Hindawi Publishing Corporation

International Journal of Reconfigurable Computing
Volume 2008, Article ID 738174, 17 pages
doi:10.1155/2008/738174

Research Article

Multiobjective Optimization for Reconfigurable Implementation

of Medical Image Registration

Omkar Dandekar,"? William Plishker,">2 Shuvra S. Bhattacharyya,' and Raj Shekhar"2

I Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore,

MD 21201, USA

Correspondence should be addressed to Raj Shekhar, rshekhar@umm.edu

Received 6 March 2008; Revised 11 September 2008; Accepted 27 November 2008

Recommended by Juergen Becker

In real-time signal processing, a single application often has multiple computationally intensive kernels that can benefit from
acceleration using custom or reconfigurable hardware platforms, such as field-programmable gate arrays (FPGAs). For adaptive
utilization of resources at run time, FPGAs with capabilities for dynamic reconfiguration are emerging. In this context, it is useful
for designers to derive sets of efficient configurations that trade off application performance with fabric resources. Such sets can be
maintained at run time so that the best available design tradeoff is used. Finding a single, optimized configuration is difficult, and
generating a family of optimized configurations suitable for different run-time scenarios is even more challenging. We present
a novel multiobjective wordlength optimization strategy developed through FPGA-based implementation of a representative
computationally intensive image processing application: medical image registration. Tradeoffs between FPGA resources and
implementation accuracy are explored, and Pareto-optimized wordlength configurations are systematically identified. We also
compare search methods for finding Pareto-optimized design configurations and demonstrate the applicability of search based on
evolutionary techniques for identifying superior multiobjective tradeoff curves. We demonstrate feasibility of this approach in the
context of FPGA-based medical image registration; however, it may be adapted to a wide range of signal processing applications.

Copyright © 2008 Omkar Dandekar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

In the field of real-time signal processing systems, accelera-
tion of computationally intensive algorithmic components is
often achieved by mapping them to custom or reconfigurable
hardware platforms, such as field-programmable gate arrays
(FPGAs). Often, multiple kernels in a single application
can benefit from this approach to acceleration, requiring
them to share a single fabric. This is particularly necessary
in applications where multiple kernels share data and feed
results to each other. For example, in medical imaging
it has been shown that both image preprocessing [1-3]
and image registration [4-6] can achieve high levels of
speedup through hardware acceleration. To maximize the
performance of an application and to optimize the fabric
resource utilization, the kernels must be designed to meet
their application requirements while balancing their resource
consumption on the fabric. Application requirements often

change at run time and strategies based on static design
must try to identify a reasonable “average case” design
configuration that accommodates all possible scenarios.
Because this approach can be highly suboptimal and can
result in significant under- or overutilization of the fabric
in many scenarios, modern FPGAs are emerging with run-
time reconfiguration capabilities. Self-monitoring FPGA
implementations are able to adapt to variable application
requirements and reconfigure their processing structures
to better-suited design configurations [7]. This not only
improves application performance but also results in more
effective utilization of fabric resources. To exploit this
technology, it is highly desirable that the designers provide
quality design configurations that trade off application
performance with fabric resources. Consequently, the pri-
mary focus of this work is to develop a framework that
enables the designers to identify such optimized design
configurations.

A common system parameter for trading off resource and
performance is datapath wordlength. Typically, algorithms
are first developed in software using floating-point represen-
tation and later migrated to hardware using finite precision
(e.g., fixed-point representation) for achieving improved
computational speed and reduced hardware cost. These
implementations are often parameterized, so that a wide
range of finite precision representations can be supported
(8] by choosing an appropriate wordlength for each internal
variable. As a consequence, the accuracy and hardware
resource requirements of such a system are functions of the
wordlengths used to represent the internal variables. Deter-
mining an optimal wordlength configuration that minimizes
the hardware implementation cost while satisfying a design
criterion such as maximum output error has been shown
to be nondeterministic polynomial-time (NP)-hard [9] and
can take up to 50% of the design time for complex systems
[10]. In addition, a single optimal solution may not exist,
especially in the presence of multiple conflicting objectives.
Moreover, a new configuration generally must be derived
when the design constraints are altered.

An optimum wordlength configuration can be identified
by analytically solving the quantization error equation
as described previously by several authors [11-15]. This
analytical representation, however, can be difficult to obtain
for complex systems. Techniques based on local search
or gradient-based search [16] have also been employed,
but these methods are limited to finding a single feasible
solution as opposed to an optimized tradeoff curve. An
exhaustive search of the entire design space is guaranteed
to find Pareto-optimal configurations. Execution time for
such exhaustive search, however, increases exponentially
with the number of design parameters, making it unfeasible
for most practical systems. Methods that transform this
problem into a linear programming problem have also
been reported [11], but these techniques are limited to
cases in which the objectives can be modeled as linear
functions of the design parameters. Other approaches based
on linear aggregation of objectives may not find proper
Pareto-optimal solutions when the search space is nonconvex
[17]. Techniques based on evolutionary methods have been
shown to be effective in searching large search spaces in
an efficient manner [18, 19]. Furthermore, these techniques
are inherently capable of performing multipoint searches.
As a result, techniques based on evolutionary algorithms
(EAs) have been employed in the context of multiobjective
optimization (SPEA2 [20], NSGA-II [21]). However, their
application to solving wordlength optimization problems has
been limited.

We formulate this problem of finding optimal wordle-
ngth configurations as a multiobjective optimization, where
different objectives—for example, accuracy and area—
generally conflict with one another. Although this approach
increases the complexity of the search, it can find a set
of Pareto-optimized configurations representing strategically
chosen tradeoffs among the various objectives. This allows
a designer to choose an efficient configuration that satisfies
given design constraints and provides ease and flexibility
in modifying the design configuration as the constraints

International Journal of Reconfigurable Computing

change. In this work, we present this novel multiobjective
optimization strategy and demonstrate its feasibility in the
context of FPGA-based implementation of medical image
registration. The tradeoff between FPGA resources (area
and memory) and implementation accuracy is systematically
explored, and Pareto-optimized solutions are identified. This
analysis is performed by treating the wordlengths of the
internal variables as design variables. We also compare sev-
eral search methods for finding Pareto-optimized solutions
and demonstrate, in the context of the chosen problem,
the applicability of search based on evolutionary techniques
for efficiently identifying superior multiobjective tradeoff
curves. In comparison with the earlier reported techniques,
our work captures more comprehensively the complexity
of the underlying multiobjective optimization problem and
demonstrates the applicability of our framework in finding
superior Pareto-optimized solutions in an efficient manner,
even in the presence of a nonlinear objective function.

This paper is organized as follows. Section 2 provides
background on image registration and outlines an architec-
ture for its FPGA-based implementation. We also highlight
some strategies for parameterized design and synthesis of
this architecture. Formulations for multiobjective optimiza-
tion and various search methods to find Pareto-optimized
solutions are described in Section 3. Section 4 describes
experimental results, compares various search methods, and
presents postsynthesis validation of the presented strategy. In
Section 5, discussion on wordlength search and multiobjec-
tive optimization is presented. Section 6 concludes the paper.

2. Image Registration

Medical image registration is the process of aligning two
images that represent the same anatomy at different times,
from different viewing angles, or using different imaging
modalities. Image registration is an active area of research,
and over the last several decades numerous publications
have outlined various methodologies to perform image
registration and its applications. Maintz and Viergever [22]
and Hill et al. [23] have presented a comprehensive summary
of the range of the image registration domain. Several
types of image registration are in routine use (see [22-25]);
however, registration based on voxel intensities remains the
most versatile, powerful, and inherently automatic way of
achieving the alignment between two images. This approach,
in general, attempts to find the transformation (T) that
optimally aligns a reference image (RI) with coordinates x, y,
and z and a floating image (FI) under an image similarity
measure ([F):

T-= argmax F(RI(x, y,2), FI(T(x, y,2))). (1)
T

Many image similarity measures, such as the sum of squared
differences and cross-correlation, have been used, but over
the last decade mutual information (MI) has emerged as the
preferred similarity measure. M1 is an information theoretic
measure and is calculated as:

MI(RL FI) = h(RI) + h(FI) — h(RI, FI). (2)

International Journal of Reconfigurable Computing

_Fomhost j ______
1
|
....................... !

Voxel counter

- Transformation : !

T © matrix [T] G

I
| Integer RI coordinates
I

]

Integer FI coordinates

Voxel coordinate transformation unit

Fractional FI
coordinates
for interpolation

| Partial volume interpolator |

External R apd 8-FI
image intensity values
memory

Mutual histogram
accumulation

8 Interpolation
weights for

accumulation
into mutual histogram

Valid Mutual {ln'dtw1dual
voxel histogram 1stogram
counter accumulator

H,
N MHpg, F1 Hl;;

Entropy calculator

To host

FiGure 1: Top-level block diagram of FPGA-based architecture for MI calculation.

