
Scientific Programming 13 (2005) 205–217 205
IOS Press

Parallel framework for cooperative processes

Mitică Craus and Laurenţiu Rudeanu
Department of Computer Engineering, Technical University “Gh.Asachi”, 700050 Iaşi, Romania
E-mail: craus@cs.tuiasi.ro, lrudeanu@yahoo.com

Abstract. This paper describes the work of an object oriented framework designed to be used in the parallelization of a set of
related algorithms. The idea behind the system we are describing is to have a re-usable framework for running several sequential
algorithms in a parallel environment. The algorithms that the framework can be used with have several things in common: they
have to run in cycles and the work should be possible to be split between several “processing units”. The parallel framework
uses the message-passing communication paradigm and is organized as a master-slave system. Two applications are presented:
an Ant Colony Optimization (ACO) parallel algorithm for the Travelling Salesman Problem (TSP) and an Image Processing (IP)
parallel algorithm for the Symmetrical Neighborhood Filter (SNF). The implementations of these applications by means of the
parallel framework prove to have good performances: approximatively linear speedup and low communication cost.

1. Introduction

The idea behind the paradigm we are describing is to
have a re-usable framework for running several sequen-
tial algorithms in a parallel environment. The start-
ing point was the need to study the behavior of several
ant colony algorithms, i.e. to observe the relevance of
certain conditions, parameter values, and to test new
ideas. Because we were mainly concerned with ant
colonies we had in mind the previous work and at-
tempts of parallelization [1–4] with their shortcomings
and advantages. Our intention was to choose a model
of parallelization which would best suit the sequential
ant algorithm and to overcome – to some extent – the
main drawbacks of existing implementations for that
model. The central problem was the communication
overhead, which for big instances dramatically affects
the performance, namely the speed-up.

After this we realized that the design could be easily
extended in such a way that it can also be applied to
other algorithms, not only to ant colonies. We wanted to
end up with a parallel framework flexible enough to be
configured for any user-provided “external” algorithm.

The algorithms with which the framework can be
used have some things in common: they have to run
in cycles and it should be possible to divide their work
among several “processing units”. Genetic algorithms,
for example, are suitable for being used with the frame-
work.

The paper is organized in the following way. First
we state the goals of the framework with respect to run-
ning algorithms in parallel. Afterwards we present our
design and implementation. As examples we present
an Ant Colony algorithm for Travelling Salesman Prob-
lem and an Image Processing algorithm for the Sym-
metrical Neighborhood Filter.

2. Goals

The two main aims of our efforts are: to create a com-
fortable level of abstraction and to optimize communi-
cation. The former means that the framework should
allow the programmer to replace one algorithm with
another with a minimum of effort. That would allow us
to try out many different implementations with little ef-
fort. In order to achieve this first goal class design and
application architecture (which will be detailed in the
nest section) have to be dealt with: the actual algorithm
to be parallelized would inherit from a generic class
for algorithms and the problem-specific tools and data
structures would have to match that specific algorithm.

Achieving the second goal would result in good
speedups even for larger problem instances. In order
to minimize the communication without altering the al-
gorithm’s idea we had to maintain detailed bookkeep-
ing information and to use an updating algorithm that
makes use of logical clocks, as it will be discussed later
on.

ISSN 1058-9244/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192387304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

206 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

3. General description of the parallel framework

As previously stated, the framework uses message-
passing communication (the MPI library). Briefly, the
parallel framework works as follows.

At first the problem instance is read and the control
is passed to slaves by signaling them to start the algo-
rithm and the master waits for requests coming from
every slave to update the data. Each slave works with a
local instance of the sequential algorithm that operates
over a local copy of the central data structures. In the
beginning each slave learns about the input data (i.e.
the problem instance), initializes the local copy of data
structures together with the sequential algorithm and
then waits for a start signal. When this happens the
slave passes the control further to the sequential algo-
rithm instance, providing it with a callback mechanism
which is to be used whenever the algorithm decides it is
time to pass the control back to the framework (for ex-
changing data with the master and other bookkeeping
operations). We will call this a checkpoint and we will
describe it in more detail since it is a critical operation
for the efficiency of communication. Basically com-
munication between processors only takes place during
these checkpoint moments.

4. Checkpoint

It is known that communication is the most time con-
suming operation in a parallel message-passing sys-
tem. Since in our case all communicationoccurs during
checkpoints this operation is critical for the communi-
cation overhead and for the efficiency. That is why it
is important to implement it as carefully as possible.
More specifically, we are concerned with two issues:
how to schedule the checkpoints and what to do inside
a checkpoint, that is, what kind of data is necessary to
be sent over the interconnection network.

It is important to point out that in order to make an
efficient parallel implementation; the particular parallel
environment has to be considered. The underlying ar-
chitecture of the parallel machine and interconnection
network have major impact over the measured perfor-
mance of the algorithm (mainly communication time
and idle time). Since it is difficult to estimate these
system traits in a theoretical formula, some tests should
be run in order to have an idea about how the system
behaves. We will get back to this later in this section.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

Ti
m

e

CPUs

No scheduling

With scheduling

Fig. 1. The time of unscheduled versus scheduled communication
on a SunFire 15 K.

4.1. How the checkpoints are made

4.1.1. The policy for sending messages
The slaves request in turns data exchanges with the

master; the effect of this scheduling of updates is that
between two consecutive checkpoints of the same pro-
cessor all other slaves have already made their changes
visible in the global data structures of the master. This
slave-requested data exchanges that occur at different
moments make the system asynchronous and it also
makes it benefit of a “pipeline effect”, meaning that
while one processor is sending messages chances are
that the others are performing computation steps.

This is not the only reason the checkpoints are sched-
uled in this manner. As we have said before, the partic-
ular parallel machine’s behavior in sending messages
has a great deal of influence over the performanceof the
parallel program. If all slaves have to asynchronously
send messages to the master, one might see two ways
of doing it. Either by letting them try at the same
time, with no particular schedule, and let the system
and the interconnect handle (presumably in an effi-
cient way) the situation (no scheduling), or by making
them take turns in transferring data, and serialize the
data exchanges by having the master acknowledge each
pending request(scheduling). Choosing between these
two ways is not as straightforward as it might seem.
The former is expected to deliver the best performance,
though the results of the tests we have run showed
quite the opposite. For tests and practical implementa-
tion we have used a Sun Fire 15 K HPC service hav-
ing a backend with 48 processors. Each slave sent a
message of 500,000 double values to the master with
and without scheduling and the communication times
were compared. The two sets of values were printed in
Fig. 1. It can be seen that as the number of processors
increases the time for scheduled sending of messages

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 207

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

tim
e(

se
c)

CPUs

MPI_Gather()
scheduled p2p

Fig. 2. The time of MPI Gather versus scheduled communication on a Sun HPC.

(the second way) drops to nearly half the time needed
for unscheduled communication.

In order to collect all the changes that have occurred
in the slave processors into a central master proces-
sor we cannot oversee the primitives which an MPI li-
brary has to offer for collective communication. More-
over one might assume that these primitives would deal
with collective operations much more efficiently than
the user could possibly do using only simple point
to point communication primitives (send and receive
operations); in our case the collective operation that
would be appropriate for use is of course MPI Gather().
However we found out that – on the systems we have
had access to – the scheduled communication we have
described earlier delivered a much better performance
than MPI Gather() did. In the tests each slave proces-
sor sent a message to a master processor, first using
MPI Gather() and then using our scheduled point to
point communication. The tests were carried out with
various messages lengths and with an increasing num-
ber of processors. Communication times were mea-
sured and in each case our system behaved better. The
results obtained for message lengths of 500,000 double
values are depicted in Fig. 2. The tests were run on a
Sun HPC system with 24 processors and the Sun MPI
library was used as the MPI implementation.

In our opinion these considerations are significant
and provide a strong case for choosing the latter, sched-

uled communication scheme over the former, unsched-
uled.

However it is not safe to assume that the above con-
clusion would hold in any context, so the choice of
scheduling the data exchanges is ultimately left as a
parameter to the user. A test program similar to the
simple program we have made to evaluate the benefit
of scheduling the transfers can help the user in making
the decision. If the parameter is left unchanged the
default behavior for the framework is to use scheduled
communication.

4.1.2. What to do inside a checkpoint
Now that we know how to efficiently schedule the

data exchanges between the slaves and the master (the
so called “checkpoint” we have mentioned), let us focus
on the second issue, that is, what to send during such a
checkpoint.

Both the framework and the sequential algorithm are
aware of the generic concept of a change. This des-
ignates the elementary item in algorithm’s data struc-
tures that can be modified. For the ACO algorithm for
example a change would be a real number represent-
ing the amount of pheromone that is to be laid on an
edge of the graph. During a checkpoint collections of
changes are exchanged: the slave sends its modifica-
tions to master which in turn replies with the collection
of changes that the slave is unaware of. On the slave

208 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

sendChangesToSlave(slave)
begin

//get the collection of changes for slave
changeCollection = { } //changes to be

//sent to slave
for ch in all items in the data structures do

if ch.clock > slave.clock //update
add ch to changeCollection

end for
//send the changes to slave
sendChanges(changeCollection, slave)
//update the logical clocks
currentClockValue++ //increment current

//clock value
for ch in changeList do

ch.clock=currentClockValue
end for
slave.clock=currentClockValue

end

Fig. 3. The procedure that the master executes in order to send
updates to a slave.

side it is easy to decide what is needed to be sent in the
next checkpoint: the algorithm simply adds everything
that it has modified to a collection of changes (which is
emptied before each cycle begins). On master’s side,
however, there is a special module called the “book-
keeper” which makes use of the logical clocks to be
able to determine the items in the data structure (i.e.
the above mentioned changes) that are to be sent to a
particular slave, should the checkpoint time come. In
order to decide which changes are to be sent, an item
that can change also contains a logical clock, which can
be seen as a “version number” that gets incremented.
Also each slave processor has a similar logical clock
associated with it.

In order to get the list of changes and send it to a
slave, the master executes the procedure in Fig. 3.

This way a slave receives only the changes whose
clock values indicate that they were made after last
checkpoint of that slave. Since then other slaves have
certainly undertook checkpoints and have sent their
changes to the master, changes which have to be trans-
mitted to the slave that is currently undertakinga check-
point. Another way to do this would be to allocate a
queue of outgoing changes for each slave and to place
each incoming change in the other slaves’ queues.

In Fig. 4 below there is an outline of the runflow in
the framework. The master passes the control to slaves
by signaling them to start executing the sequential algo-
rithm and then waits for checkpoint requests. The slave
initializes its structures and then passes a callback func-
tion to the sequential algorithm before letting it take
over. When the algorithm completes a cycle and has its
partial results ready it calls this callback function, pass-
ing the control back to framework. The slave is then

SlaveMaster

start signal

start

checkpoint
get patch

send patch
callback function

cycle

cycle

Sequential Algorithm

Fig. 4. How the master and the slaves work in the two-level parallel
framework.

submitting a checkpoint request to master. When it re-
ceives the acknowledge it packs the changes to be sent,
sends them and then receives and unpacks the changes
from master, applying them to local structures. When
the checkpoint is over the callback function returns and
the sequential algorithm carries on.

As part of the checkpoint, the solution obtained by
the slave in the last cycle – or a quantitative evaluation
of it – is also passed to the master.

What else can be done inside a checkpoint? Basi-
cally anything that is considered important by the algo-
rithm which is dealt with by the framework. The proce-
dures for sending and receiving collections of changes
are supplied by the sequential algorithm and the check-
point procedure can be overridden. In this way the pro-
tocol for data exchange can be customized to meet any
specific demands. For example there are several paral-
lel implementation of ACO meta-heuristic [1,5] that in
order to minimize the communication overhead chose
to schedule the data exchanges between the server and
the master to take place once every predefined number
k of cycles. If it’s needed this can also be done in
our case by making the sequential algorithm call the
callback function (seqAlgReady()) every k cycles. An-
other example is the global updating rule in ant algo-
rithms, which might exist or not. In our case this can
be managed by changing the function that handles the
checkpoint requests in the master.

5. Framework implementation

The framework has an object oriented design and
was implemented in C++, using the MPI library. Be-

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 209

side the master and slave classes there are several com-
ponents that interact and are related to the specific al-
gorithm. The framework should be able to switch an
algorithm with another one with a minimum of effort
on behalf of the programmer, therefore there has to be a
way to change the “family” of objects to be created once
the sequential algorithm has changed. One way to ac-
complish this is by the use of an abstract factory which
user supplied concrete factories will inherit from. The
abstract factory the framework is working with is called
SeqAlgFactory. The user should create a concrete
factory as a subclass of this abstract factory and pass it
as an initialization parameter to the framework. Inside
the concrete factory there have to be functions for cre-
ating objects of the related types described above: the
sequential algorithm, the input data for the algorithm,
the “bookkeeper”, the “change” and the “patcher”. In
this section we give a short description of these classes.

The classes CmdUnit and ProcessingUnit encapsu-
late master and slave functionality, respectively. They
work much like a template, defining the behavior of the
framework. These two are the main classes and provide
a frame where the sequential algorithm and all related
objects fit in.

The CmdUnit interface is described bellow:
void init(SeqAlgFactory* sf): This function takes

care of initializing the master processing unit. Nor-
mally the user does not need to change this function.
The parameter sf, of type SeqAlgFactory, has to be
provided by the user.

void run(): Once this function is called the master
processor enters in running state; when the slaves be-
come active too the framework is starting the execution
of the sequential algorithm.

void abort(): Forces the framework to stop the exe-
cution of the sequential algorithm. The halting process
is “graceful” and the data structures are reset so that a
clean restart of the algorithm is possible.

void terminate(): This callback is being invoked by
the framework after the sequential algorithm has fin-
ished. The user can define this function to run custom
tasks at the end of the sequential algorithm, like finding
the best solution etc.

void ckptAck(int pid) : Accepts a pending checkpoint
request coming from the slave denoted by pid.

void getTotalWork(): The user should implement this
in order to have a quantitative estimation of the total
work to be done by the sequential algorithm. It is useful
for determining the work share for each slave.

The ProcessingUnit class is composed from the func-
tions below:

int init(SeqAlgFactory*): Initializes the slave pro-
cessing unit, in the way that CmdUnit::init() takes care
of initialization in the master. The parameter SeqAl-
gFactory parameter has to be provided by the user.

void run(): It is similar to the function with the same
name in master: it sets the slave processor in running
state and synchronize with the others. When all of them
are ready the framework is starting to the execution of
the sequential algorithm.

void abort() and void terminate() These two func-
tions are similar to ones found in CmdUnit.

void seqAlgReady(): A callback that is invoked by
the framework at the end of each algorithm’s cycle and
takes care of performing a checkpoint with the master
processor. Normally the user should not need to touch
this unless a special behavior is needed.

int getWorkShare(): Gives an estimation of the work
share attributed to this unit, based on the master’s esti-
mation of the total amount of work

void requestCkptAck(): Posts a checkpoint request
to the master and waits for acknowledge.

The SeqAlgFactory class is responsible for pro-
viding the instance of sequential algorithm, subclass
of SeqAlg, and the tools related to it: the Patcher
and the BookKeeper objects. The following func-
tions have to be provided when the user is using the
framework with a specific algorithm: SeqAlg* create-
SeqAlg(), Patcher* createPatcher() and BookKeeper*
createBookKeeper(SeqAlg* alg, Patcher* p).

SeqAlg is the sequential algorithm the framework is
working with (i.e. that is to be parallelized). A subclass
of this class should be provided by whoever wants to
make use of the framework. The description of this
class follows.

long int getTotalWork(): A user estimation of the
total work to be done (in parallel).

void addCycleChange(Change*): Adds a new
change to the set of changes made so far in the current
cycle.

Iterator* getCycleChanges(): Returns the changes
made so far in the current cycle.

void init(): A callback which is invoked by the frame-
work before the sequential algorithm starts in order to
allow for custom initialization. This has to be defined
by the user.

void readInstance(const char*): Reads the problem
instance from a file. The instance is closely related to
the specific algorithm, that’s why the user has to define
this function.

long int getTotalCycles(): Gives the total number of
cycles needed by the sequential algorithm. This has to
be defined by the user.

210 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

void cycle(): The behavior of the sequential algo-
rithm is mainly given by this function. This has to be
defined by the user.

void applyChange(Change *): Updates the local data
structures with a change that was just received as a
result of a checkpoint operation. This has to be defined
by the user.

The Patcher class is used for efficiently packing
and unpacking the collection of algorithm-dependant
changes to be sent over the network. Here is a listing
of the functions it provides:

void addChange(Change*): Enqueues a new change
to the set of changes to be sent.

void removeAllChanges(): Clears all previously
added changes.

Iterator* getChanges(): Returns the current set of
changes queued in this object (not yet sent).

void setChanges(Iterator*): Sets the whole collec-
tion of changes to be sent by this object.

Iterator* getPatchFromPid(int pid) and void send-
PatchToPid(Iterator* it, int pid) : The user has to im-
plement these two functions in order to define the proto-
col to serialize/deserialize the sets of changes for trans-
fer them from a processor to another. This is a time
consuming operation and for efficiency reasons it can
not have a generic implementation: since the Change
objects are defined by the user, the functions that pack
and unpack the sets of changes also have to be defined
by the user.

The BookKeeper class handles the bookkeeping of
changes and other data structures in the master. Below
is a list of the functions it provides.

void initStructures() and void freeStructures(): These
two functions are called by the framework to initialize
and destroy any specific data structures the bookkeeper
might have.

void handleCkptRequest(int pid): This takes care of
a checkpoint request coming from the slave processor
denoted by pid. Basically what it needs to do is to get
the changes from the slave (by calling receivePatch())
and to reply with the proper list of changes for that
slave (sendChangesToSlave()).

Iterator* getChangesForPid(int pid): Obtains the
list of changes that the slave with id pid needs to know
about.

sendChangesToSlave(int pid): Sends the set of
changes obtained by getChangesForPid() to slave pid
and then calls updateClocks() updates the logical clock
values for the same slave.

void updateClocks(int pid): Updates the clocks after
a slave with id pid has performed a checkpoint.

void receivePatch(int): Delegates to the patcher ob-
ject to receive the set of changes from the slave.

Iterator *getReceivedChanges(): Returns the set of
changes that has just been received from the slave via
receivePatch().

void applyReceivedChanges(): This calls the user
defined function applyChange() for each change that
was received.

In the functions above we have encountered the class
Iterator for several times; it is useful for iterating
through a sequence of generic Element objects. For
example the Change is also an Element. The semantic
is straightforward and here is the content of these two
classes.

void addElement(Element *elem)
void removeElement(long int)
int hasMoreElements()
Element* getNextElement()
long int getCount(): Returns the number of items in

the iterator.
void rewind(): Rolls the iterator back to the first item

in the collection.
void empty()
Iterator *dupData(): Copies the elements of this

iterator into a new one.
void destroy()
An Iterator works with generic Element objects. The

Element class is very simple, but may be subclassed by
the user as needed. It exposes only one function:

long int getId(): This identification number is for
indexing purposes.

One case where Element is subclassed is the Change
class. In addition to the functions inherited from
Element this class has some functions for managing
the clock value:

long int getClockValue(): Returns the current clock
value associated with this change.

void setClockValue(long int): Sets a new clock value
for this change.

void incClockValue(): Increments the value of the
current clock value for this change.

6. