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Abstract The study of the inclusive production of a pair of
charged light hadrons (a “dihadron” system) featuring high
transverse momenta and well separated in rapidity represents
a clear channel for the test of the BFKL dynamics at the Large
Hadron Collider (LHC). This process has much in common
with the well-known Mueller–Navelet jet production; how-
ever, hadrons can be detected at much smaller values of the
transverse momentum than jets, thus allowing to explore an
additional kinematic range, supplementary to the one studied
with Mueller–Navelet jets. Furthermore, it makes it possible
to constrain not only the parton densities (PDFs) for the ini-
tial proton, but also the parton fragmentation functions (FFs)
describing the detected hadron in the final state. Here, we
present the first full NLA BFKL analysis for cross sections
and azimuthal angle correlations for dihadrons produced in
the LHC kinematic ranges. We make use of the Brodsky–
Lapage–Mackenzie optimization method to set the values of
the renormalization scale and study the effect of choosing
different values for the factorization scale. We also gauge
the uncertainty coming from the use of different PDF and FF
parametrizations.

1 Introduction

Semi-hard processes in the large center-of-mass energy limit
represent a unique arena to test strong interactions in kine-
matic regimes so far unexplored, the high luminosity and the
record energies of hadronic processes at the Large Hadron
Collider (LHC) providing with a wealth of useful data. In the
kinematical regime s � |t |, known as Regge limit, fixed-
order calculations in perturbative QCD based on collinear
factorization miss the effect of large energy logarithms, enter-
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ing the perturbative series with a power increasing with the
order and thus compensating the smallness of the coupling
αs . The Balitsky–Fadin–Kuraev–Lipatov (BFKL) approach
[1–4] serves as the most powerful tool to perform the all-order
resummation of these large energy logarithms both in the
leading approximation (LLA), which means all terms propor-
tional to (αs ln(s))n , and the next-to-leading approximation
(NLA), which means all terms proportional to αs(αs ln(s))n .
In the BFKL formalism, it is possible to express the cross
section of an LHC process falling in the domain of pertur-
bative QCD as the convolution between two impact factors,
which describe the transition from each colliding proton to
the respective final state object, and a process-independent
Green’s function. The BFKL Green’s function obeys an inte-
gral equation, whose kernel is known at the next-to-leading
order (NLO) both for forward scattering (i.e. for t = 0 and
color singlet in the t-channel) [5,6] and for any fixed (not
growing with energy) momentum transfer t and any possible
two-gluon color state in the t-channel [7–11].

The too low
√
s, together with small rapidity intervals

among the tagged objects in the final state, had been so far
the weakness point of the search for BFKL effects. Further-
more, too inclusive observables were considered. A striking
example is the growth of the hadron structure functions at
small Bjorken-x values in deep inelastic scattering (DIS).
Although NLA BFKL predictions for the structure func-
tion F2,L have shown good agreement with the HERA data
[12,13], other approaches can fit these data. The LHC record
energy, together with the good resolution in azimuthal angles
of the particle detectors, can address these issues: on one side
larger rapidity intervals in the final state are reachable, allow-
ing us to study a kinematic regime where it is possible to dis-
entangle the BFKL dynamics from other resummations; on
the other side there is enough statistics to define and inves-
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tigate more exclusive observables, which can, in principle,
only be described by the BFKL framework.

With this aim, the production of two jets featuring trans-
verse momenta much larger than �2

QCD and well separated
in rapidity, known as Mueller–Navelet jets, was proposed
[14] as a tool to investigate semi-hard parton scatterings at
a hadron collider. This reaction represents a unique venue
where two main resummations, collinear and BFKL ones,
play their role at the same time in the context of perturba-
tive QCD. On one hand, the rapidity ranges in the final state
are large enough to let the NLA BFKL resummation of the
energy logarithms come into play. The process-dependent
part of the information needed to build up the cross section is
encoded in the impact factors (the so-called “jet vertices”),
which are known up to NLO [15–19]. On the other hand, the
jet vertex can be expressed, within collinear factorization at
the leading twist, as the convolution of the parton distribution
function (PDF) of the colliding proton, obeying the standard
DGLAP evolution [20–22], with the hard process describing
the transition from the parton emitted by the proton to the
forward jet in the final state.

A large number of numerical analyses [23–35] has
appeared so far, which have been devoted to NLA BFKL
predictions for the Mueller–Navelet jet production process.
All these studies are involved in calculating cross sections
and azimuthal angle correlations [36,37] between the two
measured jets, i.e. average values of cos (nφ), where n is an
integer and φ is the angle in the azimuthal plane between the
direction of one jet and the direction opposite to the other
jet, and ratios of two such cosines [38,39]. Recently [40],
the CMS Collaboration presented the first measurements
of the azimuthal correlation of the Mueller–Navelet jets
at

√
s = 7 TeV at LHC. Further experimental studies of

the Mueller–Navelet jets at higher LHC energies and larger
rapidity intervals, including also the effects of using asym-
metrical cuts for the jet transverse momenta, are expected.

