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With respect to the nonlinear hypersonic vehicle (HV) dynamics, achieving a satisfactory tracking control performance under
uncertainties is always a challenge.The high-order slidingmode control (HOSMC)methodwith strong robustness has been applied
to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that
the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA-) based parameter
optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between
design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is
modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization
problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in
the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other
algorithms.

1. Introduction

Hypersonic vehicles (HVs) have attracted increasing interest
given their characteristics of high speed and excellent cost
effectiveness to access the space. HVs usually fight in near
space at a high speed, in which the aerodynamic properties
are difficult to predict [1]. Additionally, owing to the peculiar
structure of HVs, the couplings related to aerodynamics,
propulsion, and structural dynamics are strong, and this
makes HV sensitive to uncertainties [2]. In this study, we
focus on the efficacious control design of nonlinear HV
dynamics given that uncertainties are randomly distributed.

As members of sliding mode control methods [3–5],
high-order sliding mode control (HOSMC) methods [6–8]
exhibit strong robustness and a reduced chattering effect
while dealing with uncertainties. For example, Zhang et
al. [8] proposed a quasi-continuous HOSMC for HV to
effectively alleviate the chattering phenomena. In addition
to the chattering effect, several design requirements also

should be considered for practical HV control under the
effects of uncertainties. The priority is guaranteeing the
stability. Furthermore, in order to ensure a satisfactory
control performance, high-accuracy tracking of trajectory
commands and lower fuel consumption are desired.However,
when uncertainties are involved in the nonlinear control
structure ofHV, it is a challenge to adjust design parameters to
reach a satisfied level of tracking performance. Two problems
have appeared because of introducing uncertainties into the
HOSM control of HV.

The first problem is that the modeling of the relation
between the design parameters and the HV tracking perfor-
mance under the effect of uncertain parameters is complex.
Dealing with uncertainty in a probabilistic way, stochastic
robustness analysis (SRA) was first proposed by Stengel and
Ray [9], and it is an effective method to evaluate the extent
to which the specified design requirements are satisfied. A
cost function for SRA is formulated to estimate the likelihood
that the design requirements are not satisfied. Subsequently,
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the design parameter space is searched to minimize the
cost function to obtain the optimal performance in the
presence of uncertainties [10]. Cao et al. [11] optimized the
HV controller parameters by using SRA and hybrid PSO
algorithm. However, only the dynamic response indices of
step command were concerned in the cost function for SRA
[11–13]. In order to achieve a desired tracking performance
despite uncertainties, it is necessary to introduce appropriate
indices that characterize the command tracking process
and corresponding indicator functions into the optimization
problem modeling of HV.

The second important problem in the HOSM control of
HV involves solving the optimization problem. Conventional
optimization methods, such as the gradient search method,
are no longer suitable given that the partial derivative of
the cost function in SRA is difficult to obtain. For com-
plex optimization problem involving uncertainties, a high
efficiency computational intelligence optimization algorithm
is required to determine the optimal controller parameters
of HV to achieve a satisfied level of tracking performance
under the influence of uncertainties. Nowadays, various
computational intelligence techniques [14, 15], such as genetic
algorithm (GA) [16], particle swarm optimization (PSO) [17],
and differential evolutionary (DE), have been proposed for
complex optimization problems with the development of
computation technology.

Among computational algorithms, the fireworks algo-
rithm (FWA) is a relatively new swarm intelligence-based
algorithm proposed by Tan and Zhu [18]. It simulates the
process of fireworks explosion, in which the “good” fireworks
generate more sparks in smaller explosion areas. Numerical
experiments indicated that FWA converges to a global opti-
mum with a smaller number of function evaluations than
PSOandGA [19]. Li et al. [20] proposed an adaptive fireworks
algorithm (AFWA) in which the explosion amplitude of
fireworks that fails to produce a better spark increases.
To improve interaction of solutions, hybrid algorithm of
FWA-DE was developed by Zheng et al. [21]. Zhang et al.
[22] proposed an improved FWA by enhancing fireworks
interaction. With respect to improvements in the FWA [20–
23], it is recognized that the diversification mechanism of
FWA does not utilize more information on other qualified
solutions in the swarm. Therefore, with respect to the HV
control under uncertainties that are randomly distributed,
it is necessary to develop an improved FWA with enhanced
solutions interaction to effectively solve the complex opti-
mization problem of searching for the optimal controller.

In this study, an improved hybrid FWA-based parameter
optimization method is proposed for HV control to achieve
an excellent tracking performance in the presence of uncer-
tainties. The main contributions are as follows:(1) The uncertainties that are randomly distributed are
considered in the modeling phase via SRA.The cost function
evaluating the probability of design requirements viola-
tion is formulated to model the complex relation between
design parameters and tracking performance of the uncertain
HV system. Appropriate indices of the command tracking
response are developed.

(2)Ahybrid FWA to search for the optimal design param-
eters is proposed for the complex optimization problem
involving uncertainties to satisfy design requirements with
high probability. The introduction of the hybrid FWA into
SRA effectively optimizes the tracking performance of the
nonlinear HV system under uncertainties.

This study is organized as follows: In Section 2, the
optimization problem in the HOSM control of HV is intro-
duced. In Section 3, the complex relation between design
parameters and HV performance under uncertainties is
modeled. Section 4 proposes a new hybrid FWA to determine
the optimal parameters of HV. Section 5 investigates the
global convergence of the proposed hybrid FWA, and the
simulation and comparison results are demonstrated. A few
conclusions are made in Section 6.

2. HOSM Control Structure of HV
with Uncertainties

The control-oriented model of a generic hypersonic vehicle
(HV) is described by [24]. An inverse-square-law gravita-
tional model and centripetal acceleration are considered, and
the dynamic differential equations for velocity 𝑉, altitude ℎ,
flight-path angle 𝛾, angle of attack 𝛼, and pitch rate 𝑞 of HV
are as follows:

𝑉̇ = 𝑇 cos𝛼 − 𝐷𝑚 − 𝜇 sin 𝛾𝑟2 ,
ℎ̇ = 𝑉 sin 𝛾,
̇𝛾 = 𝐿 + 𝑇 sin𝛼𝑚𝑉 − (𝜇 − 𝑉2𝑟) cos 𝛾𝑉𝑟2 ,
𝛼̇ = 𝑞 − ̇𝛾,
̇𝑞 = 𝑀𝑦𝑦𝐼𝑦𝑦 ,

(1)

with

𝐿 = 12𝜌𝑉2𝑆𝐶𝐿 (𝛼) ,
𝐷 = 12𝜌𝑉2𝑆𝐶𝐷 (𝛼) ,
𝑇 = 12𝜌𝑉2𝑆𝐶𝑇 (𝛽) ,

𝑀𝑦𝑦 = 12𝜌𝑉2𝑆𝑐 [𝐶𝑀 (𝛼) + 𝐶𝑀 (𝛼, 𝛿𝑒) + 𝐶𝑀 (𝛼, 𝑞)] ,
𝑟 = ℎ + 𝑅𝐸,

(2)

where 𝐿 is the lift, 𝐷 is the drag, 𝑇 is the thrust, and 𝑀𝑦𝑦
is the pitching moment. 𝑚, 𝑟, 𝑅𝐸, 𝜇, and 𝜌 denote the mass,
radial distance, radius of the Earth, gravitational constant,
and density of air, respectively. Additionally, 𝑆, 𝑐, and 𝐼𝑦𝑦
denote the reference area, mean aerodynamic chord, and the
moment of inertia about𝑦-body axes, respectively. 𝛿𝑒 denotes
the elevator deflection, and 𝛽 denotes the engine throttle
setting.
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The thrust 𝑇 in (2) is provided by the engine dynamics,
and this is represented as follows [10]:

̈𝛽 = 𝑘1 ̇𝛽 + 𝑘2𝛽 + 𝑘3𝛽𝑐, (3)

where 𝛽𝑐 denotes the engine throttle setting command. It is
adopted that 𝑘1 = 𝑘2 = 0 and 𝑘3 = 1 for proper modeling of
engine dynamics.

In order to guarantee the robustness of the HV flight
control system, the parametric uncertainties in (1)-(2) are
considered as follows:

𝑚 = 𝑚0 (1 + Δ𝑚) ,
𝜌 = 𝜌0 (1 + Δ𝜌) ,
𝐶𝐿 = 𝐶𝐿0 (1 + Δ𝐶𝐿) ,
𝐶𝐷 = 𝐶𝐷0 (1 + Δ𝐶𝐷) ,
𝐶𝑇 = 𝐶𝑇0 (1 + Δ𝐶𝑇) ,
𝐶𝑀 = 𝐶𝑀0 (1 + Δ𝐶𝑀) ,

(4)

where the uncertainties Δ𝑚, Δ𝜌, Δ𝐶𝐿, Δ𝐶𝐷, Δ𝐶𝑇, and Δ𝐶𝑀
are bounded.

HV system (1) with engine dynamics is highly nonlinear.
The relationship between input variables 𝑢 = [𝛿𝑒, 𝛽𝑐]𝑇 and
the output variables 𝑦 = [𝑉, ℎ]𝑇 is apparently expressed by
the feedback linearization method [10]. We differentiate 𝑉
three times and differentiate ℎ four times, and we obtain the
following expressions:

𝑉̇ = (𝑇 cos𝛼 − 𝐷)𝑚 − 𝜇 sin 𝛾𝑟2 ≜ 𝑓 (𝑥) ,
𝑉̈ = Ω1𝑥̇𝑚 ,
...𝑉 = (Ω1𝑥̈ + 𝑥̇𝑇Ω2𝑥̇)𝑚 ,

(5)

ℎ̇ = 𝑉 sin 𝛾,
ℎ̈ = 𝑉̇ sin 𝛾 + 𝑉 ̇𝛾 cos 𝛾,
...ℎ = 𝑉̈ sin 𝛾 + 2𝑉̇ ̇𝛾 cos 𝛾 − 𝑉 ̇𝛾2 sin 𝛾 + 𝑉 ̈𝛾 cos 𝛾,

(6)

ℎ(4) = ...𝑉 sin 𝛾 + 3𝑉̈ ̇𝛾 cos 𝛾 − 3𝑉̇ ̇𝛾2 sin 𝛾 + 3𝑉̇ ̈𝛾 cos 𝛾
− 3𝑉 ̇𝛾 ̈𝛾 sin 𝛾 − 𝑉 ̇𝛾3 cos 𝛾 + 𝑉...𝛾 cos 𝛾, (7)

̇𝛾 = (𝐿 + 𝑇 sin𝛼) /𝑚𝑉 − (𝜇 − 𝑉2𝑟) cos 𝛾/𝑉𝑟2 ≜ 𝑔 (𝑥) ,
̈𝛾 = 𝜋1𝑥̇,

...𝛾 = 𝜋1𝑥̈ + 𝑥̇𝑇𝜋2𝑥̇,
(8)

where 𝑥 = [𝑉, 𝛾, 𝛼, 𝛽, ℎ]𝑇,Ω1 = 𝜕𝑓(𝑥)/𝜕𝑥,Ω2 = 𝜕Ω1/𝜕𝑥, and𝜋1 = 𝜕𝑔(𝑥)/𝜕𝑥, 𝜋2 = 𝜕𝜋1/𝜕𝑥.
In order to force the velocity and altitude to track the

time-varying commanded output 𝑦𝑐 = [𝑉𝑐, ℎ𝑐]𝑇, we define

the velocity sliding tracking error and the altitude sliding
tracking error as 𝜎V = 𝑉 − 𝑉𝑐 and 𝜎ℎ = ℎ − ℎ𝑐, respectively.
Based on (5) and (7), we have

[
...𝜎V
𝜎(4)ℎ ] = 𝐹 (𝑥) + 𝐺 (𝑥) 𝑢, (9)

where the formulations of 𝐹, 𝐺, Ω1, Ω2, 𝜋1, and 𝜋2 are the
same as those in [10].

As stated in [10], the matrix 𝐺(𝑥) in (9) is nonsingular
over the entire flight envelope of HV, so (9) is decoupled with
the auxiliary control input V as follows:

𝑢 = 𝐺 (𝑥)−1 (−𝐹 (𝑥) + V) ,
V = [V1 V2]𝑇 = [...𝜎V 𝜎(4)ℎ ]𝑇 .

(10)

A previous study [6] indicates that if appropriate control
parameters are designed, then the finite time stabilization of
system (9) is guaranteed by the quasi-continuous HOSMC V1
and V2, and this is given as follows:

V1 = −𝛼𝜉V𝜑2,3𝑁2,3 ,
V2 = −𝛼𝜉ℎ𝜑3,4𝑁3,4 ,

(11)

with

𝜑2,3 = 𝜎̈V + 𝛽𝜉V2 (󵄨󵄨󵄨󵄨𝜎̇V󵄨󵄨󵄨󵄨 + 𝛽𝜉V1 󵄨󵄨󵄨󵄨𝜎V󵄨󵄨󵄨󵄨2/3)−1/2 (𝜎̇V
+ 𝛽𝜉V1 󵄨󵄨󵄨󵄨𝜎V󵄨󵄨󵄨󵄨2/3 sign (𝜎V)) ,

𝑁2,3 = 󵄨󵄨󵄨󵄨𝜎̈V󵄨󵄨󵄨󵄨 + 𝛽𝜉V2 (󵄨󵄨󵄨󵄨𝜎̇V󵄨󵄨󵄨󵄨 + 𝛽𝜉V1 󵄨󵄨󵄨󵄨𝜎V󵄨󵄨󵄨󵄨2/3)1/2 ,
𝜑3,4 = ...𝜎ℎ + 𝛽𝜉ℎ3 (󵄨󵄨󵄨󵄨𝜎̈ℎ󵄨󵄨󵄨󵄨
+ 𝛽𝜉ℎ2 (󵄨󵄨󵄨󵄨𝜎̇ℎ󵄨󵄨󵄨󵄨 + 𝛽𝜉ℎ1 󵄨󵄨󵄨󵄨𝜎ℎ󵄨󵄨󵄨󵄨3/4)2/3)

−1/2 (𝜎̈ℎ
+ 𝛽𝜉ℎ2 (󵄨󵄨󵄨󵄨𝜎̇ℎ󵄨󵄨󵄨󵄨 + 𝛽𝜉ℎ1 󵄨󵄨󵄨󵄨𝜎ℎ󵄨󵄨󵄨󵄨3/4)−1/3

⋅ (𝜎̇ℎ + 𝛽𝜉ℎ1 󵄨󵄨󵄨󵄨𝜎ℎ󵄨󵄨󵄨󵄨3/4 sign (𝜎ℎ))) ,
𝑁3,4 = 󵄨󵄨󵄨󵄨...𝜎ℎ󵄨󵄨󵄨󵄨 + 𝛽𝜉ℎ3 (󵄨󵄨󵄨󵄨𝜎̈ℎ󵄨󵄨󵄨󵄨
+ 𝛽𝜉ℎ2 (󵄨󵄨󵄨󵄨𝜎̇ℎ󵄨󵄨󵄨󵄨 + 𝛽𝜉ℎ1 󵄨󵄨󵄨󵄨𝜎ℎ󵄨󵄨󵄨󵄨3/4)2/3)

1/2 .

(12)

The HV control structure based on HOSM is shown in
Figure 1.

For the quasi-continuous HOSM controller (11), the
design parameters 𝛼𝜉𝑖 and 𝛽𝜉𝑖𝑗 (𝑖 = ℎ, V, 𝑗 = 1, 2, . . .) define
the output trajectory of the HV system, which is shown in
Figure 2. In the figure, altitude commands are in the dotted
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Figure 1: HV control structure based on HOSM.
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Figure 2: Altitude tracking trajectories using different design parameters.

lines, and tracking trajectories are in the solid lines. In order
to satisfy the design requirements, it is necessary to optimize
the controller parameters.

Furthermore, it is more appealing to satisfy the HV con-
trol design requirements under the effects of uncertainties. In
Figure 3, the tracking trajectories with uncertain parameters
generated randomly are depicted by the solid lines, and the
altitude commands are shown by the dotted lines. Within
two dashed lines are the trajectories that meet the design
requirements.

The simulations indicate that the same set of design
parameters will generate various trajectories in the presence
of uncertainties. Therefore, it is necessary to employ a proper
measure to quantify a set of data values. In this study, the
probability that the design requirements are not satisfied is
used for the HV performance evaluation with uncertainties.

Therefore, the target of HV control design involves
determining the optimal HOSM control parameters to satisfy
design requirements with high probability. It is necessary to
solve the following two problems in the HOSM parameter
optimization: (1) to develop a cost function that evaluates the
likelihood of system instability and the violation of the design
requirements, so that the complex relation between HV
design parameters and the performance under uncertainties
is modeled; (2) to solve the complex optimization problem
related to the uncertainties by a high efficient computational
intelligence optimization algorithm.

3. Stochastic Robustness Analysis of HV

The concept of stochastic robustness was proposed by Stengel
and Ray [9], and this is effective in evaluating the extent
to which the specified design requirements are satisfied. We
deal with uncertainties in a probabilistic way, and thus a cost
function to evaluate the likelihood of system instability and
the violation of design requirements is formulated via SRA.

The flowchart of HOSM control design for HV based on
SRA is shown in Figure 4.

In Figure 4, a closed-loop HV system with uncertain
parameters 𝑢̃𝑘 is denoted by the dotted box. 𝐼[⋅] denotes the
indicator function corresponding to the design requirement.
The value of 𝐼[⋅] is within [0, 1], and this is 0 if an acceptable
performance appears and is 1 otherwise.

With the indicator function 𝐼[⋅], the probability of sat-
isfying a certain performance requirement 𝑃 is defined by
an integral of the corresponding indicator function over the
expected variation space of parametric uncertainties. It is
a practical method to estimate the probability 𝑃 by Monte
Carlo evaluation (MCE) as follows:

𝑃̂ (𝑑) = 1𝑁
𝑁∑
𝑘=1

𝐼 [𝐻 (𝑢̃𝑘) , 𝐶 (𝑑)] , 𝑢̃𝑘 ∈ 𝑄, (13)

where 𝐻(𝑢̃𝑘) represents the HV system with uncertain
parameters 𝑢̃𝑘 that are randomly selected within the param-
eter space 𝑄. 𝐶(𝑑) represents the HOSM controller with
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Figure 3: Altitude tracking trajectories under uncertainties.
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Figure 4: Flowchart of HOSM control design based on SRA.

the design parameter vector 𝑑, and 𝑁 denotes the sampling
numbers.

Thus, the cost function 𝐽(𝑑) for SRA is formed by
combining the probability of various design requirements
with weights as follows:

𝐽 (𝑑) = 𝑓 (𝑃̂1 (𝑑) , 𝑃̂2 (𝑑) , . . .) , (14)

where the estimated value of the cost function 𝐽(𝑑)
approaches the true value 𝐽when the sampling number𝑁 →∞.

As shown in Figure 4, the optimal design parameters of
HV are determined under the guidance of the cost function𝐽(𝑑). Therefore, it is vital to define appropriate stochastic
robustness measurements for the cost function to achieve the
desired tracking performance despite uncertainties.

3.1. Stochastic Robustness Indices and Indicators. In this
section, the stochastic robustness indices and indicators are
introduced to evaluate the HV tracking performance in the
presence of uncertainties.

According to the requirements of HV control design,
the first index is set to guarantee system stability in the
presence of uncertainties. Additionally, it is necessary to
develop performance indices to characterize the command
tracking trajectories of HV. The tracking trajectory of a
general reference signal is not standardized as that of step
signal, and thus common indices, such as setting time,
overshoot, and steady error, are no longer suitable. Thus, the
following performance indices are introduced.

(i) Transient tracking performance:

TTPℎ = 1𝑡𝑓 ∫
𝑡𝑓

0
𝑒−𝑎ℎ𝑡 󵄨󵄨󵄨󵄨ℎ (𝑡) − ℎ𝑐 (𝑡)󵄨󵄨󵄨󵄨 ⋅ 𝑑𝑡,

TTPV = 1𝑡𝑓 ∫
𝑡𝑓

0
𝑒−𝑎V𝑡 󵄨󵄨󵄨󵄨𝑉 (𝑡) − 𝑉𝑐 (𝑡)󵄨󵄨󵄨󵄨 ⋅ 𝑑𝑡,

(15)

where TTPℎ and TTPV represent the transient track-
ing performance indices for the altitude response and
the velocity response, respectively. 𝑡𝑓 is the terminal
time of the tracking command. 𝑎ℎ and 𝑎V are small
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positive constants that define the duration of the
interested transient stage. A decrease in the value
of TTP decreases the tracking error in the transient
stage.

(ii) Steady tracking performance:

STPℎ = 1𝑡𝑓 ∫
𝑡𝑓

0
(1 − 𝑒−𝑎ℎ𝑡) 󵄨󵄨󵄨󵄨ℎ (𝑡) − ℎ𝑐 (𝑡)󵄨󵄨󵄨󵄨 ⋅ 𝑑𝑡,

STPV = 1𝑡𝑓 ∫
𝑡𝑓

0
(1 − 𝑒−𝑎V𝑡) 󵄨󵄨󵄨󵄨𝑉 (𝑡) − 𝑉𝑐 (𝑡)󵄨󵄨󵄨󵄨 ⋅ 𝑑𝑡,

(16)

where STPℎ and STPV represent the steady tracking
performance indices for the altitude response and the
velocity response, respectively. A decrease in the value
of STP decreases the tracking error in the steady stage.

(ii) Fuel consumption performance:

FCP𝑖 = 1𝑡𝑓 ∫
𝑡𝑓

0

󵄨󵄨󵄨󵄨𝛽 (𝑡)󵄨󵄨󵄨󵄨 ⋅ 𝑑𝑡, 𝑖 = ℎ, V, (17)

where FCPℎ and FCPV represent the fuel consumption
performance indices for the altitude response and the
velocity response, respectively. 𝛽(𝑡) denotes engine
throttle setting during the flight. It is necessary to
limit FCP within reasonable bounds.

(iv) Chattering effect:

CE𝑖 = max (󵄨󵄨󵄨󵄨𝛿𝑒 (𝑡)󵄨󵄨󵄨󵄨) , 𝑡 ∈ [𝑡𝑠, 𝑡𝑓] , 𝑖 = ℎ, V, (18)

where 𝑡𝑠 denotes the time when the sliding tracking
errors 𝜎V and 𝜎ℎ both tend to zero. CEℎ and CEV
represent the maximum chatter amplitude of elevator
for the altitude and velocity commands when 𝑡 ∈[𝑡𝑠, 𝑡𝑓], respectively.The chattering effect can severely
deteriorate the flight control performance, and thus it
is necessary to attenuate it.

Through Monte Carlo sampling, the distribution of
aforementioned index values is obtained from the tracking
trajectories under uncertainties. In Figure 5, after 200 times
of random sampling, the distributions corresponding to the
altitude tracking performance indices are shown. In order
to evaluate the extent to which the design requirements
are satisfied in the presence of uncertainties, the indicator
function corresponding to the index should be carefully
defined.

The commonly used indicator is a binary function with
two values of 0 and 1 to represent whether the design
requirement is satisfied or not. However, for a practical
engineering system, there exists an interval between the
satisfied and unsatisfied performance. Thus, the following
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Table 1: Stochastic robustness stability and performance indices of HV.

Metric number Weight in 𝐽(𝑑) Indicator function 𝐼[⋅] Design requirements
1 (2) 10.0 (10.0) 𝐼1 (𝐼2) System stability in altitude response (velocity response)

3 (4) 1.0 (1.0) 𝐼3 (𝐼4) Transient tracking performance in altitude (velocity)
response is less than TTPℎ,1 (TTPV,1)

5 (6) 1.0 (1.0) 𝐼5 (𝐼6) Steady tracking performance in altitude (velocity)
response is less than STPℎ,1 (STPV,1)

7 (8) 1.0 (1.0) 𝐼7 (𝐼8) Fuel consumption performance in altitude (velocity)
response is less than FCPℎ,1 (FCPV,1)

9 (10) 0.5 (0.5) 𝐼9 (𝐼10) Chattering effect in altitude (velocity) response is less
than CEℎ,1 (CEV,1)

continuous function is employed as the indicator 𝐼[⋅] as
follows:

𝐼 (𝑥) =
{{{{{{{{{{{

1 𝑥 > 𝑥1
( 𝑥 − 𝑥2𝑥1 − 𝑥2)

2 𝑥2 < 𝑥 ≤ 𝑥1
0 𝑥 ≤ 𝑥2,

(19)

where 𝑥 denotes the value of the performance index, such
as TTP𝑖, STP𝑖, FCP𝑖, and CE𝑖, 𝑖 = ℎ, V. The positive constant𝑥1 represents TTP𝑖,1, STP𝑖,1, FCP𝑖,1, or CE𝑖,1. The positive
constant 𝑥2 represents TTP𝑖,2, STP𝑖,2, FCP𝑖,2, or CE𝑖,2, and 𝑥1
and 𝑥2 are set by the designer to define the interval between
the satisfied and unsatisfied performance.

3.2.Optimization Problem. In order to evaluate theHV track-
ing performance under uncertainties, the aforementioned
indices and indicator functions are employed to formulate the
cost function 𝐽(𝑑) in (14), and they are listed in Table 1.

By formulating the cost function 𝐽(𝑑), the complex
relation between the HOSM controller parameters and the
HV tracking performance under uncertainties is modeled.
The optimal controller parameters are obtained by solving the
following optimization problem:

Minimize 𝐽 (𝑑) = 10∑
𝑖=1

𝜔𝑖𝑃̂𝑖 (𝑑)
subject to 𝑑 = [𝛼𝜉V, 𝛽𝜉V1, 𝛽𝜉V2, 𝛼𝜉ℎ, 𝛽𝜉ℎ1, 𝛽𝜉ℎ2, 𝛽𝜉ℎ3]

∈ [𝑑min, 𝑑max] ,
(20)

where 𝑑 is the design parameter vector in the HV controller
(11), and this is searched within [𝑑min, 𝑑max]. 𝜔𝑖 denotes
the weights for the probabilities 𝑃̂𝑖(𝑑) of various design
requirements. The weight in cost function allows a trade-off
between design requirements.

Optimization problem (20) is a constrained nonlinear
and nonconvex optimization problem, in which the cost
function value is calculated with the Monte Carlo method. It
is very difficult and time-consuming to determine the optimal
solution.

Therefore, for complex optimization problem (20) related
to the uncertainties, it is necessary to develop a high efficient

computational intelligence optimization algorithm to deter-
mine the optimal HV control parameters, so that an excellent
tracking performance can be achieved despite uncertainties.

4. Optimization Technique with Improved
Hybrid Fireworks Algorithm

In this section, we propose a hybrid FWA to solve the complex
optimization problemof determining the optimalHV control
parameters under uncertainties. First, by introducing the GA
operators into the mutation process of AFWA, a hybrid FWA
is developed with an improved diversification mechanism.
Subsequently, the process of the hybrid FWA-based param-
eter optimization method is illustrated.

4.1. Adaptive Fireworks Algorithm. Inspired by the fireworks
explosion, FWA is a relatively new swarm intelligence-based
algorithm proposed by Tan and Zhu [18]. In FWA, the
fireworks and sparks are considered as the potential solutions
in the search space, and the explosion is viewed as a local
search around the location of fireworks. The FWA converges
to a global optimum with a lower number of function
evaluations than those of the PSO andGA [19]. Subsequently,
the AFWA [20] was developed to improve the local search
capability of the best firework.

The search process of AFWA is as follows:

(1) Initialization: randomly set the initial locations of
fireworks.

(2) Explosion: each firework generates a set of sparks by
executing the regular explosion operation.

(3) Gaussian mutation: select a few fireworks randomly,
and execute the Gaussian explosion (mutation) oper-
ation on the selected fireworks to generate several
sparks.

(4) Adaptive amplitude calculation: select the best indi-
vidual as a firework in the next generation, and
calculate its adaptive explosion amplitude.

(5) Selection: randomly select other fireworks from all
individuals.

(6) Return to Step (2) until the stop criterion is fulfilled.
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In order to execute the regular explosion operation
in Step (2), the number of sparks 𝑁𝑖 of each firework is
calculated as follows:

𝑁𝑖 = round(𝑁𝑐 ⋅ 𝑓max − 𝑓 (𝑥𝑖) + 𝜀∑𝑛𝑖=1 (𝑓max − 𝑓 (𝑥𝑖)) + 𝜀) . (21)

The explosion amplitude 𝐴 𝑖 is as follows:
𝐴 𝑖 = 𝐴𝑐 ⋅ 𝑓 (𝑥𝑖) − 𝑓min + 𝜀∑𝑛𝑖=1 (𝑓 (𝑥𝑖) − 𝑓min) + 𝜀 , (22)

where 𝑛 is the number of fireworks. 𝑁𝑐 and 𝐴𝑐 are two
parameters that control the number of sparks and explosion
amplitude, respectively. 𝑓(𝑥𝑖) represents the fitness value of𝑥𝑖, and 𝑓max and 𝑓min denote the maximum and minimum
values of the cost function among the 𝑛 fireworks, respec-
tively. A small constant 𝜀 is to avoid zero-division error.

In order to avoid the overwhelming effect of the best
firework, the bound of the spark number is set as follows:

𝑁𝑖 =
{{{{{{{{{

𝑁min if 𝑁𝑖 < 𝑁min

𝑁max else if 𝑁𝑖 > 𝑁max

𝑁𝑖 else,
(23)

where𝑁max and𝑁min are the upper and lower bounds for𝑁𝑖.
For a𝐷-dimension problem, after the calculation of spark

number and explosion amplitude, the location of each spark𝑥𝑗 is obtained by randomly setting approximately half of the
dimensions (z dimensions), and for each dimension 𝑘, the
value 𝑥𝑘𝑗 (1 ≤ 𝑘 ≤ 𝑧, 1 ≤ 𝑗 ≤ 𝑁𝑖) is set based on 𝑥𝑘𝑖
(1 ≤ 𝑖 ≤ 𝑛). Therefore, the locations of the explosion sparks
are set as follows:

𝑥𝑘𝑗 = 𝑥𝑘𝑖 + 𝐴 𝑖 ⋅ rand (−1, 1) . (24)

In order to maintain the diversity, for a few randomly
selected fireworks, approximately half of the dimensions are
selected to change. The mutation sparks are generated by
adding a Gaussian distribution coefficient to 𝑥𝑘𝑖 as follows:

𝑥𝑘𝑗 = 𝑥𝑘𝑖 + (𝑥∗𝑘 − 𝑥𝑘𝑖 ) ⋅ Gaussian (0, 1) , (25)

where𝑥∗𝑘 is the position of kth dimension of the best firework𝑥∗.
If the new locations of the newly generated sparks are

beyond the search space, they are mapped within the search
space as follows:

𝑥𝑘𝑗 = 𝑥𝑘,min + rand (0, 1) ⋅ (𝑥𝑘,max − 𝑥𝑘,min) , (26)

where 𝑥𝑘,max and 𝑥𝑘,min denote the upper and lower bounds
of the 𝑘th dimension of the search space, respectively.

In order to improve the local search capability, the best
individual is selected as a firework in the next generation. It
has adaptive explosion amplitude calculated by selecting an
individual that satisfies the following conditions: (1) Its fitness
is worse when compared with that of the best firework in

the current generation. (2) Its distance to the best individual
is minimal among all individuals that satisfy (1). This is
expressed as follows:

𝑠 = argmin
𝑠𝑖

(𝑑 (𝑠𝑖, 𝑠∗)) , 𝑓 (𝑠𝑖) > 𝑓 (𝑥∗) , (27)

where 𝑠𝑖 denotes all sparks; 𝑠∗ denotes the best individual
among sparks and fireworks. 𝑥∗ is the best firework in the
current generation, and 𝑑(⋅) represents the distance.

The adaptive amplitude of best firework in next genera-
tion is calculated as follows:

𝐴∗ (𝑔 + 1) = 0.5 ⋅ (𝐴∗ (𝑔) + 𝜆 ⋅ 󵄩󵄩󵄩󵄩𝑠 − 𝑥∗󵄩󵄩󵄩󵄩∞) , (28)

where 𝐴∗(𝑔) and 𝐴∗(𝑔 + 1) are the adaptive amplitude
in current generation 𝑔 and the next generation 𝑔 + 1,
respectively. 𝜆 is a positive constant (usually higher than 1),
and ‖ ⋅ ‖∞ represents the infinity norm.

The search process indicates that the diversification
mechanism of FWA does not utilize more information
on all the qualified solutions, and thus it is necessary to
enhance the interaction between fireworks and sparks. It is
well known that GA is an efficient evolutionary algorithm
that performs searches by combining possible solutions in
different directions [16]. Additionally, GA exhibits potential
parallelism, and thus individuals can be compared simultane-
ously. Therefore, we introduce GA into the mutation process
of AFWA to generate more diverse and fitter solutions.

4.2. Hybrid Fireworks Algorithm with the Genetic Operator.
In order to improve the search efficiency, the main idea in
the proposed hybrid FWA involves utilizing all individuals
(fireworks and sparks) to generate new individuals. In order
to generate more diverse and fitter solutions, another idea
involves selecting the father and mother from individuals
with different features that correspond to “core individuals”
and “noncore individuals.” Core individuals include the best
firework and the sparks generated by the best firework. They
exhibit better fitness values and closer locations. Noncore
individuals include the other “bad” fireworks and sparks
generated by them. They are more diverse.

The process of the genetic operator is given as follows:

(1) Encoding: encode solutions to become chromosomes
(individuals) with discrete units termed as genes.

(2) Recombination pool construction: construct recom-
bination pool with qualified individuals.

(3) Parent selection: select parents from core individuals
and noncore individuals, respectively.

(4) Crossover and mutation also exist.

The process of the genetic operator is illustrated in
Figure 6.

The steps in the genetic operator are stated in detail as
follows.
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Figure 6: Process of the genetic operator.

(i) Encoding. The 𝐷-dimension solutions are encoded to 𝐷-
dimension chromosomes, in which each gene represents the
value of corresponding dimension of a solution.

(ii) Recombination Pool Construction. In order to improve the
efficiency of crossover and mutation operations, two pools
to select father and mother are constructed. The pool for the
selection of the father is constructed by the core individuals
from two sources, which include all the fathers (𝑚 fathers)
in the last generation and several core individuals selected
in the current generation (𝑚 core individuals). It aids in
utilizing the information of the fitter individuals in a wider
range. Similarly, the pool for the selection of the mother
is constructed by all the mothers (𝑚 mothers) in the last
generation and several noncore individuals selected in the
current generation (𝑚 noncore individuals).

With respect to the core individuals that are fitter and
located closer, a random selection is applied among them
to construct the pool for father selection. Conversely, the
noncore individuals are diverse. Therefore, a roulette wheel
is employed to select the fitter ones to construct the pool for
the selection of the mother.

The algorithm of constructing the recombination pool is
shown in Algorithm 1.

(iii) Parent Selection. The individuals from the current gen-
eration are preferred to select the parents with a higher
probability of generating diverse and fitter offspring. In order
to select fathers from pool, the fathers of the last generation
are replaced by other individuals that have better fitness, and
the remaining fathers of the last generation may be replaced
by other individuals again with a probability of 𝑃𝑟 (0 < 𝑃𝑟 <1). Mothers are selected in the same way as the fathers.

The algorithm of selecting parents is shown in Algo-
rithm 2.

(iv) Crossover and Mutation. The selected parents are ran-
domly paired to exchange information to generate new two
individuals. In the crossover, the tails of a pair of chromo-
somes (individuals) are swapped at a random point along
the gene sequence with a crossover probability 𝑃𝑐 (0.7 <

𝑃𝑐 < 1). After the crossover, the gene in sequence is mutated.
This means the offspring are obtained by randomly setting
approximately 𝑃𝑚 of the dimensions of the individual within
the search space, where 𝑃𝑚 denotes mutation probability (0 <𝑃𝑚 < 0.2).

Thus, a new hybrid FWA is proposed by introducing the
GA into the mutation process of AFWA.The flowchart of the
proposed optimization algorithm is shown in Figure 7.

Here 𝑥max and 𝑥min are the upper and the lower bounds
of the search space, respectively.

4.3. Hybrid FWA-Based Parameter Optimization. The pro-
posed hybrid FWA-based parameter optimization method
combines the advantages of SRA and the hybrid FWA. By the
SRA, the cost function is given to evaluate the HV tracking
performance under uncertainties. Subsequently, the hybrid
FWA is used to determine the optimal design parameters to
satisfy the tracking performance requirements of HV with
high probability. The flowchart of the proposed hybrid FWA-
based parameter optimization method is given in Figure 8.

To illustrate the search process of the proposed hybrid
FWA-based parameter optimization method in detail, the
following steps are given:

(1) Generate several solutions by the hybrid FWA search
process.

(a) Randomly initialize a population of 𝑛 fireworks
in the search space.

(b) For each firework, generate𝑁𝑖 explosion sparks
within the explosion amplitude 𝐴 𝑖, and subse-
quently the positions 𝑥𝑗 of the explosion sparks
are obtained.

(c) Encode all individuals as chromosomes.
(d) Select 2𝑚 parents from all the chromosomes,

and 2𝑚 diverse individuals are generated via the
genetic operator.

(2) Evaluate the solution’s fitness with the cost function
in SRA.
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(1) Construct the pool for the father selection as follows:(1.1) All the fathers of the last generation (𝑚 fathers) are reserved in the pool.(1.2) Randomly select𝑚 core individuals in the current generation to join the pool.(2) Construct the pool for the mother selection as follows:(2.1) All the mothers of the last generation (𝑚mothers) are reserved in the pool.(2.2) Select𝑚 noncore individuals in the current generation by the roulette wheel to join the
pool.

Algorithm 1: Construct the recombination pool.

(1) Select𝑚 fathers from the pool as follows:(1.1) Replace the last generation’s fathers by other individuals in pool that have better fitness.(1.2) Replace the remaining last generation’s fathers again with a probability 𝑃𝑟 (0 < 𝑃𝑟 < 1).(2) Select𝑚mothers from pool as follows:(2.1) Replace the last generation’s mothers by other individuals in pool that have better fitness.(2.2) Replace the remaining last generation’s mothers again with a probability 𝑃𝑟.
Algorithm 2: Select parents.

Initialize a population of n fireworks 

End

Terminate?

Gen = Gen + 1

Generate diverse sparks via the genetic operator

Select fireworks in the next generation 

Generate explosion sparks

Encode all individuals as chromosomes

Evaluate all fitness

Start

Yes

No

Set initial adaptive amplitude A∗ ← xＧ；x − xＧＣn

Calculate sparks number Ni

Calculate explosion amplitude Ai

Calculate the adaptive amplitude A∗

Figure 7: The flowchart of hybrid FWA.

(a) With the stochastic robustness indices listed in
Table 1 and the indicator function 𝐼[⋅] as defined
in (19), calculate the indicator function value for
the corresponding index.

(b) By the Monte Carlo simulation, 𝑁 samples
under uncertainties are generated to estimate

the probability 𝑃̂(𝑑) in which the design
requirements of HV control are not satisfied.

(c) For all the solutions generated in the search
process, calculate the cost function 𝐽(𝑑) in (20).

(3) Prepare for the next step searching.

(a) After the evaluation of all solution’s fitness, the
optimal solution is selected as a firework in the
next generation. Its adaptive amplitude 𝐴∗ is
calculated based on (28).

(b) Randomly select 𝑛 − 1 fireworks among all the
individuals.

(4) Check if the stop criterion is fulfilled.
(5) The optimal HOSM parameters are obtained, and an

excellent HV tracking performance under uncertain-
ties is achieved.

5. Simulation Study

5.1. Computational Intelligence Algorithm Test Cases. In this
section, typical nonlinear benchmark functions in [25] are
employed to test the effectiveness of the proposed hybrid
FWA. For the comparison, the GA, PSO, AFWA, and pro-
posed hybrid FWA are run on the benchmarks for 300000
evaluations per function. Each experiment for testing algo-
rithm is repeated 50 times.

In the testing, the parameters settings of algorithms are
listed in Table 2.

The first function is the Bent Cigar function and is
described as follows:

𝑓1 (𝑥) = 𝑥21 + 106
𝐷∑
𝑖=2

𝑥2𝑖 , (29)
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Initialize a population of n fireworks 

Optimal HOSM parameters
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Select fireworks of the next generation 

Generate diverse sparks via the genetic operator

Start

Generate explosion sparks
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For each solution, evaluate the fitness

Calculate the indicator value I[·] of corresponding index

Estimate the probability P(d) by the Monte Carlo simulation

Calculate the adaptive amplitude A∗

Evaluate the fitness of the SRA cost function J(d)

Figure 8: Flowchart of the hybrid FWA-based parameter optimization method.

Table 2: Parameters settings in algorithms.

Algorithms Algorithm coefficients

GA Population size: 200. Binary coded chromosome length: 10. Crossover probability: 0.7. Mutation
probability: 0.015.

PSO Particle number: 30. Inertia weight: 𝜔max = 0.9 𝜔min = 0.4. Learning factor: 𝑐1 = 𝑐2 = 1.5.
AFWA Total sparks number: 200. Other parameters are the same as in [20].

Hybrid FWA Genetic operator parameters:𝑚 = 15, 𝑃𝑟 = 0.5, 𝑃𝑐 = 0.95, and 𝑃𝑚 = 0.025. Other parameters are
the same as AFWA.

where 𝑥𝑖 ∈ [−100, 100], 𝐷 = 4. The Bent Cigar function is a
unimodal function and is smooth. However, it has a narrow
ridge. It has the global minimum 𝑓∗1 = 0 when 𝑥𝑖 = 0, 𝑖 =1, . . . , 𝐷.The second function is the Rosenbrock function that
is described as follows:

𝑓2 (𝑥) = 𝐷−1∑
𝑖=1

(100 (𝑥2𝑖 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2) , (30)

where 𝑥𝑖 ∈ [−100, 100], 𝐷 = 30. The Rosenbrock function is
a nonconvex function in which the global minimum is inside
a long, narrow, and parabolic shaped flat valley. It has the
global minimum 𝑓∗2 = 0 when 𝑥𝑖 = 1, 𝑖 = 1, . . . , 𝐷. The third
function is the Griewank function described as follows:

𝑓3 (𝑥) = 𝐷∑
𝑖=1

𝑥2𝑖4000 −
𝐷∏
𝑖=1

cos( 𝑥𝑖√𝑖) + 1, (31)

where 𝑥𝑖 ∈ [−100, 100], 𝐷 = 30. The Griewank function is
a multimodal function. It has the global minimum 𝑓∗3 = 0
when 𝑥𝑖 = 0, 𝑖 = 1, . . . , 𝐷. The fourth function is the Alpine
function described as follows:

𝑓4 (𝑥) = 𝐷∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 110𝑥𝑖 sin(
𝑥𝑖10) + 𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (32)

where 𝑥𝑖 ∈ [−100, 100], 𝐷 = 30. The Alpine function is a
multimodal function. It has the global minimum 𝑓∗4 = 0
when 𝑥𝑖 = 0, 𝑖 = 1, . . . , 𝐷. The fifth function is the Rastrigin
function that is described in

𝑓5 (𝑥) = 𝐷∑
𝑖=1

(𝑥2𝑖 − 10 cos (2𝜋𝑥𝑖) + 10) , (33)

where 𝑥𝑖 ∈ [−100, 100], 𝐷 = 30. The Rastrigin function
is a multimodal function, which has huge number of local
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Table 3: Algorithm testing results.

Function ID Metric GA PSO AFWA Hybrid FWA

1 Mean 2.0817𝑒 + 4 63.8216 44.4774 36.6983
Std. 1.3336𝑒 + 4 59.7943 40.1607 39.9258

2 Mean 234.6298 628.8852 58.3773 56.1416
Std. 123.0631 477.8930 31.7385 23.7506

3 Mean 1.2007 1.7338 0.7527 0.7125
Std. 0.2004 0.5626 0.2188 0.1904

4 Mean 0.2287 0.6958 0.0708 0.0658
Std. 0.0687 0.4486 0.0259 0.0250

5 Mean 22.9280 55.2201 19.6178 16.8546
Std. 24.7651 24.7651 15.2610 12.0650

6 Mean 4.8939 3.7720 3.8627 3.6126
Std. 0.9717 1.2440 1.0428 0.8973

optima. It has the global minimum 𝑓∗5 = 0 when 𝑥𝑖 = 0,𝑖 = 1, . . . , 𝐷. The last function is the expanded Schaffer F6
function described in

𝑔 (𝑥, 𝑦) = 0.5 + (sin
2 (√𝑥2 + 𝑦2) − 0.5)

(1 + 0.001 (𝑥2 + 𝑦2))2 ,
𝑓6 (𝑥) = 𝑔 (𝑥1, 𝑥2) + ⋅ ⋅ ⋅ + 𝑔 (𝑥𝐷−1, 𝑥𝐷)

+ 𝑔 (𝑥𝐷, 𝑥1) ,
(34)

where 𝑥𝑖 ∈ [−100, 100], 𝐷 = 30. The expanded Schaffer F6
function is amultimodal function. It has the globalminimum𝑓∗6 = 0 when 𝑥𝑖 = 0, 𝑖 = 1, . . . , 𝐷.

The testing results are given in Table 3.
As shown in Table 3, the proposed hybrid FWA presents

the means closest to global minimum. Therefore, the testing
results indicate that the hybrid FWA proposed in this study
exhibits better search efficiency, when compared to the GA,
PSO, and AFWA.

5.2. Algorithm Analysis in Parameter Optimization. In order
to analyze the parameter searching efficiency of algorithms,
the GA, PSO, AFWA, and proposed hybrid FWA are used
to search for the optimal design parameters of the HOSM
controller of HV. In the search, for all the algorithms, the
number of individuals is 32, and the number of iterations is 15.
For the AFWA, the number of fireworks is 5, the total number
of sparks is 32, and the number ofmutation sparks is 4. For the
hybrid FWA, the number of fireworks and total sparks is the
same as in AFWA,𝑚 = 3, and𝑃𝑚 = 0.1.The other parameters
of algorithms are set the same as shown in Table 2.

The ranges of the uncertainties in HV are as follows:

|Δ𝑚| ≤ 0.5%,
󵄨󵄨󵄨󵄨Δ𝜌󵄨󵄨󵄨󵄨 ≤ 10%,󵄨󵄨󵄨󵄨Δ𝐶𝐿󵄨󵄨󵄨󵄨 ≤ 10%,󵄨󵄨󵄨󵄨Δ𝐶𝐷󵄨󵄨󵄨󵄨 ≤ 10%,

Table 4: Search space of HV controller parameters.

Controller parameters Bound
𝛼𝜉V [5, 50]
𝛽𝜉V1 [0.01, 10]
𝛽𝜉V2 [0.01, 10]
𝛼𝜉ℎ [10, 100]
𝛽𝜉ℎ1 [0.01, 10]
𝛽𝜉ℎ2 [0.01, 10]
𝛽𝜉ℎ3 [0.01, 10]

󵄨󵄨󵄨󵄨Δ𝐶𝑇󵄨󵄨󵄨󵄨 ≤ 10%,󵄨󵄨󵄨󵄨Δ𝐶𝑀󵄨󵄨󵄨󵄨 ≤ 10%.
(35)

The search space of the HV controller parameters is given
in Table 4.

As given in Table 1, the cost function 𝐽(𝑑) in SRA is a
weighted sum of 10 probabilities of the design requirements
to guide the search of the HOSM controller parameters. The
parameters specified for the indicator function 𝐼[⋅] are as
follows: TTPℎ,1 = 5, TTPℎ,2 = 1, TTPV,1 = 0.05, TTPV,2 =0.02, STPℎ,1 = 3, STPℎ,2 = 1, STPV,1 = 0.05, STPV,2 = 0.005,
FCPℎ,1 = 1, FCPℎ,2 = 0.2, FCPV,1 = 1, FCPV,2 = 0.2, CEℎ,1 = 2,
CEℎ,2 = 1, CEV,1 = 2, and CEV,2 = 1. The duration of
interested transient stage is defined by the parameters 𝑎ℎ =0.15 and 𝑎V = 0.4.

The results of the HV performance optimization using
various optimization algorithms are shown in Figure 9. The𝑥-axis of the figure shows the number of iterations, and the𝑦-axis shows the optimal value of the cost function 𝐽(𝑑).
The comparative result indicates that the proposed hybrid
FWA exhibits better global search ability for the optimal HV
control parameters than that of the GA, PSO, and AFWA.

5.3. Results of Optimal HOSM Controller Design. With
the proposed hybrid FWA-based parameter optimization
method, we shall examine the performance of the optimal
HOSM controller in the trajectory tracking of HV. Initially,
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Figure 9: HV performance optimization using various algorithms.
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Figure 11: Random responses using various controller parameters.

the cruising flight conditions are as follows: Mach number𝑀𝑎 = 15, 𝑉 = 15060ft/s, ℎ = 110000ft, 𝛾 = 0 deg, and 𝑞 =0 deg/s. At the cruising flight conditions, the aerodynamic
parameters 𝐶𝐿, 𝐶𝐷, 𝐶𝑇, 𝐶𝑀(𝛼), 𝐶𝑀(𝛼, 𝛿𝑒), and 𝐶𝑀(𝛼, 𝑞) are
given as follows:

𝐶𝐿 = 0.6203𝛼,
𝐶𝐷 = 0.6450𝛼2 + 0.0043378𝛼 + 0.003772,

𝐶𝑇 = {{{
0.02576𝛽, 𝛽 ≤ 1,
0.0224 (1 + 0.15𝛽) , 𝛽 > 1,

𝐶𝑀 (𝛼) = −0.035𝛼2 + 0.036617𝛼 + 5.3261 × 10−6,

𝐶𝑀 (𝛼, 𝛿𝑒) = 𝑐𝑒 (𝛿𝑒 − 𝛼) , 𝑐𝑒 = 0.0292,
𝐶𝑀 (𝛼, 𝑞) = 𝑐𝑞2𝑉 (−6.796𝛼2 + 0.3015𝛼 − 0.2289) .

(36)

After 15 search iterations by the proposed hybrid FWA-
based parameter optimization algorithm, the optimal quasi-
continuous HOSM controller parameters are determined
as follows: 𝑑∗𝐻 = {28.50, 1.74, 2.90, 56.66, 0.39, 1.22, 6.85}.
Using AFWA, the optimal controller parameters are deter-
mined as follows: 𝑑∗𝐴 = {40.65, 1.36, 8, 35, 0.40, 1.15, 4}.
For comparison purposes, the other two sets of design
parameters are given: The quasi-continuous HOSM con-
troller parameters (not optimized) in [8] are as follows:𝑑𝑁 = {30, 1, 2, 10, 0.5, 1, 3}.TheHOSM controller parameters
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determined by the improved PSO in [11] are as follows: 𝑑∗𝑃 ={107.33, 0.67, 2.83, 22.29, 125.38, 0.54, 1.06, 5.50, 26.64}.
In order to demonstrate the tracking performance of HV

under uncertainties, the command tracking trajectories using
four sets of controller parameters are given in Figure 10. In the
simulation, the reference command is generated to control
the HV to climb 800 ft at constant velocity in about 15 s. The
parametric uncertainties are set as follows: Δ𝑚 = 0.1%, Δ𝜌 =2%, Δ𝐶𝐿 = 2%, Δ𝐶𝐷 = 2%, Δ𝐶𝑇 = 2%, and Δ𝐶𝑀 = 2%,
which are within the range given in (35).

In Figure 10, the trajectories of altitude ℎ, velocity 𝑉,
angle of attack 𝛼, and throttle setting 𝛽 are depicted by
the solid lines, and the reference command is shown by
the dotted line. The simulation results demonstrate that
the optimal controller parameters 𝑑∗𝐻 determined by hybrid
FWA provide a stable and high-accuracy tracking of the
reference command in the presence of uncertainties. The
command tracking error of the HV control system using
the parameters 𝑑∗𝐻 remains the smallest, when compared
to the controller parameters 𝑑∗𝐴, 𝑑∗𝑃, and 𝑑𝑁. Besides, a
faster dynamic response as well as lower fuel consumption is
achieved using the parameters determined by the proposed
hybrid FWA.

Next, with randomly generated uncertainties, the com-
mand tracking trajectories using four sets of controller
parameters are demonstrated in Figure 11. The uncertain
parameters are assumed to be uniformly distributed within
the bounds given in (35).The results indicate that the optimal
controller parameters 𝑑∗𝐻 determined by the proposed hybrid
FWA not only guarantee the HV system stability, but also
exhibit a better tracking performance under bounded uncer-
tainties.

Therefore, the simulation results demonstrate that the
HV controller designed by the proposed hybrid FWA-based
parameter optimization method achieves an excellent track-
ing performance in the presence of uncertainties.

6. Conclusion

In this study, we propose an improved hybrid FWA-based
parameter optimization method for nonlinear HV control
under uncertainties. An approach of searching for the opti-
mal design parameters is developed by using two processes.
The first process involves modeling the relation between
the design parameters and the cost function that evaluates
the likelihood of system instability and design requirement
violation by using SRA. Subsequently, the cost function
is minimized by the improved hybrid FWA to achieve a
satisfactory tracking performance for the HV system with
uncertainties. The proposed method makes it easier and
more efficient to solve the optimization problem of satisfy-
ing all the HV design requirements with high probability.
When compared with other algorithms, the hybrid FWA
exhibits better efficiency in solving the HV parameter opti-
mization problem with respect to uncertainties. Moreover,
it is also efficient in solving other complex optimization
problems.
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