In this equation, #(RI) and h(FI) are the individual entropies
and A(RLFI) is the mutual entropy of the images to be
registered. These entropies are further calculated as:
h(RI) = = > pri(x)- In (pri(x)),
h(FI) = = > pr(x)-In (pri(x)),
h(RLFI) = — Z Z preer(x)- In (propi(x)).

3)

Here, the notations pri, prr, and prypr represent the individ-
ual probability distribution function (PDF) of RI, individual
PDF of FI, and the mutual PDF of RI and FI, respectively.
These distributions are estimated from the individual and
mutual histograms of the images to be registered. Additional
details about computation of MI, its properties, and its
application to image registration can be found in an article
by Pluim et al. [25].

MI-based image registration has been shown to be
robust and effective in multimodality image registration
[24]. However, this form of registration typically requires
thousands of iterations (MI evaluations), depending on
image complexity and the degree of initial misalignment
between images. Castro-Pareja et al. [4] have shown that
calculation of MI for different candidate transformations
is a factor limiting the performance of MI-based image
registration. We have, therefore, developed an FPGA-based
architecture for accelerated calculation of MI [6] that is
capable of computing MI 40 times faster than software
implementation. The transformation model (T in (1))
employed by this architecture is a locally rigid-body model
consisting of three-dimensional (3D) translations and rota-
tions. Consequently, the analysis presented in this article

pertains to locally rigid transformations. However, it must
be noted that hierarchical rigid-body transformations can
be used to represent deformable (nonrigid) transformation
models as demonstrated in the volume subdivision-based
approach reported by Walimbe and Shekhar [26].

2.1. FPGA-Based Implementation of
Mutual Information Calculation

During the execution of image registration using this
architecture, the optimization process is executed from a host
workstation. The host provides a candidate transformation,
while the FPGA-based implementation applies it to the
images and performs the corresponding MI computation.
The computed MI value is then further used by the host to
update the candidate transformation and eventually find the
optimal alignment between the RI and FI. Figure 1 shows the
top-level block diagram of the aforementioned architecture.
The important modules in this design are described in the
following sections.

2.1.1. Voxel Counter

Calculation of MI requires processing (fetching the voxel
from the image memory, performing coordinate transforma-
tion, and updating the mutual histogram (MH)) each voxel
in the RI. In addition, because the implemented algorithm
processes the images on a subvolume basis, RI voxels within a
3D neighborhood corresponding to an individual subvolume
must be processed sequentially. The host programs the
FPGA-based MI calculator with subvolume start and end

addresses, and the voxel counter computes the address
corresponding to each voxel within that subvolume in z-y-x
order.

2.1.2. Coordinate Transformation

The initial step in MI calculation involves applying a
candidate transformation (T) to each voxel coordinate (v,)
in the RI to find the corresponding voxel coordinates in the
FI (v). This is mathematically expressed as:

V=T ¥ (4)

The deformation model employed is a six-parameter rigid
transformation model and is represented using a 4 X 4
matrix. The host calculates this matrix based on the current
candidate transformation provided by the optimization
routine and sends it to the MI calculator. A fixed-point
representation is used to store the individual elements of this
matrix. The coordinate transformation is accomplished by a
simple matrix multiplication.

2.1.3. Partial Volume Interpolation

The coordinates mapped in the FI space (vy) do not normally
coincide with a grid point (integer location), thus requiring
interpolation. Nearest neighbor and trilinear interpolation
schemes have been used most often for this purpose; how-
ever, partial volume (PV) interpolation, introduced by Maes
et al. [24], has been shown to provide smooth changes in
the histogram values with small changes in transformation.
The reported architecture consequently implements PV
interpolation as the choice of interpolation scheme. vy, in
general, will have both fractional and integer components
and will land within an FI neighborhood of size 2 x 2 x 2.
The interpolation weights required for the PV interpolation
are calculated using the fractional components of v. Fixed-
point arithmetic is used to compute these interpolation
weights. The corresponding floating voxel intensities are
fetched by the image controller in parallel using the integer
components of vs. The image controller also fetches the voxel
intensity corresponding to v,. The MH then must be updated
for each pair of reference and floating voxel intensities (eight
in all) using the corresponding weights computed by the PV
interpolator.

2.1.4. Image Memory Access

Images from different modalities (computed tomography
(CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), etc.) have different native resolution,
typical image dimensions, and dynamic range. Despite these
variations, dimensions of most medical images are smaller
than 512 x 512 x 512 and are supported by our architecture.
The dynamic range of these images is indicated by the
number of bits used to represent the intensity (gray value) at
every voxel. For MI-based registration, however, these images
are typically converted to 7- or 8-bit representation as a part
of image preprocessing. This is done to prevent dispersion of

International Journal of Reconfigurable Computing

the MH and leads to improved quality of image registration.
After this preprocessing step, all the gray values in the images
are used for image registration.

The typical size of 3D medical images prevents the use of
high-speed memory internal to the FPGA for their storage.
Between the two images, the RI has more relaxed access
requirements because it is accessed in a sequential manner
(in z-y-x order). This kind of access benefits from burst
accesses and memory caching techniques, allowing the use
of modern dynamic random access memories (DRAMs) for
image storage. For the architecture presented, both the RI
and FI are stored in separate logical partitions of the same
DRAM module. Because the access to the RI is sequential and
predictable, the architecture uses internal memory to cache a
block of RI voxels. Thus, during the processing of that block
of RI voxels, the image controller has parallel access to both
RI and FI voxels. The RI voxels are fetched from the internal
FPGA memory, whereas the FI voxels are fetched directly
from the external memory.

The FI, however, must be accessed randomly (depending
on the current transformation T), and eight FI voxels (a
2 X 2 X 2 neighborhood) must be fetched for every RI
image voxel to be processed. To meet this memory access
requirement, the reported architecture employs a memory
addressing scheme similar to the cubic addressing technique
reported in the context of volume rendering [27] and image
registration [4]. A salient feature of this technique is that
it allows simultaneous access to the entire 2 X 2 X 2
voxel neighborhood. The reported architecture implements
this technique by storing four copies of the FI and taking
advantage of the burst mode accesses native to modern
DRAMs. The image voxels are arranged sequentially such
that performing a size-two burst fetches two adjacent 2 x 2
neighborhood planes, thus making the entire neighborhood
available simultaneously. The image intensities of this neigh-
borhood are then further used for updating the MH.

2.1.5. Updating the Mutual Histogram

For a given RI voxel (RV) and associated 3D neighborhood in
the FI (FV, : FV5), there are eight intensity pairs (RV,FVj :
FV7) and corresponding interpolation weights. Because the
MH must be updated (read-modify-write) at these eight
locations, this amounts to 16 accesses to MH memory for
each RI voxel. This high memory access requirement is
handled by using the high-speed, dual-ported memories
internal to the FPGA to store the MH. The operation of
updating the MH is pipelined and, hence, read-after-write
(RAW) hazards can arise if consecutive transactions attempt
to update identical locations within the MH. The reported
design addresses this issue by introducing preaccumulate
buffers, which aggregate the weights from all conflicting
transactions. Thus, all the transactions leading to an RAW
hazard are converted into a single update to the MH, thereby
eliminating any RAW hazards.

While the MH is being computed, the individual his-
togram accumulator unit computes the histograms for the
RI and FI. These individual histograms are also stored

International Journal of Reconfigurable Computing

using internal, dual-ported memories. The valid voxel
counter module keeps track of the number of valid voxels
accumulated in the MH and calculates its reciprocal value.
The reciprocal value of the number of valid voxels in
the histogram is calculated by using successive subtraction
operations. This operation takes N clock cycles (where N
is the fractional wordlength of the reciprocal value) and
must be performed only once per every MI calculation. The
resulting value is then used by the entropy calculation unit
for calculating the individual and joint probabilities and
subsequently entropies as described in (3).

2.1.6. Entropy Calculation

The final step in MI calculation is to compute joint and indi-
vidual entropies using the joint and individual probabilities,
respectively. To calculate entropy, it is necessary to evaluate
the function f(p) = p- In(p) for all the probabilities. As each
probability p takes on values within [0, 1], the corresponding
range for the function f(p) is [—e~!,0]. Thus, f(p) has a
finite dynamic range and is defined for all values of p. Several
methods for calculating logarithmic functions in hardware
have been reported [28], but of particular interest is the
multiple lookup table (LUT)-based approach introduced by
Castro-Pareja and Shekhar [5]. This approach minimizes
the error in representing f(p) for a given number and size
of LUTs and, hence, is accurate and efficient. Following
this approach, the reported design implements f(p) using
multiple LUT-based piecewise polynomial approximation.

2.2. Parameterized Architectural Design

Implementations of signal processing algorithms using
microprocessor- or DSP-based approaches are characterized
by a fixed datapath width. This width is determined by the
hardwired datapath of the underlying processor architec-
ture. Reconfigurable implementation based on FPGAs, in
contrast, allows the size of datapath to be customized to
achieve better tradeoffs among accuracy, area, and power.
Moreover, this customization can also change at run time
to accommodate varying design requirements. The use of
such custom data representation for optimizing designs is
one of the main strengths of reconfigurable computing [29].
It has been contended that the most efficient hardware
implementation of an algorithm is the one that supports a
variety of finite precision representations of different sizes
for its internal variables [8]. In this spirit, many commercial
and research efforts have employed parameterized design
style for intellectual property (IP) cores [30-34]. This
parameterization capability not only facilitates reuse of
design cores but also allows them to be reconfigured to meet
design requirements.

During the design of the aforementioned architecture,
we adopted a similar design style that allows configuration
of the wordlengths of the internal variables. Hardware
design languages such as VHDL and Verilog natively support
hierarchical parameterization of a design through use of
generics and parameters, respectively. This design style takes

advantage of these language features and is employed for the
design of all the modules described earlier. We highlight the
main features of this design style using illustrative examples.
Consider a design module with two input variables that
computes an output variable through arithmetic manipu-
lation of the input variables. The wordlength of the input
variables (denoted by IP1_WIDTH, IP2_-WIDTH) and that
of the output variable (denoted by OP_WIDTH) are the
design parameters for this module. The module can then
be parameterized for these design variables as illustrated in
Figure 2(a).

In a pipelined implementation of an operation, a module
may have multiple internal pipeline stages and correspond-
ing intermediate variables. Wordlengths chosen for these
intermediate variables can also impact the accuracy and
hardware requirements of a design. In our implementation
scheme, we do not employ any rounding or truncation for
the intermediate variables, but deduce their wordlengths
based on the wordlengths of the input operands and the
arithmetic operation to be implemented. For example,
multiplication of two 8-bit variables will, at the most, require
a 16-bit-wide intermediate output variable. A parameterized
implementation of this scenario is illustrated in Figure 2(c).
Sometimes it is also necessary to instantiate a vendor-
provided or a third-party IP core, such as a first in/first
out (FIFO) module or an arithmetic unit, within a design
module. In such cases, we simply pass the wordlength
parameters down the design hierarchy to configure the IP
core appropriately and thereby maintain the parameterized
design style (see, e.g., Figure 2(b)).

When signals cross module boundaries, the output
wordlength and format (position of the binary point) of
the source module should match the input wordlength and
format of the destination module. This is usually achieved
through use of a rounding strategy and right- or left-
shifting of the signals. Adopting “rounding toward the
nearest” strategy to achieve wordlength matching is expected
to introduce the smallest error but requires additional
logic resources. In our design, we therefore implement
truncation (or “rounding toward zero” strategy), while the
signal shifting is achieved through zero padding. Both these
operations are parameterized and take into account the
wordlengths and the format at the module boundaries
(see, e.g., Figure 2(c)). Thus, this parameterized design style
enables the architecture to support multiple wordlength
configurations for its internal variables.

3. Multiobjective Optimization

The aforementioned architecture is designed to accelerate the
calculation of MI for performing medical image registration.
We have demonstrated this architecture to be capable of
offering execution performance superior to that of a software
implementation [6]. The accuracy of MI calculation (and,
by extension, that of image registration) offered by this
implementation, however, is a function of the wordlengths
chosen for the internal variables of the design. Similarly,
these wordlengths also control the hardware implementation
cost of the design. For medical applications, the ability of

International Journal of Reconfigurable Computing

entity Modulel is
generic (
IP1_WIDTH: INTEGER;
IP2_WIDTH: INTEGER;
OP_WIDTH : INTEGER) ;
port (

end Modulel;

--Declaration of a parameterized entity

s1 : IN STD_LOGIC_VECTOR (IP1_WIDTH-1 DOWNTO 0);
s2 : IN STD_LOGIC_VECTOR (IP2_WIDTH-1 DOWNTO 0);
ol : OUT STD_LOGIC_VECTOR (OP_WIDTH-1 DOWNTO 0));

(a)

-- Instantiation of a vendor supplied
--IP-core, scfifo. The width of the
--FIFO is set to be equal to that of

fifol : scfifo
generic map (

port map (
data =>o01,...);

--the signal to be buffered (ol).

LPM_NUMWORDS => (2**L0G2_DEPTH) ,
LPM_WIDTH => OP_WIDTH,
LPM_WIDTHU => LOG2_DEPTH)

signal il

--Declaration of an intermediate variable with appropriate wordlength
STD_LOGIC_VECTOR (IP1_WIDTH+IP2 WIDTH-1 DOWNTO 0);
i1 <=s1 % s2; -- Arithmetic operation (multiplication)

--Truncation of LSBs: Performed if (IP1_WIDTH+IP2_WIDTH) >= OP_WIDTH
0l <= i1 (IP1_WIDTH+IP2_WIDTH-1 DOWNTO IP1_WIDTH+IP2_WIDTH-OP_WIDTH);

--Signal-shifting: Performed if IP1 _WIDTH+IP2 WIDTH) < OP_WIDTH
0l <=1i1 & CONV_STD_LOGIC_VECTOR(O,0P_WIDTH-(IP1_WIDTH+IP2 WIDTH)) ;

FIGURE 2: Parameterized architectural design: (a) declaration of a parameterized entity; (b) an example instantiation of a vendor-supplied
IP-core; (c) usage of parameterized internal variables and an example of truncation and signal shifting, performed at the module boundaries.

an implementation to achieve the desired level of accuracy
is of paramount importance. It is, therefore, necessary to
understand the tradeoff between accuracy and hardware
implementation cost for a design and to identify wordlength
configurations that provide effective tradeoffs between these
conflicting criteria. This multiobjective optimization allows
a designer to systematically maximize accuracy for a given
hardware cost limitation (e.g., imposed by a target device)
or minimize hardware resources to meet the accuracy
requirements of a medical application.

Section 3.1 provides a formal definition of this problem,
and Section 3.2 describes a framework developed for
multiobjective optimization of FPGA-based medical image
registration.

3.1. Problem Statement

Consider a system Q that is parameterized by N parameters
ni (i = 1,2,...,N), where each parameter can take on a
single value from a corresponding set of valid values (v;). Let
the design configuration space corresponding to this system
be S, which is defined by a set consisting of all N-tuples
generated by the Cartesian product of the sets v;, Vi:

S=v Xy XV3X-+-XVN. (5)

The size of this design configuration space is then equal to
the cardinality of the set S or, in other words, the product of

International Journal of Reconfigurable Computing

the cardinalities of the sets v;:
IS| = |vi| X |v2| X |vs] X -+ % |vn]. (6)

For most systems, not all configurations that belong to S may
be valid or practical. We, therefore, define a subset J (J = S),
such that it contains all the feasible system configurations.
Now, consider m objective functions (fi, f2,..., fm) defined
for system Q, such that each function associates a real value
for every feasible configuration ¢ € J.

The problem of multiobjective optimization is then to
find a set of solutions that simultaneously optimizes the m
objective functions according to an appropriate criterion.
The most commonly adopted notion of optimality in
multiobjective optimization is that of Pareto optimality.
According to this notion, a solution ¢* is Pareto optimal if
there does not exist another solution ¢ € J such that fi(c) <
fi(c*), for all 4, and fj(c) < fj(c*), for at least one j. The
solution c* is also called a nondominated solution because
no other solution dominates (or is superior to) solution c* as
per the Pareto-optimality criteria. The set of Pareto-optimal
solutions, therefore, includes all nondominated solutions.

Given a multiobjective optimization problem and a
heuristic technique for this problem that attempts to derive
Pareto-optimal or near Pareto-optimal solutions, we refer
to solutions derived by the heuristic as “Pareto-optimized”
solutions.

3.2. Multiobjective Optimization Framework

Figure 3 illustrates the framework that we have developed
for multiobjective optimization of the aforementioned archi-
tecture. The framework has two basic components. The
first is the search algorithm that explores the design space
and generates feasible candidate solutions; the second is
the objective function evaluation module that evaluates
candidate solutions. The solutions and associated objective
values are fed back to the search algorithm so that they
can be used to refine the search. These two components
are loosely coupled so that different search algorithms can
be easily incorporated into the framework. Moreover, the
objective function evaluation module is parallelized using a
message passing interface (MPI) on a 32-processor cluster.
With this parallel implementation, multiple solutions can be
evaluated in parallel, thereby increasing search performance.
These components are described in detail in the following
sections.

3.2.1. Design Parameters

As described in Section 2.1, the architecture performs
MI calculation using a fixed-point datapath. As a result,
the accuracy of MI calculation depends on the precision
(wordlength) offered by this datapath. The design parame-
ters in this datapath define the design space and are identified
and listed along with the corresponding design module (see
Figure 1) in Table 1.

A fixed-point representation consists of an integer part
and a fractional part. The numbers of bits assigned to

/ Random search \
K Partial search \

ﬁearch using evolutionary algorithm \

Archive
population

Initial
population

Selected
population
Crossover —
&
mutation

Selection
(SPEA2)

Population j

Design &/ / Error in MI calculation and

Variator Selector

parameters hardware implementation cost
Fixed-point emulation of MI Iﬁ;re::oi(y
. ++
calculation hardware (C*t) models

Objective function evaluation

FiGUure 3: Framework for multiobjective optimization of FPGA-
based image registration.

these two parts are called the integer wordlength (IWL) and
fractional wordlength (FWL), respectively. The individual
numbers of bits allocated to these parts control the range
and precision of the fixed-point representation. For this
architecture, the IWL required for each design parameter
can be deduced from the range information specific to the
image registration application. For example, in order to
support translations in the range of [-64, 63] voxels, 7 bits of
IWL (with 1Dbit assigned as a sign bit) are required for the
translation parameter. We used similar range information
to choose the IWL for all the parameters, and these values
are reported in Table 1. The precision required for each
parameter, which is determined by its FWL, is not known
a priori. We, therefore, determine this by performing multi-
objective optimization using the FWL of each parameter as
a design variable. In our experiments, we used the design
range of [1, 32] bits for FWLs of all the parameters. The
optimization framework can support different wordlength
ranges for different parameters, which can be used to account
for additional design constraints, such as, for example,
certain kinds of constraints imposed by third-party IP.

The entropy calculation module is implemented using
a multiple LUT—based approach and also employs fixed-
point arithmetic. However, this module has already been
optimized for accuracy and hardware resources, as described
previously [5]. The optimization strategy employed in this
earlier work uses an analytical approach that is specific
to entropy calculation and is distinct from the strategy
presented in this work. This module, therefore, does not
participate in the multiobjective optimization framework of
this paper, and we simply use the optimized configuration

International Journal of Reconfigurable Computing

TaBLE 1: Design variables for FPGA-based architecture. Integer wordlengths are determined based on application-specific range information,
and fractional wordlengths are used as parameters in the multiobjective optimization framework.

Architectural module Design variable

Integer wordlength (IWL) (bits)

Fractional wordlength (FWL) range (bits)

Voxel coordinate transformation Trans?atlon Ve?tor 7 [1,32]

Rotation matrix 4 [1,32]
Partial volume interpolation Floating image address 9 [1,32]
Mutual histogram accumulation Mutual histogram bin 25 [1,32]

identified earlier. This further demonstrates the flexibility
of our optimization framework to accommodate arbitrary
designer- or externally optimized modules.

3.2.2. Search Algorithms

An exhaustive search that explores the entire design space
is guaranteed to find all Pareto-optimal solutions. However,
this search can lead to unreasonable execution time, espe-
cially when the objective function evaluation is computation-
ally intensive. For example, with four design variables, each
taking one of 32 possible values, the design space consists
of 324 solutions. If the objective function evaluation takes 1
minute per trial (which is quite realistic for multiple MI cal-
culation using large images), the exhaustive search will take
2 years. Even with the 32-processor cluster that we employed
and assuming linear speedup, exhaustive search for a four-
variable system will require about 3.5 weeks. This highlights
the infeasibility of exhaustive search even for a system with
a relatively small number of design variables. Consequently,
we have considered alternative search methods, as described
below.

The first method is partial search, which explores only
a portion of the entire design space. For every design
variable, the number of possible values it can take is reduced
by half by choosing every alternate value. A complete
search is then performed in this reduced search space. This
method, although not exhaustive, can effectively sample the
breadth of the design space. The second method is random
search, which involves randomly generating a fixed number
of feasible solutions. For both of these methods, Pareto-
optimized solutions are identified from the set of solutions
explored.

The third method is performing a search using evolu-
tionary techniques. EAs have been shown to be effective
in efficiently exploring large search spaces [18, 19]. In
particular, we have employed SPEA2 [20], which is quite
effective in sampling from along an entire Pareto-optimal
front and distributing the solutions generated relatively
evenly over the optimal tradeoff surface. Moreover, SPEA2
incorporates a fine-grained fitness assignment strategy and
an enhanced archive truncation method, which further assist
in finding Pareto-optimal solutions. The flow of operations
in this search algorithm is shown in Figure 3.

For the EA-based search algorithm, the representation of
the system configuration is mapped onto a “chromosome”
whose “genes” define the wordlength parameters of the
system. Each gene, corresponding to the wordlength of a

design variable i, is represented using an integer allele that
can take values from the set v;, described earlier. Thus, every
gene is confined to wordlength values that are predefined and
feasible for a given design variable. The genetic operators
for cross-over and mutation are also designed to adhere to
this constraint and always produce values from set v;, for
a gene i within a chromosome. This representation scheme
is both symmetric and repair-free and, hence, is favored by
the schema theory [35] and is computationally efficient, as
described by Kianzad and Bhattacharyya [36].

3.2.3. Objective Function Models and
their Fidelity

Search for Pareto-optimized configurations requires evaluat-
ing candidate solutions and determining Pareto-dominance
relationships between them. This can be achieved by calcu-
lating objective functions for all the candidate solutions and
by relative ordering of the solutions with respect to the values
of their corresponding objective functions. We consider the
error in MI calculation and the hardware implementation
cost to be the conflicting objectives that must be minimized
for our FPGA implementation problem. We model the FPGA
implementation cost using two components: the first is the
amount of logic resources (number of LUTs) required by
the design and the second is the internal memory consumed
by the design. We treat these as independent objectives
in order to explore the synergistic effects between these
complementary resources. Because of the size of the design
space and limitations resulting from execution time, it is
not practical to synthesize and evaluate each solution. We,
therefore, employ models for calculating objective functions
to evaluate the solutions. The quality of the Pareto-optimized
solutions will then depend on the fidelity of these objective
function models.

The error in MI calculation can be computed by
comparing the MI value reported by the limited-precision
FPGA implementation against that calculated by a double-
precision software implementation. For this purpose, we
have utilized a bit-true emulator of the hardware. This emu-
lator was developed in C++ and uses fixed-point arithmetic
to accurately represent the behavior of the limited-precision
hardware. It supports multiple wordlengths for internal
variables and is capable of accurately calculating the MI
value corresponding to any feasible configuration. We have
verified its equivalence with the hardware implementation
for a range of configurations and image transformations.

International Journal of Reconfigurable Computing

This emulator was used to compute the MI calculation error.
The MI calculation error was averaged for three distinct
image pairs (with different image modality combinations)
and for 50 randomly generated image transformations. The
same sets of image pairs and image transformations were
used for evaluating all feasible configurations.

The memory required for a configuration is primarily
needed for intermediate FIFOs, which are used to buffer
internal variables, and the MH memory. For example, a 64-
word-deep FIFO used to buffer a signal with a wordlength
of b will require 64 X bbits of memory. In our architec-
ture, the depth of the FIFOs and the dimensions of the
MH are constant, whereas their corresponding widths are
determined by the wordlength of the design parameters.
Using these insights, we have developed an architecture-
specific analytical expression that accurately represents the
cumulative amount of memory required for all internal
FIFOs and MH. We used this expression to calculate the
memory requirement of a configuration.

For estimating the area requirements of a configuration,
we adopt the area models reported by Constantinides et al.
[11, 37]. These are high-level models of common functional
units such as adders, multipliers, and delays. These models
are derived from the knowledge of the internal architecture
of these components. Area cost for interconnects and routing
is not taken into account in this analysis. These models
have been verified for the Xilinx Virtex series of FPGAs and
are equally applicable to alternative FPGA families and for
application-specific integrated circuit (ASIC) implementa-
tions. These models have also been previously used in the
context of wordlength optimization [11, 37, 38].

We further evaluated the fidelity [39] of these area
models using a representative module, PV interpolator, from
the aforementioned architecture. This module receives the
fractional components of the FI address and computes
corresponding interpolation weights. We varied the FWL
of the FI address from 1 to 32 bits and synthesized the
module using the Altera Stratix II and Xilinx Virtex 5 as
target devices. For a meaningful comparison, the settings
for the analysis, synthesis, and optimization algorithms (e.g.,
settings to favor area or speed) for the design tools (Altera
Quartus II and Xilinx ISE) were chosen to be compara-
ble. After complete synthesis, routing, and placement, we
recorded the area (number of LUTs) consumed by the
synthesized design. This process was automated by using
the Tcl scripting feature provided by the design tools and
through the parameterized design style described earlier. We
then compared the consumed area against that predicted by
the adopted area models for all FWL configurations. The
results of this experiment are presented in Figure 4. These
results indicate that the area estimates (number of LUTS)
predicted by the model are comparable to those obtained
through physical synthesis for both the target devices. For
quantitative evaluation, the fidelity of the area models was
calculated as follows:

N
Fldehty N(N (Z Z Fz]) (7)

i=1 j=it+l

9
25000
dy
/
20000 I
7
i,
— o
g 15000
]
= H
g
Z 10000)
-4
5’
5000
0
0 5 10 15 20 25 30

FWL of floating image address (bits)

—o— Area models
—v— Altera Stratix II
—=— Xilinx Virtex 5

FIGURE 4: Comparison of the area values predicted by the adopted
area models with those obtained after physical synthesis.

where

1, ifsign(S; —S;) = sign(M; — M;),
F; :{ g j 8 i (8)

0, otherwise.

In this equation, the M;s represent the values predicted by
the area models; the S;s represent the values obtained after
physical synthesis. The fidelity of the area models when
evaluated with respect to the synthesis results obtained for
both Altera and Xilinx devices was 1, which corresponds to
maximum (“perfect”) fidelity.

An interesting observation is that in some cases the
high-level area models underestimate by as much as 25%
the number of LUTs required. This can be explained by
the fact that these models were calibrated using previous
generation devices [11, 37]. It must be, however, noted
that the Pareto-dominance relationship between the design
configurations is maintained as long as the relative order-
ing (with respect to an objective function such as area)
between two design configurations is preserved. Using more
accurate area models will certainly improve the absolute
prediction of area requirements corresponding to a given
design configuration but, as such, will not affect the relative
ordering of a set of design configurations. Designing accurate
area models that take into account the latest devices, cross-
vendor FPGA architectures, special-purpose computational
units, and various synthesis optimizations is nevertheless
important and will be a topic of a future investigation.
The perfect fidelity we achieved for the current area models
indicates that the relative ordering of FWL configurations
with respect to their area requirements is consistent for the
model and synthesized designs. These results further validate
the applicability of using the aforementioned area models for
multiobjective optimization.

10

TaBLE 2: Number of solutions explored by search methods.

Search method Number of solutions explored

Partial search 65536
Random search 6000
EA-based search 6000

TABLE 3: Parameters used for EA-based search.

Parameter Value
Population size 200
Number of generations 30
Cross-over probability 1.0
Mutation probability 0.06
4. Results

We performed multiobjective optimization of the aforemen-
tioned architecture using the search algorithms outlined in
Section 3. To account for the effects of random number
generation, the EA-based search and random search were
repeated five times each, and the average behavior from
these repeated trials is reported. The number of solutions
explored by each search algorithm in a single run is reported
in Table 2. The execution time of each search algorithm was
roughly proportional to the number of solutions explored,
and the objective function evaluation for each solution took
approximately 1 minute using a single computing node. As
expected, the partial search algorithm explored the largest
number of solutions. The parameters used for the EA-based
search are listed in Table 3. These parameters were identified
experimentally. For example, using a population size of 100
yielded similar search results; however, the diversity of the
solutions found in the objective space was relatively poor.
Similarly, increasing maximum number generations beyond
30 did not yield a significant improvement in the quality of
the search solutions. The cross-over and mutation operators
were chosen to be one-point cross-over and flip mutator,
respectively. For a fair comparison, the number of solutions
explored by the random search algorithm was set to be equal
to that explored by the EA-based algorithm.

The solution sets obtained by each search method were
then further reduced to corresponding nondominated solu-
tion sets using the concept of Pareto optimality. As described
earlier, the objectives considered for this evaluation were the
MI calculation error and the memory and area requirements
of the solutions. Figure 5 shows the Pareto-optimized solu-
tion set obtained for each search method. Qualitatively, the
Pareto front identified by the EA-based search is denser and
more widely distributed and demonstrates better diversity
than other search methods. Figure 6 compares the Pareto
fronts obtained by partial search and EA-based search by
overlaying them and illustrates that the EA-based search can
identify better Pareto-optimized solutions, which indicates
the superior quality of solutions obtained by this search
method. Moreover, it must be noted that the execution time
required for the EA-based search was more than 10 times
faster than that required for the partial search.

International Journal of Reconfigurable Computing

3e+6

2.8¢+6

260467

24e+6 7

2.2e+6

Memory (bits)

2e+6

1.8¢+6

3e+6

28¢+61

2.6e +6

24e+6

Memory (bits)

22¢+6 |
2e+6

1.8¢+6

3e+6
28¢+61
260467

2.4e+6 7

Memory (bits)

2.2e+6

2e+6

1.8e+6

(c) Random search

FIGURE 5: Pareto-optimized solutions identified by various search
methods.

International Journal of Reconfigurable Computing

x10?
85

80 1k

e P »

70 +——

65

Area (LUTs)

60 (i

o

55 * M)

50

le—4 le-3

MI calculation error

le—2

e Partial search
¢ EA-based search

(a) Area versus MI calculation error

11

3e+6

28¢+6 — T

2.6e+6 =

2.4e+6

Memory (bits)

2.2e+6

2e+6

1.8¢+6
le—4 le-3

MI calculation error

le—2

e Partial search
¢ EA-based search

(b) Memory versus MI calculation error

FIGURE 6: Qualitative comparison of solutions found by partial search and EA-based search.

4.1. Metrics for Comparison of
Pareto-Optimized Solution Sets

Quantitative comparison of the Pareto-optimized solution
sets is essential in order to compare more precisely the
effectiveness of various search methods. As with most real-
world complex problems, the Pareto-optimal solution set
is unknown for this application. We, therefore, employ the
following two metrics to perform quantitative comparison
between different solution sets. We use the ratio of non-
dominated individuals (RNIs) to judge the quality of a given
solution set, and the diversity of a solution set is measured
using the cover rate. These performance measures are similar
to those reported by Zitzler and Thiele [40] and are described
below.

The RNI is a metric that measures how close a solution
set is to the Pareto-optimal solution set. Consider two solu-
tion sets (P1 and P2) that each contain only nondominated
solutions. Let the union of these two sets be Py. Furthermore,
let Pyp be a set of all nondominated solutions in Py (Pyp S
Py). The RNI for the solution set P; is then calculated as:

_|PiNPxp |

RN, = o])

where |-] is the cardinality of a set. The closer this ratio is to
100%, the more superior the solution set is and the closer it
is to the Pareto-optimal front. We computed this metric for
all the search algorithms previously described, and the results
are presented in Figure 7. Our EA-based search offers better
RNI and, hence, superior quality solutions to those achieved
with either the partial or random search.

The cover rate estimates the spread and distribution (or
diversity) of a solution set in the objective space. Consider
the region between the minimum and maximum of an
objective function as being divided into an arbitrary number

of partitions. The cover rate is then calculated as the ratio
of the number of partitions that is covered (i.e., there exists
at least one solution with an objective value that falls within
a given partition) by a solution set to the total number
of partitions. The cover rate (Ck) of a solution set for an
objective function (f) can then be calculated as:

Ny

Ce = —, 10
k= (10)
where Ny is the number of covered partitions and N is the
total number of partitions. If there are multiple objective
functions (e.g., m), then the net cover rate can be obtained

by averaging the cover rates for each objective function as:

1 m

C=—> C (11)
=

The maximum cover rate is 1, and the minimum value is
0. The closer the cover rate of a solution set is to 1, the
better coverage and more even (more diverse) distribution
it has. Because the Pareto-optimal front is unknown for
our targeted application, the minimum and maximum
values for each objective function were selected from the
solutions identified by all the search methods. We used
20 partitions/decades for MI calculation error (represented
using a logarithmic scale), 1 partition for every 50 LUTs
for the area requirement, and 1 partition for every 50 Kbits
of memory requirement. The cover rate for all the search
algorithms described earlier was calculated using the method
outlined above and the results are illustrated in Figure 8. The
EA-based search offers a better cover rate, which translates
to better range and diversity of solutions when compared
with either partial or random searches. In summary, our EA-
based search outperforms the random search and is capable
of offering more diverse and superior quality solutions when

International Journal of Reconfigurable Computing

41.3%

Figure 7: Comparison of search methods using the ratio of nondominated individuals (RNTs).

12
I Partial search
[Random search
I EA-based search
1
0.8
% 0.6 1
o}
>
3
O 0.4 1
0.2 1
0 d
Partial Random EA-based
search search search

FiGure 8: Comparison of search methods using cover rate.

compared with the partial search, using only 10% of the
execution time.

4.2. Accuracy of Image Registration

An important performance measure for any image registra-
tion algorithm, especially in the context of medical imaging,
is its accuracy. We did not choose registration accuracy as
an objective function because of its dependence on data
(image pairs), the degree of misalignment between images,
and the behavior of the optimization algorithm that is used
for image registration. These factors, along with its execution
time, in our experience, may render registration accuracy
as an unsuitable objective function, especially if there is
nonmonotonic behavior with respect to the wordlength of
design variables. Another important aspect is that the desired
accuracy of registration depends on the application in which
image registration is employed. For example, during an
image-guided medical procedure high registration accuracy
might be desired, whereas in a simple visualization task,
slightly inaccurate image registration may be tolerated. Fur-
thermore, in a multiresolution image registration approach
slightly inaccurate (but, hardware resource-efficient) design
configuration can be employed at the initial levels and a more
accurate (but perhaps requiring more hardware resources)

design configuration can be used at later levels. Thus, image
registration accuracy is a constraint from an application
perspective and, as such, is not used to guide the exploration
of the design space. Instead, we used error in the MI
calculation, which is relatively less application- and data-
dependant, as an objective function.

Once the Pareto-optimized tradeoffs between MI calcu-
lation error and hardware resources are obtained through
the presented approach, a system designer could evaluate
the performance of these Pareto-optimized design configu-
rations in the context of a specific target application. This
can be done by using a set of sample image pairs acquired
for that target application. To demonstrate the feasibility of
this approach, we selected CT-CT registration as an example
application. We randomly selected five clinical image pairs
for this analysis and registered them using design config-
uration corresponding to each Pareto-optimized solution.
These image pairs had the dimensions of 256 X 256 X
212-335voxels and the resolution of 1.4-1.7mm x 1.4—
1.7mm X 1.5mm. This image registration was performed
using the aforementioned bit-true simulator. The result
of registration was then compared with that obtained
using double-precision software implementation. Registra-
tion accuracy was calculated by comparing deformations at
the vertices of a cuboid (with size equal to half the image
dimensions) located at the center of the image. The results
of this analysis, which establish the relationship between MI
calculation error and the registration error specific to this
application of CT-CT registration, are reported in Figure 9.
It must be noted that each point in this plot represents a valid
design configuration. As expected, there is a good correlation
between the MI calculation error and the accuracy of image
registration. This demonstrates that optimized tradeoff
curves between MI calculation error and hardware cost, as
identified by our reported analysis, can be used to represent
the relationships between registration accuracy and hardware
cost with high fidelity. These relationships can then be used
to identify a design configuration in order to achieve desired
registration accuracy for this example application of CT-
CT registration. Similar relationships specific to a target
application (e.g., PET-CT registration) can be generated
using the aforementioned approach.

International Journal of Reconfigurable Computing

100

10 =

e
8

P

Registration error (mm)

0.1

0 0.002 0.004 0.006 0.008 0.01

MI calculation error

0.012 0.014

¢ Registration error for Pareto-optimal solutions
—— Polynomial regression (R? = 0.93)

FIGURE 9: Relationship between MI calculation error and image
registration error for an example application of CT-CT registration.

4.3. Postsynthesis Validation

We performed further validation of the presented mul-
tiobjective optimization strategy through physical design
synthesis. We identified three solutions from the Pareto-
optimized set obtained using the EA-based search and
synthesized the aforementioned architecture with configura-
tions corresponding to these solutions. These solutions were
identified with no specific clinical application in mind, but
such that the tradeoff between various objective functions
(MI calculation error, area, and memory) can be readily
appreciated. Figure 9 reports the registration accuracy (cal-
culated using the bit-true emulator that we developed) for
all the Pareto-optimized design configurations. The system
designer will have access to all the Pareto-optimized design
configurations along with their expected MI-calculation
error and hardware resource requirements, and, as such, can
select a design configuration to meet the requirements of a
given application.

These three configurations, which offer gradual trade-
off between hardware resource requirement and error in
MI calculation, are listed in the first column of Table 4.
The wordlengths associated with each configuration cor-
respond to the FWLs of the design variables identified in
Table 1. The design was synthesized for these configurations
and the resulting realizations were implemented using an
Altera Stratix II EP2S180F1508C4 FPGA (Altera Corpora-
tion, San Jose, Calif, USA) on a PCI prototyping board
(DN7000K10PCI) manufactured by the Dini Group (La
Jolla, Calif, USA). We then evaluated the performance of the
synthesized designs and compared it with that predicted by
the objective function models. The results of this analysis are
summarized in Table 4 and are described below.

The error in MI calculation was computed by comparing
the MI value reported by the limited-precision FPGA
implementation against that calculated by a double-precision
software implementation. The MI calculation error was

13

averaged for three distinct image pairs and for 50 randomly
generated image transformations for each pair. These image
pairs and the associated transformations were identical to
those employed in the objective function calculation. In
this case, the average MI calculation error obtained by all
the design configurations was identical to that predicted
by the objective function model. This is expected because
of the bit-true nature of the simulator used to predict the
MI calculation error. We repeated this calculation with a
different set of three image pairs and 50 randomly generated
new transformations associated with each image pair. The
MI calculation error corresponding to this setup is reported
in the second column of Table 4. The small difference when
compared with the error predicted by the models is explained
by the different sets of images and transformations used.
The area and memory requirements corresponding to each
configuration after synthesis are reported in columns three
and four of Table 4, respectively. For comparison, we have
also included the values predicted by the corresponding
objective function models in parenthesis. It must be noted
that for all three configurations, the relative ordering based
on Pareto-dominance relationships with respect to each
objective function is identical for both postsynthesis and
model-predicted values.

We also evaluated the accuracy of image registration
performed using the implementation corresponding to
each design configuration. For this analysis, we consid-
ered the same five CT image pairs described above. As
reported earlier, these image pairs had dimensions of 256 X
256 x 212-335voxels and resolution of 1.4—-1.7 mm X 1.4—
1.7mm X 1.5mm. The image registration results for one
of those image pairs are illustrated in Figure 10. The result
of registration between the remaining image pairs was also
qualitatively similar. The registration error was calculated
by comparing the obtained registration results with that
obtained using double-precision software implementation.
The mean and standard deviations of the registration error
corresponding to each configuration are reported in Table 4.
Good correlation is seen between the MI calculation error
and the registration error, reinforcing the results presented
in Section 4.2.

The performance of the resultant design configuration
in terms of its raw clock rate is an important measure of
the quality of a design. This clock rate directly affects the
maximum voxel throughput that can be achieved by the
design and, consequently, has an impact on the execution
speed of image registration. The speed of a design config-
uration depends on, among other factors, the wordlengths
of the design parameters. For example, performing arith-
metic and memory operations using parameters with wider
wordlengths may incur additional latency. As a result, design
configurations employing design parameters with wider
wordlengths may be slightly slower, although more accurate,
than design configurations with shorter wordlengths. To
provide some insights about this phenomenon, we recorded
the maximum clock rate achieved by each of the design
configurations we identified for synthesis. This represents the
maximum postsynthesis frequency at which the design can
operate and is reported in the last column of Table 4. These

14

(d)

International Journal of Reconfigurable Computing

FIGURE 10: Results of image registration performed using the high-speed, reconfigurable implementation: (a) and (b) two distinct poses;
(¢) fusion of (a) and (b) using a checkerboard pattern. The misalignment between images is evident at the edges of the squares within
the checkerboard pattern; (d)—(f) fusion images after registration using the identified design configurations. These configurations offer
progressively reduced image registration error (3.82 mm, 1.57 mm, and 0.45 mm, resp.) and result in correspondingly improved image
alignment. The arrows indicate representative regions with misalignment that are better aligned after registration.

results indicate that the Pareto-optimized designs are not
unreasonably slow and that their performance is comparable
to that achieved (200 MHz) for a user-optimized design
reported earlier [6].

This postsynthesis validation further demonstrates the
efficacy of the presented optimization approach for reconfig-
urable implementation of image registration. It also further
demonstrates how the approach enables a designer to sys-
tematically choose an efficient system configuration to meet
the registration accuracy requirements for a reconfigurable
implementation.

5. Discussion

With the need for real-time performance in signal processing
applications, an increasing trend is to accelerate computa-
tionally intensive algorithms using custom hardware imple-
mentation. A critical step in going to a custom hardware
implementation is converting floating-point implementa-
tions to fixed-point realizations for performance reasons.
This conversion process is an inherently multidimensional
problem because several conflicting objectives, such as area
and error, must be simultaneously minimized. By system-
atically deriving efficient tradeoff configurations, one can
not only reduce the design time [10] but can also enable
automated design synthesis [41, 42]. Moreover, these tradeoff

configurations allow designers to identify optimized, high-
quality designs for reconfigurable computing applications.
Our work presented in this paper develops a framework
for optimizing tradeoff relations between hardware cost and
image processing accuracy in the context of FPGA-based
medical image registration.

Earlier approaches to optimizing wordlengths used ana-
lytical approaches for range and error estimations [11-15].
Some of these have used the error propagation method
(e.g., see [14]), whereas others have employed models of
worst-case error [12, 15]. Although these approaches are
faster and do not require simulation, formulating analytical
models for complex objective functions, such as MI, is
difficult. Statistical approaches have also been employed for
optimizing wordlengths [43, 44]. These methods employ
range and error monitoring for identifying appropriate
wordlengths. These techniques do not require range or error
models. However, they often need long execution times and
are less accurate in determining effective wordlengths.

Some published methods search for optimum wordle-
ngths using error or cost sensitivity information. These
approaches are based on search algorithms such as “Local,”
“Preplanned,” and “Max-1” search [16, 45]. However, for a
given design scenario, these methods are limited to finding
a single-feasible solution, as opposed to a multiobjective
tradeoft curve. In contrast, the techniques that we have

International Journal of Reconfigurable Computing

15

TaBLE 4: Validation of the objective function models using postsynthesis results. The wordlengths in a design configuration correspond to

the FWLs of the design variables identified earlier (see Table 1).

Design Objective functions postsynthesis value (predicted value) Registration error (mean + Design speed (fimax)
configuration MI caleulation etror AreLa U(FIES(; of Memory (Mbits) standard deviations, mm) (MHz)

(5,6,4,9} 24x107° (2.1 x107%) 6527 (5899) 2.23(2.23) 3.82 + 1.24 211
(8,9,7,12} 53x1074(52%x 107%) 7612 (6754) 2.45 (2.45) 1.57 + 0.69 197
{9,12,10,17} 7.7x107° (7.8 x 107°) 10356 (8073) 2.81(2.81) 0.45 + 0.16 184

presented in this paper are capable of deriving efficient
tradeoff curves across multiple objective functions.

Other heuristic techniques that take into account trade-
offs between hardware cost and implementation error and
enable automatic conversion from floating-point to fixed-
point representations are limited to software implemen-
tations only [42]. Also, some of the methods based on
heuristics do not support different degrees of fractional
precision for different internal variables [12]. In contrast, our
framework allows multiple fractional precisions, supports a
variety of search methods, and thereby captures more com-
prehensively the complexity of the underlying multiobjective
optimization problem.

Other approaches to solve this multiobjective problem
have employed weighted combinations of multiple objectives
and have reduced the problem to mono-objective optimiza-
tion [38]. This approach, however, is prone to finding sub-
optimal solutions when the search space is nonconvex [17].
Some methods have also attempted to model this problem as
a sequence of multiple mono-objective optimizations [46].
The underlying assumption in this approximation, however,
is that the design parameters are completely independent,
which is rarely the case in complex systems. Modeling this
problem as an integer linear programming formulation has
also been shown to be effective [11]. But this approach is
limited to cases in which the objective functions can be
represented or approximated as linear functions of design
variables.

EAs have been shown to be effective in solving various
kinds of multiobjective optimization problems [18, 19]
but have not been extensively applied to finding optimal
wordlength configurations. One of the earlier attempts at
using multiobjective EA formulation for wordlength opti-
mization was reported by Istepanian and Whidborne [47].
This approach employed a simplistic model for hardware
complexity and was limited to linear systems only. Leban and
Tasic [48] also reported EA-based wordlength optimization
of adaptive filters. However, this work was limited to mono-
objective optimization only. More recently, Han et al. [49]
reported EA-based multiobjective wordlength optimization
for a filtering application. This work, however, considered
only linear objective functions and lacked postsynthesis vali-
dation. In contrast, our work demonstrates the applicability
of EA-based search for finding superior Pareto-optimized
solutions in an efficient manner, even in the presence of
a nonlinear objective function. Moreover, our optimization
framework supports multiple search algorithms and objec-

tive function models and may be extended to a wide range of
other signal processing applications. A preliminary version
of the work presented in this article is published in [50]. This
paper represents an enhanced and more thorough version
of that work. New developments that we have incorporated
into this paper include elaborating on the parameterized
architectural design, evaluating the fidelity of the objective
function models, and verifying the applicability of the
proposed methodology through postsynthesis validation. In
summary, this work has presented a framework that is
capable of performing multiobjective wordlength optimiza-
tion and identifying Pareto-optimized design configurations
even in the context of nonlinear and complex objective
functions. Through postsynthesis validation, this work has
also demonstrated the feasibility of such a multiobjective
optimization framework in the context of a representative
image processing application, medical image registration.

6. Conclusion

One of the main strengths of reconfigurable computing over
general-purpose processor-based implementations is its abil-
ity to utilize more streamlined representations for internal
variables. This ability can often lead to superior performance
and optimized fabric utilization in reconfigurable computing
applications. Given this advantage, it is highly desirable to
automate the derivation of optimized design configurations
that can be switched among at run time. Toward that end,
this paper has presented a framework for multiobjective
wordlength optimization of finite-precision, reconfigurable
implementations. This framework considers multiple con-
flicting objectives, such as hardware resource consumption
and implementation accuracy, and systematically explores
tradeoff relationships among the targeted objectives. Our
work has also further demonstrated the applicability of EA-
based techniques for efficiently identifying Pareto-optimized
tradeoft relations in the presence of complex and nonlinear
objective functions. The evaluation that we have performed
in the context of FPGA-based medical image registration
demonstrates that such an analysis can be used to enhance
automated hardware design processes and efficiently identify
a system configuration that meets given design constraints.
Furthermore, the multiobjective optimization approach that
we have presented is not application-specific and, with
additional work, may be extended to a multitude of other
signal processing applications.

16

Acknowledgments

This work was supported by the U.S. Department of
Defense (TATRC) under Grant DAMD17-03-2-0001. The
authors thank Dr. Nancy Knight for her help in editing and
refining this manuscript. The authors also thank the journal’s
reviewers for their feedback and suggestions in improving
this manuscript.

References

[1] C. R. Castro-Pareja, O. Dandekar, and R. Shekhar, “FPGA-

based real-time anisotropic diffusion filtering of 3D ultra-
sound images,” in Real-Time Imaging IX, vol. 5671 of Proceed-
ings of SPIE, pp. 123-131, San Jose, Calif, USA, January 2005.

O. Dandekar, C. R. Castro-Pareja, and R. Shekhar, “FPGA-
based real-time 3D image preprocessing for image-guided
medical interventions,” Journal of Real-Time Image Processing,
vol. 1, no. 4, pp. 285-301, 2007.

S. Venugopal, C. R. Castro-Pareja, and O. Dandekar, “An
FPGA-based 3D image processor with median and convolu-
tion filters for real-time applications,” in Real-Time Imaging
IX, vol. 5671 of Proceedings of SPIE, pp. 174-182, San Jose,
Calif, USA, January 2005.

C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FAIR:
a hardware architecture for real-time 3-D image registratio,”
IEEE Transactions on Information Technology in Biomedicine,
vol. 7, no. 4, pp. 426-434, 2003.

C. R. Castro-Pareja and R. Shekhar, “Hardware acceleration of
mutual information-based 3D image registration,” Journal of
Imaging Science and Technology, vol. 49, no. 2, pp. 105-113,
2005.

O. Dandekar and R. Shekhar, “FPGA-accelerated deformable
image registration for improved target-delineation during
CT-guided interventions,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 1, no. 2, pp. 116-127, 2007.

M. L. Silva and]. C. Ferreira, “Support for partial run-
time reconfiguration of platform FPGAs,” Journal of Systems
Architecture, vol. 52, no. 12, pp. 709-726, 2006.

G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “The mul-
tiple wordlength paradigm,” in Proceedings of the 9th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM °01), pp. 51-60, Rohnert Park, Calif, USA,
April-May 2001.

G. A. Constantinides and G. J. Woeginger, “The complexity
of multiple wordlength assignment,” Applied Mathematics
Letters, vol. 15, no. 2, pp. 137-140, 2002.

H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: a
fixed-point design and simulation environment,” in Proceed-
ings of Design, Automation and Test in Europe (DATE *98), pp.
429-435, Paris, France, February 1998.

G. A. Constantinides, P. Y. K. Cheung, and W. Luk,
“Wordlength optimization for linear digital signal processing,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 10, pp. 1432-1442, 2003.

A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Pre-
cision and error analysis of MATLAB applications during
automated hardware synthesis for FPGAs,” in Proceedings of
Design, Automation and Test in Europe (DATE ’01), pp. 722—
728, Munich, Germany, March 2001.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time
Signal Processing, Prentice Hall, Upper Saddle River, NJ, USA,
2nd edition, 1999.

(14]

(20]

[25]

International Journal of Reconfigurable Computing

M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth anal-
ysis with application to silicon compilation,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 108—120, Vancouver, Canada,
June 2000.

S. A. Wadekar and A. C. Parker, “Accuracy sensitive word-
length selection for algorithm optimization,” in Proceedings of
the IEEE International Conference on Computer Design (ICCD
’98), pp- 54-61, Austin, Tex, USA, October 1998.

H. Choi and W. P. Burleson, “Search-based wordlength
optimization for VLSI/DSP synthesis,” in Proceedings of the
7th IEEE International Workshop on VLSI Signal Processing, pp.
198-207, La Jolla, Calif, USA, October 1994.

I. Das and J. E. Dennis, “A closer look at drawbacks
of minimizing weighted sums of objectives for Pareto set
generation in multicriteria optimization problems,” Structural
and Multidisciplinary Optimization, vol. 14, no. 1, pp. 63—69,
1997.

M. S. Bright and T. Arslan, “Synthesis of low-power DSP
systems using a genetic algorithm,” IEEE Transactions on
Evolutionary Computation, vol. 5, no. 1, pp. 27—40, 2001.

C. L. Valenzuela and P. Y. Wang, “VLSI placement and area
optimization using a genetic algorithm to breed normalized
postfix expressions,” IEEE Transactions on Evolutionary Com-
putation, vol. 6, no. 4, pp. 390401, 2002.

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving
the strength Pareto evolutionary algorithm for multiobjective
optimization,” in Proceedings of Evolutionary Methods for
Design, Optimisation and Control with Applications to Indus-
trial Problems (EUROGEN ’01), pp. 95-100, Athens, Greece,
September 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182-197, 2002.

J. B. A. Maintz and M. A. Viergever, “A survey of medical image
registration,” Medical Image Analysis, vol. 2, no. 1, pp. 1-36,
1998.

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes,
“Medical image registration,” Physics in Medicine & Biology,
vol. 46, no. 1, p. 1, 2001.

E Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P.
Suetens, “Multimodality image registration by maximization
of mutual information,” IEEE Transactions on Medical Imag-
ing, vol. 16, no. 2, pp. 187-198, 1997.

J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-
information-based registration of medical images: a survey,”
IEEE Transactions on Medical Imaging, vol. 22, no. 8, pp. 986—
1004, 2003.

V. Walimbe and R. Shekhar, “Automatic elastic image regis-
tration by interpolation of 3D rotations and translations from
discrete rigid-body transformations,” Medical Image Analysis,
vol. 10, no. 6, pp. 899-914, 2006.

M. Doggett and M. Meissner, “A memory addressing and
access design for real time volume rendering,” in Proceedings
of the IEEE International Symposium on Circuits and Systems
(ISCAS ’99), pp. 344-347, Orlando, Fla, USA, May-June 1999.
D. M. Mandelbaum and S. G. Mandelbaum, “A fast, efficient
parallel-acting method of generating functions defined by
power series, including logarithm, exponential, and sine,
cosine,” IEEE Transactions on Parallel and Distributed Systems,
vol. 7, no. 1, pp. 3345, 1996.

International Journal of Reconfigurable Computing

(29]

(30

o
e

(37]

[42]

[44]

T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer,
W. Luk, and P. Y. K. Cheung, “Reconfigurable computing:
architectures and design methods,” IEE Proceedings: Comput-
ers and Digital Techniques, vol. 152, no. 2, pp. 193-207, 2005.
Altera Corp., “Altera IP Megacore Library,” http://www.altera
.com/literature/lit-ip.jsp.

W. Luk, S. Guo, N. Shirazi, and N. Zhuang, “A framework
for developing parametrised FPGA libraries,” in Proceedings of
the 6th International Workshop on Field-Programmable Logic
Smart Applications, New Paradigms and Compilers (FPL °96),
pp- 24-33, Darmstadt, Germany, September 1996.

W. Luk and S. McKeever, “Pebble: a language for parametrised
and reconfigurable hardware design,” in Proceedings of the 8th
International Workshop on Field-Programmable Logic Smart
Applications, New Paradigms and Compilers (FPL *98), pp. 1-9,
Tallinn, Estonia, August 1998.

Xilinx Inc., “Xilinx Core Generator,” http://www.xilinx.com/
ise/products/coregen_overview.pdf.

J. Zhao, W. Chen, and S. Wei, “Parameterized IP core design,”
in Proceedings of the 4th International Conference on ASIC,
pp. 744-747, Shanghai, China, October 2001.

T. Back, U. Hammel, and H. P. Schwefel, “Evolutionary
computation: comments on the history and current state,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
pp. 3-17, 1997.

V. Kianzad and S. S. Bhattacharyya, “Efficient techniques for
clustering and scheduling onto embedded multiprocessors,”
IEEE Transactions on Parallel and Distributed Systems, vol. 17,
no. 7, pp. 667680, 2006.

G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Opti-
mum wordlength allocation,” in Proceedings of 10th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 219-228, Napa, Calif, USA, April 2002.

K. Han and B. L. Evans, “Optimum wordlength search using
sensitivity information,” EURASIP Journal on Applied Signal
Processing, vol. 2006, Article ID 92849, 14 pages, 2006.

N. K. Bambha and S. S. Bhattacharyya, “A joint power/
performance optimization technique for multiprocessor sys-
tems using a period graph construct,” in Proceedings of
International Symposium on System Synthesis (ISSS 00),
pp- 91-97, Madrid, Spain, September 2000.

E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: a comparative case study and the strength Pareto
approach,” IEEE Transactions on Evolutionary Computation,
vol. 3, no. 4, pp. 257-271, 1999.

G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Optimum
and heuristic synthesis of multiple word-length architectures,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 13, no. 1, pp. 39-57, 2005.

K. Kum, J. Kang, and W. Sung, “AUTOSCALER for C: an
optimizing floating-point to integer C program converter for
fixed-point digital signal processors,” IEEE Transactions on
Circuits and Systems II, vol. 47, no. 9, pp. 840-848, 2000.

S. Kim, K. Kum, and W. Sung, “Fixed-point optimization util-
ity for C and C++ based digital signal processing programs,”
IEEE Transactions on Circuits and Systems II, vol. 45, no. 11,
pp. 1455-1464, 1998.

K. Kum and W. Sung, “Combined word-length optimization
and high-level synthesis of digital signal processing systems,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 20, no. 8, pp. 921-930, 2001.

(45]

(48]

[50]

17

M. A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of auto-
matic word length optimization procedures,” in Proceedings
of the IEEE International Symposium on Circuits and Systems,
pp- 612-615, Phoenix, Ariz, USA, May 2002.

T. Givargis, E Vahid, and J. Henkel, “System-level exploration
for Pareto-optimal configurations in parameterized system-
on-a-chip,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 10, no. 4, pp. 416-422, 2002.

R. S. H. Istepanian and J. £ Whidborne, “Multi-objective
design of finite word-length controller structures,” in Proceed-
ings of the Congress on Evolutionary Computation (CEC ’99),
pp- 1-68, Washington, DC, USA, August 1999.

M. Leban and J. E. Tasic, “Word-length optimization of LMS
adaptive FIR filters,” in Proceedings of the 10th Mediterranean
Electrotechnical Conference (MALECON °00), pp. 774-777,
Lemesos, Cyprus, May 2000.

K. Han, A. G. Olson, and B. L. Evans, “Automatic floating-
point to fixed-point transformations,” in Proceedings of the
40th Asilomar Conference on Signals, Systems, and Computers
(ACSSC ’06), pp. 79-83, Pacific Grove, Calif, USA, October
2006.

O. Dandekar, W. Plishker, S. S. Bhattacharyya, and R. Shekhar,
“Multiobjective optimization of FPGA-based medical image
registration,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM "08), pp.
183-192, Stanford, Calif, USA, April 2008.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

