.

The existence of a wormhole where one would naively
expect to find the sources poses a more severe challenge to
identify the origin of the mass M0. A tempting guess would
be to see M0 as related to the energy stored in the electric
field. This idea, however, seems in conflict with the results
from Minkowski space-time, where the energy of a point-
like charged field is defined as Ee = 4π

∫∞
0 drr2q2/8πr4,

2 Note that in the context of GR it is sometimes stated that the charge
and mass are concentrated at a point of zero volume at the center (the
singularity). However, the fact is that there is no mathematically well-
defined source able to generate the Reissner–Nordström solution [32].
3 This charge is a very primitive concept that does not require for its
existence neither the definition of metric nor affine structures on the
manifold and, as such, is insensitive to the presence of curvature diver-
gences.
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and diverges as r → 0. Historically, this divergence was
circumvented by replacing Maxwell electrodynamics (8) by
Born–Infeld theory [1], whose Lagrangian reads, in determi-
nantal form,

LB I = β2
(√

−|gμν + β−1 Fμν | − √−g

)
. (21)

This modification yields a total finite energy for the electro-
magnetic field,

E B I
e = nB I q3/2(cβ2)1/4, (22)

where nB I = π3/2

3�(3/4)2
≈ 1.23605. Given that in our grav-

itational model the function r is bounded to r ≥ rc, the
electric energy could be somehow regularized by the non-
trivial topological structure of the space-time. Since for an
electric field in Minkowski space the action can be written
as SMaxwell = ∫

dt × Ee, to estimate the total electric energy
in a gravitational scenario we propose to evaluate the total
action as a means to get S = ∫

dt × (EG + Ee). By doing
this, we find that

S = 4πr3
c

l2
ε κ

2 α

∫
dt, (23)

where α = ∫∞
1 dz z4+1

z4
√

z4−1
. Evaluating this integral, we find

that α =
√

2π3/2

3�(3/4)2
≈ 1.74804 = 1/δ∗1 = √

2nB I . With
simple manipulations, one finds that the total energy can be
written as ET ≡ (EG + Ee) = 2M0c2δ1/δ

∗
1 , where the fac-

tor 2 stems from the need to integrate on both sides of the
wormhole. Remarkably, this result is finite, regardless of the
value of δ1, which implies that the total energy is insensi-
tive to the presence of curvature divergences. We note that
these objects, with their charge having a topological origin
and their mass being generated by the electric field, natu-
rally realize the idea of geon (self-consistent solutions of
the sourceless gravito-electromagnetic field equations) orig-
inally introduced by Wheeler [33].

6 Horizons and remnants

When δ1 = δ∗1 , from (17), it is easily seen that the mass
spectrum can be written as

M0 = nB I

(
Nq

N c
q

)3/2

m P

(
lP

lε

)1/2

, (24)

where Nq ≡ q/e represents the number of charges (with e
being the electron charge), N c

q = √
2/αe.m. ≈ 16.55 (with

αe.m. the fine structure constant) is the critical number of
charges and plays an important role in the existence or not
of event horizons [see paragraph below], m P is the Planck
mass, and lP is the Planck length. It is worth noting that

defining the length scale l2
β ≡ (4π/κ2cβ2), we can write the

expression for EB I given above as

EB I

c2 = √
2nB I

(
Nq

N c
q

)3/2

m P

(
lP

lβ

)1/2

, (25)

which, up to a factor
√

2, is identical to (24) with the replace-
ment of the electromagnetic scale lβ by the gravitational scale
lε . Remarkably, (24) was derived using the Maxwell electro-
magnetic Lagrangian. Thus, besides regularizing the geom-
etry, the EiBI gravitational theory also regularizes the matter
sector in a way almost identical to its electromagnetic coun-
terpart.

A very important aspect of the δ1 = δ∗1 solutions is that,
as can be graphically verified (see [28] for details), for Nq ≤
N c

q there is no event horizon, which implies stability of that
sector of the theory against Hawking radiation. For Nq > N c

q
the horizon exists and its location almost coincides with the
prediction of GR. This means that black holes, understood as
objects with an event horizon, can be continuously connected
with horizonless configurations lying in the lowest part of
the charge and mass spectrum. Such states can be naturally
identified as black hole remnants and their existence could
have deep theoretical implications for the information loss
problem and the Hawking evaporation process [34]. Note, in
addition, that for these remnants the surface z = 1 is timelike
and S = 2M0c2

∫
dt coincides with the action of a point-like

particle at rest, which suggests that they possess particle-like
properties.

7 Coupling of BI matter

In order to test the robustness of the results obtained so far
against quantum corrections in the matter sector, one can
work within the effective Lagrangians approach and con-
sider the coupling of the EiBI gravity model to some non-
linear theory of electrodynamics. The Born–Infeld electro-
magnetic Lagrangian (21) is a well-motivated choice which,
in turn, allows one to find exact analytical solutions [23].
One then finds that the global qualitative picture provided by
Maxwell’s theory is preserved but with relevant quantitative
differences. In particular, following the same procedure as in
the Maxwell case, the mass spectrum (24) turns now into

M B I
0 =

(
4γ

1 + 4γ

)1/4

M0, (26)

where γ = (lε/ lβ)2. If the quantum effects of the matter
manifest themselves much earlier than the quantum effects
of gravity, i.e., if lβ 	 lε , then M B I

0 may become much
smaller than M0. In particular, if lε = lP and β is pushed
to the limits of validity of the effective Lagrangians scheme
of quantum electrodynamics, β ∼ 1018, then γ ∼ (10−17)4
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and the mass spectrum for M B I
0 becomes 17 orders of mag-

nitude smaller than the original M0. This means that the mass
spectrum may drop from M0 ∼ m P ∼ 1019 GeV down to
M B I

0 ∼ 102 GeV. Though more accurate descriptions of the
matter sector might alter these numbers, the fact is that new
quantum gravity phenomenology within the reach of current
particle accelerators arises within a purely four-dimensional
scenario.

8 Conclusions and outlook

We have shown that for spherically symmetric charged sys-
tems EiBI theory recovers the GR predictions for r 	 rc. The
theory, however, changes the microstructure of the space-
time replacing the GR singularity by a wormhole. Though
curvature divergences may exist at r = rc, their role is uncer-
tain, since they affect neither the properties of the flux through
the wormhole nor the finiteness of the total electric energy.
The theory makes definite predictions as regards the exis-
tence of black hole remnants and their mass spectrum, with
non-trivial implications for the Hawking evaporation pro-
cess, the information loss problem, and potentially new dark
matter candidates [35].
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