In order to uncover the dynamical mechanisms behind
partonic interactions in the Regge limit, new observables,
sensitive to the BFKL dynamics and less inclusive than the
Mueller–Navelet ones, need to be proposed and considered in
the next LHC analyses. An interesting option, the detection
of three jets, well separated in rapidity from each other, has
been proposed in Refs. [41,42] and recently investigated with
NLA BFKL accuracy in Ref. [43]. Its natural extension, the
four-jet production process, has been proposed in Ref. [44]
and studied in Ref. [45].

In a recent paper [46] we suggested a novel possibility,
i.e. the inclusive dihadron production

p(p1) + p(p2) → h1(k1) + h2(k2) + X, (1)

when the two charged light hadrons: π±, K±, p, p̄ with
high transverse momenta and separated by a large interval
of rapidity, together with an undetected hadronic system X,

p1

x1

π−, K−, p̄

p2

x2

(k2, θ2, y2)

π+, K+, p

(k1, θ1, y1)

Fig. 1 Inclusive dihadron production process in multi-Regge kinemat-
ics

are produced in the final state (see Fig. 1 for a schematic
view).

This process is similar to the Mueller–Navelet jet produc-
tion and shares with it the underlying theoretical framework,
the only obvious difference lying in the vertices describing
the dynamics in the proton fragmentation region: instead of
the proton-to-jet vertex, the vertex for the proton to iden-
tified hadron transition is needed. Such a vertex was con-
sidered in [47] within NLA: it was shown there that ultra-
violet divergences are taken care of by the renormaliza-
tion of the QCD coupling, soft and virtual infrared diver-
gences cancel each other, whereas the surviving infrared
collinear ones are compensated by the collinear countert-
erms related with the renormalization of PDFs for the initial
proton and parton fragmentation functions (FFs) describing
the detected hadron in the final state within collinear factor-
ization.1 Hence, infrared-safe NLA predictions for observ-
ables related with this process are amenable, thus making this
process an additional clear channel to test the BFKL dynam-
ics at the LHC. The reaction (1) can be considered comple-
mentary to Mueller–Navelet jet production, since hadrons

1 The identified hadron production vertex in the NLA was found within
the shockwave approach (or Color Glass Condensate effective theory)
in [48]. It was used there to study the single inclusive particle pro-
duction at forward rapidities in proton–nucleus collisions; for recent
developments of this line of research; see also [49]. Unfortunately, the
comparison between the results of [48] and those of [47] is not sim-
ple and straightforward, since the distribution of radiative corrections
between the kernel and the impact factor is different in the shock-wave
and the BFKL frameworks. Non-trivial kernel and impact factor trans-
formations are required for such a comparison. It certainly deserves
a separate study, and the consideration of the process (1) within both
the shockwave and the BFKL resummation schemes seems the best
possibility to this purpose.
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can be detected at the LHC at much smaller values of the
transverse momentum than jets, thus giving access to a kine-
matic range outside the reach of the Mueller–Navelet chan-
nel.

Note that the inclusive dihadron production was analyzed
by CMS [50,51] and ATLAS [52] Collaborations at different
LHC energies. The focus was put on two-particle azimuthal
angle and rapidity correlations for charged hadrons at low
and medium transverse momenta. Here we suggest to ana-
lyze this reaction in the region of larger transverse momenta,
where data could be confronted with perturbative QCD pre-
dictions.

In Ref. [46] we gave the first predictions for cross sec-
tions and azimuthal angle correlations of the process (1) in
an approximated way, since we neglected, for the sake of
simplicity, the NLA corrections of the hadron vertices. It
is well known that the inclusion of NLA terms has a large
impact on the theory predictions for the Mueller–Navelet
jet cross sections and the jet azimuthal angle distributions.
Similar features are expected also for our case of inclu-
sive dihadron production. As for Mueller–Navelet jets, the
inclusion of full NLA effects in the process (1) is very
important in order to have a control on the accuracy of
predictions, in particular on effects related with the choice
of the renormalization scale μR and the factorization scale
μF.

The main aim of this paper is to extend and complete
the analysis done in Ref. [46] by giving full NLA pre-
dictions at

√
s = 7, 13 TeV and considering two distinct

ranges for the rapidity interval Y between the two hadrons:
Y ≤ 4.8 and Y ≤ 9.4. It is well known that, even after
the account of the NLA effects, predictions within BFKL
resummation still suffer from large ambiguities in the choice
of scales. As an idea for the renormalization scale choice
setting we adopt the Brodsky–Lepage–Mackenzie (BLM)
scheme [53]. In BLM the renormalization scale ambiguity
is eliminated by absorbing the non-conformal terms, propor-
tional to the QCD β0-function, into the running coupling.
Such an approach was successfully used, first in [28], for a
satisfactory description of the LHC data on the azimuthal
correlations of Mueller–Navelet jets [40], obtained by the
CMS Collaboration.

As for the factorization scale, we chose either to fix it equal
to the renormalization scale, μF = μR = μBLM

R , or we used
a scheme with two separate values of the factorization scale
and fix them at the transverse momentum of one or the other
of the two detected hadrons, (μF)1,2 = |�k1,2|, depending on
which of the two vertices is considered.

The summary of the paper is as follows: in Sect. 1 we
present the theoretical framework and sketch the derivation
of our predictions; in Sect. 2 we show and discuss the results
of our numerical analysis; finally, in Sect. 3, we draw our
conclusions and give some outlook.

2 Theoretical framework

The process under investigation [see (1) and Fig. 1] is the
inclusive production of a pair of identified hadrons featuring
large transverse momenta, �k2

1 ∼ �k2
2 � �2

QCD and separated
by a large rapidity interval in high-energy proton–proton
collisions. The protons’ momenta p1 and p2 are taken as
Sudakov vectors satisfying p2

1 = p2
2 = 0 and 2(p1 p2) = s,

so that the momentum of each hadron can be decomposed as

k1 = α1 p1 +
�k2

1

α1s
p2 + k1⊥, k2

1⊥ = −�k2
1,

k2 = α2 p2 +
�k2

2

α2s
p1 + k2⊥, k2

2⊥ = −�k2
2 . (2)

In the center-of-mass system, the hadrons’ longitudi-
nal momentum fractions α1,2 are connected to the respec-

tive rapidities through the relations y1 = 1
2 ln

α2
1s�k2
1

, and

y2 = 1
2 ln

�k2
2

α2
2s

, so that dy1 = dα1
α1

, dy2 = − dα2
α2

, and

Y = y1 − y2 = ln α1α2s
|�k1||�k2| , the space part of the four-vector

p1‖ here being taken positive.
In QCD collinear factorization the cross section of the

process (1) reads

dσ

dα1dα2d2k1d2k2
=

∑

a,b=q,q̄,g

∫ 1

0
dx1

×
∫ 1

0
dx2 fa(x1, μF) fb(x2, μF)

dσ̂a,b(ŝ, μF)

dα1dα2d2k1d2k2
, (3)

where the a, b indices specify the parton types (quarks
q = u, d, s, c, b; antiquarks q̄ = ū, d̄, s̄, c̄, b̄; or gluon g),
fa(x, μF) denotes the initial proton PDFs; x1,2 are the lon-
gitudinal fractions of the partons involved in the hard sub-
process, while μF is the factorization scale; dσ̂a,b(ŝ) is the
partonic cross section and ŝ ≡ x1x2s is the squared center-
of-mass energy of the parton–parton collision subprocess.

In the BFKL approach the cross section can be presented
(see Ref. [26] for the details of the derivation) as the Fourier
sum of the azimuthal coefficients Cn , thus

dσ

dy1dy2 d|�k1| d|�k2|dφ1dφ2

= 1

(2π)2

[
C0 +

∞∑

n=1

2 cos(nφ) Cn
]

, (4)

where φ = φ1 − φ2 − π , with φ1,2 are the two hadrons’
azimuthal angles, while y1,2 and �k1,2 are their rapidities and
transverse momenta, respectively. The φ-averaged cross sec-
tion C0 and the other coefficients Cn �=0 are given by
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Cn ≡
∫ 2π

0
dφ1

∫ 2π

0
dφ2 cos[n(φ1 − φ2 − π)] dσ

dy1dy2 d|�k1| d|�k2|dφ1dφ2
= eY

s

∫ +∞

−∞
dν

×
(

α1α2s

s0

)ᾱs (μR)

[
χ(n,ν)+ᾱs (μR)

(
χ̄ (n,ν)+ β0

8Nc
χ(n,ν)

(
−χ(n,ν)+ 10

3 +ln
μ4

R
�k2
1

�k2
2

))]

α2
s (μR)c1(n, ν, |�k1|, α1)c2(n, ν, |�k2|, α2)

×
[

1 + αs(μR)

(
c(1)

1 (n, ν, |�k1|, α1)

c1(n, ν, |�k1|, α1)
+ c(1)

2 (n, ν, |�k2|, α2)

c2(n, ν, |�k2|, α2)

)
+ ᾱ2

s (μR) ln
α1α2s

s0

β0

8Nc
χ(n, ν)

×
(

2 ln �k2
1
�k2

2 + i
d ln c1(n,ν)

c2(n,ν)

dν

)]
. (5)

