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A parameter identification problem for a hybridmodel is presented.The latter describes the operation of an activated sludge process
used for waste water treatment. Parameter identification problem can be considered as an optimization one byminimizing the error
between simulation and experimental data. One of the new and promisingmetaheuristic methods for solving similar mathematical
problem is Cuckoo Search Algorithm. It is inspired by the parasitic brood behavior of cuckoo species. To confirm the effectiveness
and the efficiency of the proposed algorithm, simulation results will be compared with other algorithms, firstly, with a classical
methodwhich is theNelder-Mead algorithm and, secondly, with intelligentmethods such as Genetic Algorithm and Particle Swarm
Optimization approaches.

1. Introduction

The waste water coming from domestic or industrial sources
may contain many unknown components which can endan-
ger the lives of human beings, animals, and plants. Waste
water treatment process allows exposing and eliminating
these toxic materials in order to prevent their discharge into
the environment.

This treatment may be divided into two main tasks:
a physical one (preliminary/primary treatment) to remove
solid materials and a biological one (secondary treatment)
to remove both dissolved and particulate organic materials.
The most common process for the second operation is
the activated sludge process. The latter is based on the
cultivation ofmicroorganisms’ population that consummates
the pollutants existing in the wastewater as food source [1].

In order to obtain an optimal purifying performance
and to enable the users to better manage, scientifically
and technically, their wastewater treatment systems many
modeling and controlling strategies have been established.

In 1982, the International Water Association (IWA) cre-
ated a group that worked on mathematical modeling for
design and implementation of activated sludge processes.
Their primary purpose was to develop a realistic model that

describes efficiently the operation of these systems.The result
was the activated sludge model number 1 (ASM1). It is, in
fact a model that simulates within an activated sludge system,
phenomena, such as carbon oxidation, nitrification, and
denitrification by quantifying the kinetics and stoichiometry
of each reaction.This model is based on the simulation of the
biomass growth as themain engine of the degradation process
[2]. Thereafter, many other models had appeared. In 1995,
the ASM2 had been published. It included the elimination
of nitrogen combined with biological phosphorus removal.
However, this process was unclear. For this reason, it was
replaced by the ASM2d model which included the combined
denitrification.

In 1998, the working group decided to develop a new
model which is the ASM3 in order to create a simple tool
for future generations of models [3]. Unfortunately, all these
models proved to be complicated and highly nonlinear which
required creating more simpler and intelligible models [4, 5].

Parameter identification presents a prerequisite to accom-
plish an effective control plan and respond to the changes in
both the operating conditions and the wastewater character-
istics within the treatment process.

Over the years many parameter identification approaches
have been studied. They can be classified into two categories:
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Figure 1: Activated sludge process.

classical methods like linearized maximum likelihood [6],
extended Kalman filter [7], the calculus of state variables
sensibilities [8], subspace method [9], the Nelder-Mead
method [4, 5], recursive prediction error method [10], the
minimization of an Euclidian-distance criterion [11], and
so on and intelligent methods like Genetic Algorithm [12],
Particle Swarm Optimization [13], and so on.

By outperforming the classical methods (especially for
the nonlinear, stochastic, complex, and multidimensional
optimization problems), the intelligent ones become more
and more considered in different scientific fields [14]. One of
the recent techniques is the Cuckoo Search Algorithm (CSA).
It is based on the interesting breeding behavior of certain bird
species called cuckoo. Up to now, this algorithm has been
investigated to work out a variety of optimization problems
[15–19]. Thanks to its efficiency and robustness, it has been
specially considered for the parameter identification problem
[20–23].

In this paper, Cuckoo Search Algorithm will be adapted
and applied to parameter identification of a hybrid linear
model which describes the dynamics of an activated sludge
process for wastewater treatment [5].

In order to prove theCSA’s effectiveness in performing the
identification exercise, simulation results will be compared
with other techniques: firstly, a classical one which is the
Nelder-Mead method and secondly, intelligent ones which
are the GA and PSO, not forgetting to mention the real
systemsmeasurements.The remaining sections are organized
as follows: in Section 2 a presentation of the activated sludge’s
modeling problem is detailed. After that, an overview of the
different algorithms’ concepts is stated in Section 3. Last but
not least, Section 4 provides the simulation results as well as
the comparison between the different proposed approaches.
Finally, the paper ends with a conclusion.

2. Process Presentation

2.1. Description. At its basic level, the activated sludge process
(ASP) is composed of two interconnected tanks which are

a bioreactor and a settler as shown in Figure 1. The first
one presents a cultivation environment of specific bacteria
species (heterotrophic and autotrophic population). Their
role consists of degrading the organic substrates (phosphorus,
nitrogenous, and carbonaceous pollutants) founded in the
effluent. As a result, they transform into activated sludge.
The second one separates between the treated water and the
formed sludge. A part of this latter will be recycled back to
the bioreactor and the other will be rejected. The pure water
will be evacuated to be used later.

The bioreaction of ASP takes place, essentially, in the
aerator. It can be divided into two main phases. The first one
is the nitrification/aerobic stage. It consists in providing an
oxygen source for the bacteria nutrition in order to eliminate
the nitrate and carbon substrates. These microorganisms
will agglomerate into flocks and produce the sludge. The
second is the denitrification/anoxic stage. It consists in
shutting down the provision of oxygen and providing an
external carbon source. However, themicroorganisms pursue
the consumption of the remaining oxygen to continue the
degradation procedure until its total disappearance. This
presents a transitional phase which is usually very short and
belongs to the aerobic phase. The switching between the
phases is ensured by the change of value for the oxygen
transfer coefficient (𝑘𝐿𝑎). In the aeration period, its value is
different from 0. However, in the anoxic period it is equal
to 0. Hence, the aeration procedure can be qualified as
discontinuous.

As a powerful tool forwater purification, theASPneeds to
be introduced by a mathematical model that will describe all
aspects and phenomena that take place. Asmentioned before,
many models have been designed for this plant, trying to
offer, on the one hand, a precise and simple understanding
of this complex process and an efficient presentation for real-
time use and control strategies on the other hand.

The examined ASP is a pilot unit installed in the
Engineering Laboratory of Environmental Processes (ELEP)
of the National Institution of Applied Sciences (NIAS) in
Toulouse-France.
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This unit presents the basic structure of activated sludge.
The only available data are the nitrate, the ammonium,
and the oxygen concentrations which make the creation of
more simplified models a necessity. Numerous reduction
methods have been applied to achieve this goal. The con-
sidered method in this paper is based on some biochemical
considerations (observation of variables’ behavior and their
influence over kinetics reactions and other variables) made
on a reference model inspired from the ASM1 [4] as well
as the adjustment of the reduced-order model to ensure the
conservation of controllability and observability properties
[4, 5].

2.2. Linear Model. Up to date, linear models are the most
considered and devotedmathematical models in the different
automation areas: estimation, control, diagnostic, and so on.
Diversity of methods and theories has been developed for
these aims, in contrast with the limited numbers of studies
for the other system types (bilinear, nonlinear, etc.).

Researchers are invited to develop a linear presentation
for the activated sludge system. Despite their efficiency,
designed linear models for ASP are few. In [24] authors have
developed a linear model formed of two submodels: one for
the aerobic phase and the other for the anoxic one. It is
composed of eight state variables. After that in [25] authors
have proposed a linearized model for the ASM1 model but it
is too complicated.

The main interest in realizing a linear presentation for a
complex model is the choice of the corresponding method,

taken into consideration the preservation of the model’s
physical meaning. The proposed ASP’s linear model is the
one developed in [5, 26]. It is obtained by applying, for
a reduced-order nonlinear model [4], the Taylor Series
Expansion method around a nominal trajectory given the
constant alternating behavior of the process. The obtained
linear model contains two submodels: the first one presents
the aerobic phase and the second one presents the anoxic
phase. The switch between these models is organized by the𝑘𝐿𝑎 coefficient. Therefore, in the aeration phase, the model
has four state variables which are the substrate, the nitrite,
the ammonium, and the oxygen. For the other phase, it
has only three state variables since the oxygen variable will
be eliminated. The general model can be presented by the
following equation:𝑥̇ (𝑡) = 𝐴𝑎,𝑏𝑥 (𝑡) + 𝐵𝑎,𝑏𝑢 (𝑡) , (1)

where 𝑥(𝑡) = [𝑆s 𝑆NO3
𝑆NH4

𝑆O2
] is the state vector and 𝑢(𝑡) =[𝑆sc 𝑆sin 𝑆NH4in

1] presents the input vector where 𝑆sc can be
considered as the control variable. 𝑆sin and 𝑆NH4in are hardly
measured online and they are more considered as additive
disturbances. 1 completes the input vector. 𝐴𝑎, 𝐵𝑎 are the
matrices for the aerobic stage whereas𝐴𝑏, 𝐵𝑏 are thematrices
for the anoxic stage. 𝛽𝑖 presents the specific parameters of the
linear model. The other variables are defined in “Variables’
Definition.”

𝐴𝑎 =((
(

−(𝐷s + 𝐷c) − ( 𝛽1𝑌𝐻) 0 0 00 − (𝐷s + 𝐷c) 𝛽4 0−𝑖NBM𝛽1 0 −𝛽4 − (𝐷s + 𝐷c) 0−(1 − 𝑌𝐻𝑌𝐻 )𝛽1 0 −4.57𝛽4 −𝑘𝐿𝑎 − (𝐷s + 𝐷c)
))
)

,

𝐵𝑎 =(𝐷c 𝐷s 0 𝛽70 0 0 𝛽50 0 𝐷s −𝛽5 + 𝛽60 0 0 −4.57𝛽5 + 𝑘𝐿𝑎𝑆O2sat

),

𝐴𝑏 =((
(

−(𝐷s + 𝐷c) − ( 𝛽3𝑌𝐻) −( 𝛽2𝑌𝐻) + 𝛽8 0 0((1 − 𝑌𝐻) 𝛽2)(2.86𝑌𝐻) − (𝐷s + 𝐷c) − (((1 − 𝑌𝐻) 𝛽2)(2.86𝑌𝐻) ) 0 0−𝑖NBM𝛽3 −𝑖NBM𝛽2 − (𝐷s + 𝐷c) 00 0 0 0
))
)

,

𝐵𝑏 =(𝐷c 𝐷s 0 𝛽90 0 0 00 0 𝐷s 𝛽60 0 0 0).

(2)
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Figure 2: Example of Lévy flight in 2-dimensional plan.

3. Methods

3.1. Cuckoo Search Algorithm. Cuckoo Search Algorithm
(CSA) is a new nature-inspired optimization method. It was
introduced in 2009 by Yang and Deb. This metaheuristic is
built on two basic concepts: firstly the breeding behavior
of some special birds species (cuckoo) and secondly the
characteristics of Lévy flights of some fruit flies and birds.

3.1.1. Cuckoos’ Behavior. The cuckoo is a discreet bird of
medium size and its captivating voice marks the beginning
of a beautiful season. It is well known by its fascinating
reproductive strategy. The brood parasitism of some species
is the most studied and discussed.

The cuckoo female puts one or several eggs in others
species’ nests, previously observed. The aim is to ensure a
smooth transition to the following generation by leaving
the host birds guided by their natural instinct of breeding,
hatching, and bringing food to the small cuckoos.

In order to increase the surviving chance of the new
cuckoo, the female gobbles an egg in the host’s nest, before
laying its own. Some host species may have conflicts with
the intruder cuckoo. When host birds discover the presence
of egg that does not belong to them, thanks, for example,
to a sensitive skin area under their bellies, they get rid of it
or abandon the nest by constructing a new one elsewhere.
Some types of cuckoos like the Tapera are very intelligent.
They have developed the ability to imitate the host’s eggs in
color and shape. This reduces the probability of their eggs
being abandoned and thereby increasing their reproductive
capacity.

3.1.2. Lévy Flights. Lévy flights, named by the French math-
ematician Paul Lévy, represents a mathematical model for
random walks characterized by their step lengths which
follow a power law written in the following form:𝑦 = 𝑙−𝜆, (3)

where 𝑙 presents the flight length and 𝜆 presents the variance.
Since 1 ≺ 𝜆 ≺ 3, 𝑦 has an infinite variance.

Finding a suitable host nest plays a key role in the success
of cuckoo’s reproduction strategy. Generally, the nest’s search
plan is similar to food search, given that, in nature, animals
seek their food randomly or quasirandomly. They choose
trajectories or directions that can be described by certain
mathematical equations.

Different studies have shown that the flight behavior
of many birds and insects has the same characteristics of
the typical Lévy flights. Recent one views that fruit flies or
“Drosophila melanogaster” dig into their landscape using a
series of straight trajectories punctuated by a sharp turn of
90∘, which leads to a search pattern of Lévy flight style.
This model is commonly represented by small random steps
followed by large jumps as shown in Figure 2.

Such behavior combined with the cuckoo breeding
behavior forms an effective metaheuristic method for opti-
mization problems. Being compared to other metaheuristic
approaches, the long jumps reinforce, significantly, the explo-
ration ability of cuckoos in the search space especially needed
for solving multimodal nonlinear problems [27].