Here ᾱs(μR) ≡ αs(μR)Nc/π , with Nc the number of colors

β0 = 11

3
Nc − 2

3
n f (6)

is the first coefficient of the QCD β-function, where n f is
the number of active flavors. We have

χ(n, ν)=2ψ(1)−ψ

(
n

2
+ 1

2
+ iν

)
− ψ

(
n

2
+ 1

2
− iν

)

(7)

being the leading-order (LO) BFKL characteristic function,
c1,2(n, ν) are the LO impact factors in the ν-representa-
tion, which are given as an integral in the parton fraction
x , containing the PDFs of the gluon and of the different
quark/antiquark flavors in the proton, and the FFs of the
detected hadron,

c1(n, ν, |�k1|, α1) = 2

√
CF

CA
(�k2

1)iν−1/2
∫ 1

α1

dx

x

(
x

α1

)2iν−1

×
⎡

⎣CA

CF
fg(x)D

h
g

(α1

x

)
+

∑

a=q,q̄

fa(x)D
h
a

(α1

x

)
⎤

⎦ (8)

and

c2(n, ν, |�k2|, α2) = [c1(n, ν, |�k2|, α2)]∗, (9)

while

c(1)
1 (n, ν, |�k1|, α1)

= 2

√
CF

CA
(�k2

1)iν− 1
2

1

2π

∫ 1

α1

dx

x

∫ 1

α1
x

dζ

ζ

(
xζ

α1

)2iν−1

×
[
CA

CF
fg(x)D

h
g

(
α1

xζ

)
Cgg(x, ζ )

+
∑

a=q,q̄

fa(x)D
h
a

(
α1

xζ

)
Cqq(x, ζ )

+ Dh
g

(
α1

xζ

) ∑

a=q,q̄

fa(x)Cqg(x, ζ )

+ CA

CF
fg(x)

∑

a=q,q̄

Dh
a

(
α1

xζ

)
Cgq(x, ζ )

]
(10)

and

c(1)
2 (n, ν, |�k2|, α2) = [c(1)

1 (n, ν, |�k2|, α2)]∗ (11)

are the NLO impact factor corrections in the ν-representation.
The expressions for them can be derived from the last two
lines of Eq. (4.58) in Ref. [47]. It is well known [32] that
contributions to the NLO impact factors that are proportional
to the QCD β0-function are universally expressed in terms
of the LO impact factors of the considered process, through
the function f (ν), defined as follows:

2 ln μ2
R + i

d ln c1(n,ν)
c2(n,ν)

dν
= ln

μ4
R

�k2
1
�k2

2

− 2

∫ 1
α1

dx
x

(
x
α1

)2iν−1
log

(
x
α1

) [
CA
CF

fg(x)Dh
g

(
α1
x

) + ∑
a=q,q̄ fa(x)Dh

a

(
α1
x

)]

∫ 1
α1

dx
x

(
x
α1

)2iν−1 [
CA
CF

fg(x)Dh
g

(
α1
x

) + ∑
a=q,q̄ fa(x)Dh

a

(
α1
x

)]

− 2

∫ 1
α2

dx
x

(
x
α2

)−2iν−1
log

(
x
α2

) [
CA
CF

fg(x)Dh
g

(
α2
x

) + ∑
a=q,q̄ fa(x)Dh

a

(
α2
x

)]

∫ 1
α2

dx
x

(
x
α2

)−2iν−1 [
CA
CF

fg(x)Dh
g

(
α2
x

) + ∑
a=q,q̄ fa(x)Dh

a

(
α2
x

)] ≡ ln
μ4

R
�k2

1
�k2

2

+ 2 f (ν). (12)

It is well known [54–57] that in the BLM approach,
applied to semi-hard processes, we need to perform a finite
renormalization from the MS to the physical MOM scheme,
whose definition is related to the 3-gluon vertex being a key
ingredient of the BFKL resummation. So, we have

αMS
s = αMOM

s

(
1 + αMOM

s

π
T

)
, (13)
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with T = T β + T conf ,

T β = −β0

2

(
1 + 2

3
I

)
, (14)

T conf = 3

8

[
17

2
I + 3

2
(I − 1) ξ +

(
1 − 1

3
I

)
ξ2 − 1

6
ξ3

]
,

where I = −2
∫ 1

0 dx ln(x)
x2−x+1

� 2.3439 and ξ is the gauge
parameter of the MOM scheme, fixed at zero in the following.
The optimal scale μBLM

R is the value of μR that makes the β0-
dependent part in the expression for the observable of interest
vanish. In [32] some of us showed that terms proportional to
the QCD β0-function are present not only in the NLA BFKL
kernel, but also in the expressions for the NLA impact factor.
This leads to a non-universality of the BLM scale and to its
dependence on the energy of the process.