3.1.3. Algorithm. The CSA is based on the following rules:
(i) Each cuckoo chooses a nest randomly in which it lays

one egg at a time.
(ii) The best nest with the highest eggs’ quality can pass to

the new generation.
(iii) The number of the host nests is fixed, and the

cuckoo’s posed egg can be discovered by the host bird
according to a probability 𝑃𝑎 ∈ [0, 1].

In the case of discovering the cuckoo’s eggs, the host bird
can destroy them or abandon its nest. In the two scenarios, a
new nest will be developed with the probability 𝑃𝑎 for a fixed
number of nests.
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Figure 3: Flowchart of CSA.

Referring to these ideas, the CSA can be summarized in
the flowchart of Figure 3.

In order to generate a new solution 𝑥(𝑡+1) for a cuckoo 𝑖, a
Lévy flight is executed as dictated by this expression:𝑥(𝑡+1)𝑖 = 𝑥𝑡𝑖 + 𝛼 ⊕ Lévy (𝜆) , (4)

where 𝑥𝑡𝑖 presents samples (eggs), 𝑡 is the number of iteration,𝑖 is the sample number, and 𝛼 ≻ 0 is the step size. It is
important to tune this value in order to get the desired step
size controlled by the problem’s constraints. The product ⊕
means the entry-wise multiplication. Lévy(𝜆) is calculated
from Lévy distribution as follows:

Lévy (𝜆) ≈ 𝑦 = 𝑙−𝜆. (5)

The Lévy distribution can be simplified by the following
equation:𝛼 ⊕ Lévy (𝜆) ≈ 𝑘 × ( 𝑢(|V|)1/𝛽) (𝑥best − 𝑥𝑖) , (6)

where 𝑘 is the Lévy multiplication coefficient fixed by users,𝛽 = 1.5, and 𝑢 and V are deducted from the normal
distribution curves.

Themain consideredmethod for solving parameter iden-
tification problem is CSA but in order to prove its efficiency
this latter will be compared with other methods which are
briefly mentioned as follows.

3.2. Nelder-Mead Algorithm. The Nelder-Mead algorithm
(NM) called also simplex algorithm has been suggested by
Spendley, Himsworth, and Hext in 1962. Then it has been
developed in 1965 by Nelder and Mead. It is a well-known
classical technique for multidimensional unconstrained opti-
mization issues. The elimination of derivatives calculation
made it a very useful tool for parameters identification
and other statistical problems dealing with nonsmooth or
discontinuous functions.

It is necessary to separate this technique from the known
Dantzig’s simplex method for linear models. It is a simple
algorithm that is quite easy to handle. It is founded that,
on a simplex which is a geometrical structure composed
of (𝑁 + 1) points in 𝑁-dimension space, segments will be
designed to connect them; as a result, polygonal surfaces will
be constructed such as a segment on a line, a triangle in
two-dimensional space, and a tetrahedron in three dimension
space [28].
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3.3. Genetic Algorithm. The Genetic Algorithm (GA) is an
optimum searching algorithm. It is inspired by the natural
evolution process. It manipulates a fixed-size population,
whose elements are named chromosomes. They present
no other than the candidate solutions of the considered
problem. These individuals work out to adapt to their living
environment [29].

The main steps in the GA are the evolutionary operators
which are as follows:

(i) Selection: the most fitted candidate of the population
will remain genetically unchanged and passed on to
the following generation. The use of this operator
will guarantee the permanent existence of the best
solution in the future generations.

(ii) Crossover: it manipulates the chromosome structure
by fusing the genetic information of two individuals
(parents) so as to produce two new ones (children).

(iii) Mutation: this genetic operator allows randomly the
introduction of some modifications on the chromo-
somes which will enhance the genetic diversity from
one generation to the next. The aim of mutation is to
avoid the local optima.

3.4. Particle Swarm Optimization. The Particle Swarm
Optimization (PSO) presents an evolutionary computation
method to solve specially optimization problem. It is based
on a simple concept.

The PSO algorithm chooses randomly a population of
fixed size called “swarm.” It contains the candidate solutions
of the considered problem named “particles.” These “parti-
cles” fly over a multidimensional space to locate their best
position.

Each particle is associated firstly with an evaluation
value determined by calculating the fitness function and
secondly with a velocity that rules its motion. It also has
a small memory that allows it to memorize its best-visited
position (local optimum) and the best-visited position by
the population (global optimum) obtained by it fascinating
capacity to communicate with the other particles. Depending
on this cooperation between the particles within the swarm,
they will adapt a tendency: first, of their motivation to return
to their optimal achieved solution and second, of the linkwith
solutions achieved by their neighbors. So, the whole swarm
will eventually reach the global optimal solution [30].

The particle movement is influenced by three compo-
nents:

(i) An inertial component: the particle tends to follow its
current direction.

(ii) A memory component: the particle tends to go back
to the best position it has ever visited.

(iii) A social component: the particle tends to rely on the
experience of its neighbors. So, it tries to head toward
the best position achieved by them.

4. Simulation Results and Discussion

The parameter identification procedure for mathematical
modelswhich describe the biological processesmust take into
consideration two important facts: first the high complexity
of the models (big number of state variables and parameters)
and second the small quantity and sometime the poor quality
of the available real measurements.

The role of parameter identification is to determine the
model’s parameters from a set of input-output measures.This
task is ensured by comparing this set with the one obtained
from the estimated model using a mathematical function
named objective function.

In this paper, we are interested in the offline parameter
identification and the Mean Square Error (MSE) is selected
as the objective function called also fitness. It is given by the
following expression:

MSE = (1𝑛) 𝑛∑
𝑖=1

𝑒2 = (1𝑛) 𝑛∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2 (7)

with 𝑌𝑖 and 𝑌𝑖 being, respectively, the estimated and the
measured responses of the system at each sample time 𝑖, (𝑖 =1, . . . , 𝑛).𝑒 denotes the error between these responses and 𝑛 is the
number of samples.

The real measurements are obtained from two different
experiments whose duration is about 6 hours divided by a
sampling period of 20 minutes under different airing con-
ditions. One of them has been chosen for the identification
procedure. The only measured state variables as we have
mentioned before are 𝑆NO3

, 𝑆NH4
, and 𝑆O2

.
Taking into account the slow operating mode (limited

number of samples), the parameter identification procedure
will be a bit tough which makes the use of the pseudomea-
surements a necessity. The new sample time is equal to 1
minute.

Our main purpose is to identify the specific parameters
of the reduced linear model describing the ASP using CSA.
Gather these parameters to form the following vector: 𝜃 =[𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9], where each parameter
corresponds to one dimension of the problem. The identifi-
cation operation is built on two stages: one for the aerobic
phase and the other for the anoxic one.

In the application of metaheuristic approaches, many
characteristic parameters must be taken into account. They
can vary from one situation to another. The unfit choice may
lead the algorithm to easily fall in local optima or diverge
completely.

After doing various tests, the parameters of the three
intelligent algorithms have been chosen in Table 1. It is
noteworthy that these algorithms can achieve a different
result if another set of parameters have been applied.

The obtained results from the different approaches under
identical conditions are presented in Table 2. Focusing on
the intelligent ones, all these algorithms have been run five
times given their random behavior with a population of 10,
respectively, chromosomes, birds, and nests for 100 iterations.
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Table 1: Algorithms’ parameters.

Parameter Value
CSA GA PSO

Number of individuals 10 10 10
Number of generations 100 100 100
Crossover probability - 0.9 -
Mutation probability - 0.1 -
Selection probability - 0.5 -
Inertia weight (𝑤) - - 0.4 ≤ 𝑤 ≤ 0.9
Acceleration coefficient (𝑐1) - - 2
Acceleration coefficient (𝑐2) - - 2
The probability (𝑃𝑎) 0.25 - -

Substrate concentration (g/m3)
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Nonlinear
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Figure 4: Substrate concentration.

According to Table 2, even though the identified param-
eters with different methods are not identical, they have
the same order of magnitude. This numerical difference
can be originated from the simplifications made on the
linearized model, the choice of the objective function and
the algorithms’ parameters. For each method, an equivalent
model is obtained, although it is different from the others.

Graphical comparisons usually illustrate the existence or
the absence of systematic deviations between real measure-
ments and model predictions. One of the most significant
criteria for the adequacy of a model is the quantitative
measure of the differences between measured and calculated
values. Based on the different techniques, the estimated
values of parameters will be explored in the simulation of
the linear model. The resulting model’s responses will be
compared to the real ones as exposed in Figures 4, 5, 6, and 7.

The obtained figures (Figures 4, 5, 6, and 7) show 6
different lines, 4 of them present the estimated linear model
with distinctive techniques (Simplex, GA, PSO, and CSA),
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Figure 5: Nitrogen concentration as nitrate and nitrite.
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Figure 6: Nitrogen concentration as ammonia.

the fifth is the nonlinear model, and finally, the crosses
show the real data performance (only for the nitrite, the
ammonia, and the oxygen). These figures illustrate that the
performance of the estimated model by the CSA exceeds
all the others, in predicting successfully the variations of
the real system responses. As a result it provides a more
precise presentation so close to the original one which is the
nonlinear model despite few differences specially noticed for
the oxygen concentration.



8 Computational Intelligence and Neuroscience

Table 2: Identified parameters.

Parameters Calculated values Simplex GA PSO CSA𝛽1 95.81 63.81 66.1065 88.36 90.96𝛽2 34.50 35.03 16.91 25.1149 18.4952𝛽3 57.48 47.0 49.9476 54.1187 48.9822𝛽4 6.92 5.43 6.1746 6.62 5.05𝛽5 108.71 101.5 112.3848 109.84 111.2𝛽6 78.88 53.8 60.3961 59.1801 57.7630𝛽7 1516.1 990.2 1291.492 1229.48 1244.64𝛽8 14.10 15.7 19.1219 21.2930 15.9814𝛽9 258.49 186.1 187.9578 265.1892 194.9514

Table 3: Identified parameters.

Simplex GA PSO CSA
MSE1 8.1205𝑒 − 04 4.3547𝑒 − 04 3.9683𝑒 − 04 2.117𝑒− 04
MSE2 0.2206 0.1843 0.1723 0.0870
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Figure 7: Oxygen concentration.

This fact is also illustrated by comparing, the outputs of
the estimated linear models to both the outputs of the non-
linearmodel (MSE1) and the experimental measures (MSE2).
The Mean Square Error is used as a means of evaluation
for the various considered techniques as mentioned in the
Table 3.

Setting the CSA’s results against the ones obtained by
conventional method (Nelder-Mead method) or intelligent
techniques (GA and PSO) confirms the ability of this
technique to provide a simulated model that has the same
dynamic as the real one. Unlike the CSA which is a generic
and robust technique, the other ones (GA and PSO) require

fine-tuning of their parameters for a particular problem. For
example, with the same set of algorithm parameters, GA or
PSO might have achieved better results for another kind of
problem.

In the CSA, there are only three parameters (population
size, number of iterations, and switching parameter 𝑃𝑎) that
determine the algorithm’s effectiveness. The most important
one is 𝑃𝑎 which essentially rules the balance of randomiza-
tion, the elitism, and the local search. Hence, the justification
of the CSA competence is that there exist fewer parameters
to be fine-tuned compared to GA and PSO.Thus, an efficient
exploration of the search space can be easily achieved which
will lead to a more efficient algorithm that can escape local
optima and quickly converge toward the best solution.

It can be concluded that the Cuckoo Search Algorithm
presents a fast, simple, and reduced-number-parameters
method which makes it more useful than the others.

5. Conclusion

This paper proposes a parameter identification approach built
on CSA for an activated sludge wastewater treatment process.
It provides a review of the early considered method and
proves its efficiency by comparing its performance with other
methods classical or intelligent all along with the experimen-
tal data. Simulation results illustrate the ability of the CSA
to identify the system parameter values with high precision.
Hence it provides a valuable outcome to be investigated in
the control strategies. This work can be carried forward by
investigating the obtained model in state estimation problem
in order to develop a good control strategy on this process.

Variables’ Definition𝑆𝑆: Biodegradable substrate concentration𝑆NO3
: Nitrate and nitrite nitrogen concentration𝑆NH4
: Ammonium/ammonia nitrogen
concentration𝑆O2

: Oxygen concentration𝐷𝑠: Dilution rate of the purge𝐷c: Dilution rate of carbon𝑆sc: Carbon concentration𝑌𝐻: Heterotrophic yield coefficient
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: Oxygen saturation concentration𝑘𝐿𝑎: Oxygen transfer coefficient𝑆sin: Biodegradable substrate initial

concentration𝑆NH4in: Ammonium/ammonia nitrogen initial
concertation.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] R. Snyder and D. Wyant, “Activated sludge process control,
training manual for wastewater treatment plant operators,”
Department of Environmental Quality, State of Michigan.

[2] S. Daira, M. Bensoltane, Y. Djebbar, and H. Abida, “Manage-
ment of control production for activated mud of the municipal
wastewater treatment plant at souk-ahras using stoat,” Revue
LJEE, 2014.

[3] A. A. Boukerroucha, “Modélisation des stations d’épuration
a boues activées-cas de la station de Baraki(Alger),” Master
memory, 2010.

[4] S. Julien,Modelisation et estimation pour le controle d’un procédé
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