Finally, the condition for the BLM scale setting was found
to be

Cβ
n ∝

∫ y1,max

y1,min

dy1

∫ y2,max

y2,min

dy2

∫ ∞

k1,min

dk1

∫ ∞

k2,min

dk2

×
∞∫

−∞
dν eY ᾱMOM

s (μBLM
R )χ(n,ν)c1(n, ν)c2(n, ν)

×
[

5

3
+ ln

(μBLM
R )2

|�k1||�k2|
+ f (ν) − 2

(
1 + 2

3
I

)

+ ᾱMOM
s (μBLM

R )Y
χ(n, ν)

2

×
(

−χ(n, ν)

2
+ 5

3
+ln

(μBLM
R )2

|�k1||�k2|
+ f (ν)−2

(
1+ 2

3
I

))]
=0.

(15)

The first term in the r.h.s. of (15) originates from the NLA
corrections to the hadron vertices and the second one (pro-
portional to αMOM

s ) from the NLA part of the kernel.

3 Results and discussion

3.1 Integration over the final state phase space

In order to match the actual LHC kinematical cuts, we inte-
grate the coefficients over the phase space for two final state
hadrons,

Cn =
∫ y1,max

y1,min

dy1

∫ y2,max

y2,min

dy2

∫ ∞

k1,min

dk1

×
∫ ∞

k2,min

dk2 Cn(y1, y2, k1, k2). (16)

For the integrations over rapidities we consider two distinct
ranges:

1. y1,min = −y2,max = −2.4, y1,max = −y2,min = 2.4, and
Y ≤ 4.8, typical for the identified hadron detection at
LHC;

2. y1,min = −y2,max = −4.7, y1,max = −y2,min = 4.7,
and Y ≤ 9.4, similar to those used in the CMS Mueller–
Navelet jets analysis.

As minimum transverse momenta we choose k1,min =
k2,min = 5 GeV, which are also realistic values for the LHC.
We observe that the minimum transverse momentum in the
CMS analysis [40] of Mueller–Navelet jet production is much
larger, k(jet)

min = 35 GeV. In our calculations we use the PDF
set MSTW 2008 NLO [58] with two different NLO param-
eterizations for hadron FFs: AKK [59] and HKNS [60] (see
Sect. 3.2 for a related discussion). In the results presented
below we sum over the production of charged light hadrons:
π±, K±, p, p̄.

In order to find the values of the BLM scales, we introduce
the ratios of the BLM to the “natural” scale suggested by the

kinematic of the process, μN =
√

|�k1||�k2|, so that mR =
μBLM

R /μN, and look for the values of mR such that Eq. (15)
is satisfied.

The values for mR are not affected by the inclusion of
the NLO corrections to the impact factor, therefore, for the
region Y ≤ 4.8 and for the case μF = μBLM

R , are exactly the
same shown in Fig. 1 of Ref. [46]; in the case (μF)1,2 = |�k1,2|
they turn out to be generally lower than in the previous case
(see Fig. 2 for the summary of all determinations for mR in
the region Y ≤ 4.8). In the rapidity region 4.8 < Y ≤ 9.4
we got values for mR similar to those shown in Fig. 2, except
for n = 3, where mR turned out to be four to five times larger
than in the region Y ≤ 4.8.

Then we plug these scales into our expression for the inte-
grated coefficients in the BLM scheme (for the derivation
see [32]):

Cn =
∫ y1,max

y1,min

dy1

∫ y2,max

y2,min

dy2

∫ ∞

k1,min

dk1

∫ ∞

k2,min

dk2

∞∫

−∞
dν

× eY

s
e
Y ᾱMOM

s (μBLM
R )

[
χ(n,ν)+ᾱMOM

s (μBLM
R )

(
χ̄(n,ν)+ T conf

3 χ(n,ν)
)]

× (
αMOM
s (μBLM

R )
)2

c1(n, ν)c2(n, ν)

×
[

1+ᾱMOM
s (μBLM

R )

{
c̄(1)

1 (n, ν)

c1(n, ν)
+ c̄(1)

2 (n, ν)

c2(n, ν)
+ 2T conf

3

}]
.

(17)

The coefficient C0 gives the total cross sections and the
ratios Cn/C0 = 〈cos(nφ)〉 determine the values of the mean
cosines, or azimuthal correlations, of the produced hadrons.
In Eq. (17), χ̄ (n, ν) is the eigenvalue of NLA BFKL ker-
nel [61] and its expression is given, e.g., in Eq. (23) of [26],
whereas c̄(1)

1,2 are the NLA parts of the hadron vertices [47].
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Fig. 2 BLM scales for the dihadron production process versus the rapidity interval Y for Cn , n = 0, 1, 2, 3, for the center-of-mass energies
√
s = 7

and 13 TeV. The top plots are for the choice μF = μBLM
R , while the lower ones for (μF)1,2 = |�k1,2|

As anticipated, we give predictions for Cn by fixing the
factorization scale μF in two different ways:

1. μF = μR = μBLM
R ;

2. (μF)1,2 = |�k1,2|.

All calculations are done in the MOM scheme. For com-
parison, we present results for the φ-averaged cross sec-
tion C0 in the MS scheme (as implemented in Eq. (5)) for√
s = 7, 13 TeV and for Y ≤ 4.8, 9.4. In this case, we

choose natural values for μR, i.e. μR = μN =
√

|�k1||�k2|,
and the option 2., i.e. (μF)1,2 = |�k1,2| for the factorization
scale.

3.2 Used tools and uncertainty estimation

We performed all numerical calculations in Fortran, choos-
ing a two-loop running coupling setup with αs(MZ ) =
0.11707 and five quark flavors. It is known that poten-
tial sources of uncertainty could be due to the particular
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PDF and FF parametrizations used. For this reason, we did
preliminary tests by using three different NLO PDF sets:
MSTW 2008 [58], MMHT 2014 [62] (which is the succes-
sor of the MSTW 2008 one), and CT 2014 [63], and con-
volving them with the three following NLO FF routines:
AKK [59], DSS [64,65], and HNKS [60]. Our tests have
shown no significant discrepancy when different PDF sets are
used in our kinematic range. In view of this result, in the final
calculations we selected the MSTW 2008 PDF set (which
was successfully used in various analyses of inclusive semi-
hard processes at LHC, including our previous studies of
Mueller–Navelet jets), together with the FF interfaces men-
tioned above. We do not show the results with the DSS rou-
tine, since they would be hardly distinguishable from those
with the HKNS parametrization.

Specific CERN program libraries [66] were used to eval-
uate the azimuthal coefficients given in Eq. (17), which
requires a complicated eight-dimensional numerical integra-
tion (the expressions for c̄(1)

1,2 contain an additional longitu-
dinal fraction integral in comparison to the formulas for the
LLA vertices, given in Eqs. (8) and (9)). Furthermore, slightly
modified versions of the Chyp [67] and Psi [68] routines
were used to calculate the Gauss hypergeometric function

2F1 and the real part of the ψ function, respectively.
The most significant uncertainty comes from the numer-

ical four-dimensional integration over the two transverse
momenta |�k1,2|, the rapidity y1, and over ν. Its effect was
directly estimated by Dadmul integration routine [66]. The
other three sources of uncertainty, which are, respectively,
the one-dimensional integration over the parton fraction x
needed to perform the convolution between PDFs and FFs
in the LO/NLO impact factors (see Eqs. (8) and (10)), the
one-dimensional integration over the longitudinal momen-
tum fraction ζ in the NLO impact factor correction (see
Eq. (10)), and the upper cutoff in the numerical integrations
over |�k1,2| and ν, are negligible with respect to the first one.
For this reason the error bars of all predictions presented in
this work are just those given by the Dadmul routine.

3.3 Discussion

In Fig. 3 we present our results for C0 in the MS scheme
(as implemented in Eq. (5)) for we already specified above
the scale settings

√
s = 7, 13 TeV, and in the two cases of

Y ≤ 4.8 and Y ≤ 9.4. We clearly see that NLA corrections
become negative with respect to the LLA prediction when
Y grows. Besides, it is interesting to note that the full NLA
approach predicts larger values for the cross sections in com-
parison to the case where only NLA corrections to the BFKL
kernel are taken into account. It means that the inclusion into
the analysis of the NLA corrections to the hadron vertices
makes the predictions for the cross sections somewhat big-

ger and partially compensates the large negative effect from
the NLA corrections to the BFKL kernel.

The other results we presented below are obtained using
BLM in the MOM scheme, as given in Eq. (17). In
Figs. 4 and 5 we present our results for C0 and for several
ratios Cm/Cn at

√
s = 13 and 7 TeV, respectively; μF is set

equal to μBLM
R , while Y ≤ 4.8. It is worth to note that in this

case the NLA corrections to C0 are positive, so they increase
the value of the φ-averaged cross section at all values of Y .
This is the result of the combination of two distinct effects:
on one side, we already saw in Ref. [46] that changing the
renormalization scheme produces a non-exponentiated extra
factor in Eq. (17) proportional to T conf that is positive. On
the other side, we found that the Cgg coefficient in Eq. (10)
gives a large and positive contribution to the NLO impact fac-
tor. We see also that NLA corrections increase the azimuthal
correlations:C1/C0,C2/C0, andC3/C0, while their effect is
small with respect to LLA predictions in their ratios, C2/C1

and C3/C2. The value of C1/C0 for Y ≤ 2.75 in some cases
exceeds 1. We consider this as an effect due to the fact that, at
very small Y , which corresponds to the small values of par-
tonic subenergies ŝ, we are crossing the applicability limit
of the BFKL approach, which systematically neglects any
contributions that are suppressed by the powers of ŝ.

For comparison, we show in Figs. 6 and 7 the results for
the same observables with the choice of (μF)1,2 = |�k1,2|.
The patterns we have found are very similar to the previous
ones, but we see that the effect of having C1/C0 larger than
1 at small Y is reduced. Furthermore, NLA corrections are
negative for larger Y values. On the basis of this, we may
conclude that, in the Y ≤ 4.8 kinematical regime, the choice
of natural scales for μF stabilizes the results.

In Figs. 8 and 9 we present our results for C0 and for
several ratios Cm/Cn at

√
s = 13 and 7 TeV, respectively;

μF is set equal to μBLM
R , while Y lies on a larger range, i.e.

Y ≤ 9.4.
For comparison, we show in Figs. 10 and 11 the results

for the same observables with the choice of (μF)1,2 = |�k1,2|.
We clearly see that, in the case of larger rapidity intervals Y
and with the natural choice for the factorization scale, the sit-
uation is different in comparison to the μF = μBLM

R choice:
the NLA corrections to the cross section C0 are negative,
while the pattern of C1/C0 shows a somewhat unexpected
“turn-up” at large Y , and these effects are more pronounced
for the lower LHC energy,

√
s = 7 TeV. Such a sensitivity

to the factorization scale setting may be an indication of the
fact that with the increase of Y values we are moving towards
the threshold region, where the energy of detected dihadron
system becomes comparable with

√
s. In this situation the

FFs and PDFs are probed in regions that are close to the end-
points of their definitions, where they exhibit large depen-
dence on the factorization scale. From the physical side, in
this kinematics the undetected hard-gluon radiation is getting
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Fig. 3 Y -dependence of C0 in the MS scheme (as implemented in
Eq. (5)) at natural scales for μR and μF,

√
s = 7, 13 TeV, and in the

two cases of Y ≤ 4.8 and Y ≤ 9.4. Here and in the following figure
captions “LLA” means pure leading logarithmic approximation, “NLA

kernel” means inclusion of the NLA corrections from the kernel only,
“NLA” stands for full inclusion of NLA corrections, i.e. both from the
kernel and the hadron vertices

restricted and only radiation of soft gluons is allowed. Soft-
gluon radiation cannot change the kinematics of the hard sub-
process, therefore one expects restoration of the correlation
of the detected dihadrons in the relative azimuthal angle when
we approach the threshold region. It is well known that in this
situation large threshold double logarithms appear in the per-
turbative series, and such contributions have to be resummed
to all orders. Resummation in the kinematics where both
threshold and BFKL logarithms are important is an interest-

ing task, but it goes well beyond the scope of the present
study. Here we just note that pure BFKL predictions in the
region of largest Y become rather sensitive to the choice of
the factorization scale.

To better assess the factorization scale dependence, we
have considered also the case when μF is varied around
its “natural value”

√�k1�k2 by a factor r taking values in the
range 1/2 to four. In Fig. 12, as a selection of our results, we
present the plots for C0 and C1/C0 at a squared center-of-
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Fig. 8 Y -dependence of C0 and of several ratios Cm/Cn for μF = μBLM
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s = 13 TeV, and Y ≤ 9.4
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Fig. 9 Y -dependence of C0 and of several ratios Cm/Cn for μF = μBLM
R ,

√
s = 7 TeV, and Y ≤ 9.4
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Fig. 10 Y -dependence of C0 and of several ratios Cm/Cn for (μF)1,2 = |�k1,2|, √
s = 13 TeV, and Y ≤ 9.4
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Fig. 12 Y -dependence of C0 and of C1/C0 for (μF)1,2 = r
√

�k1�k2, with r = 1/2, 1, 2, 4, and Y ≤ 4.8

mass energy of 7 and 13 TeV for the rapidity region Y ≤ 4.8
and the HKNS parametrization of the fragmentation func-
tions.

At the end of this section it is worth to note that the general
features of our predictions for dihadron production are rather
similar to those obtained earlier for the Mueller–Navelet
jet process. Although the BFKL resummation leads to the
growth with energy of the partonic subprocess cross sections,
the convolution of the latter with the proton PDFs makes the
net effect of a decrease with Y of our predictions. This is
due to the fact that, at larger values of Y , PDFs are probed

effectively at larger values of x , where they fall very fast. For
the dihadron azimuthal correlations we predict a decreasing
behavior with Y . This originates from the increasing amount
of hard undetected parton radiation in the final state allowed
by the growth of the partonic subprocess energy.

4 Conclusions and outlook

In this paper we studied the inclusive dihadron production
process at the LHC within the BFKL approach, giving the
first complete phenomenological predictions for cross sec-
tions and azimuthal correlation momenta in the full NLA
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approximation. We implemented the exact version of the
BLM optimization procedure, which requires the choice of
renormalization scale μR = μBLM

R such that it makes com-
pletely vanish the NLA terms proportional to the QCD β-
function.2 This procedure leads to rather large values of
the scale μBLM

R and it allows one to minimize the size of
the NLA corrections in our observables. We considered two
center-of-mass energies,

√
s = 7, 13 TeV, and two differ-

ent ranges for the rapidity interval between the two hadrons
in the final state, Y ≤ 4.8 and Y ≤ 9.4, which are typi-
cal for the last CMS analyses. The first rapidity range we
investigated, Y ≤ 4.8, may look to be not large enough for
the dominance of BFKL dynamics. But we see, however,
that in this range there are large NLA BFKL corrections,
thus indicating that the BFKL resummation is playing here
a non-trivial role. To clarify the issue it would be very inter-
esting to confront our predictions with the results of fixed-
order NLO DGLAP calculations. But this would require new
numerical analysis in our semi-hard kinematic range, because
the existing NLO DGLAP results cover the hard kinematic
range for the energies of fixed target experiments; see for
instance [69,70].

As for the hadron’s transverse momenta, we imposed
the symmetrical lower cutoff: |�k1,2| ≥ 5 GeV. Consid-
ering a region of lower hadron transverse momenta, say
|�k1,2| ≥ 2 GeV, would lead to even larger values of the
cross sections. But it should be noted that in our calcula-
tion we use the BFKL method together with leading-twist
collinear factorization, which means that we are systemat-
ically neglecting power-suppressed corrections. Therefore,
going to smaller transverse momenta we would enter a region
where higher-twist effects must be important.

The general features of our predictions for dihadron pro-
duction are rather similar to those obtained earlier for the
Mueller–Navelet jet process. In particular, we observe that
the account of NLA BFKL terms leads to much less azimuthal
angle decorrelation with increasing Y in comparison to
LLA BFKL calculations. As for the difference between the
Mueller–Navelet jet and dihadron production processes, we
would mention the fact that, contrary to the jets’ case, the
full account of NLA terms leads in dihadron production to
an increase of our predictions for the cross sections in com-
parison to the LLA BFKL calculation.

We considered the effect of using different parametriza-
tion sets for the PDFs and the FFs, which could potentially
give rise to uncertainties which, in principle, are not neg-
ligible. We did some preliminary tests devoted to gauge the

2 To avoid misunderstandings, by “exact implementation of the BLM
procedure”, we mean here that with our choice of the renormalization
scale all terms proportional to the QCD β0 vanish within the accuracy of
our calculation, NLA BFKL resummation. To get such full cancellation,
the terms originating both from the NLA kernel and the hadron vertices
have to be taken into account—see the discussion after Eq. (15).

effect of using different PDF routines, showing that it leads to
no significant difference in the results. Then we investigated
the Y -behavior of our observables by using two different FF
parametrizations. Our calculation with the AKK FFs gives
bigger cross sections, while the difference between AKK and
HKNS is small, since the FFs uncertainties are mostly wiped
out in the azimuthal ratios.

We studied the effect of using two different choices for
the factorization scale, μF = μBLM

R and (μF)1,2 = |�k1,2|,
whereas μR = μBLM

R runs at BLM scales. We see some
difference in the predictions within these two approaches,
especially for larger values of Y and at the smaller value
of the energy

√
s = 7 TeV. In this region, the kinematic

restriction for the undetected hard-gluon radiation may start
to be important, requiring resummation of threshold double
logs together with BFKL logarithms of energy. This issue
may be a physical reason for the observed strong dependence
on the factorization scale choice in our pure BFKL approach,
and it definitely deserves further study.

The applicability border for our approach could be estab-
lished either by comparing our predictions with future data
or by confronting it with some other theoretical predictions
which do include higher-twist effects. For the last point, one
can consider an alternative, higher-twist production mech-
anism, related with multiparton interactions in QCD (for
a review, see [71]). The double-parton scattering contribu-
tion to the Mueller–Navelet jet production was considered in
Refs. [31] and [72], using different approaches. It would be
very interesting if similar estimates were done also for the
case of dihadron production.

We plan to extend this study by investigating the effect of
using asymmetrical cuts for the hadrons’ transverse momenta
as well as studying less inclusive processes where at least one
light charged hadron is always tagged in the final state.

We encourage experimental collaborations to include the
study of the dihadron production in the program of future
analyses at the LHC, making use of a new suitable channel
to improve our knowledge as regards the dynamics of strong
interactions in the Regge limit.
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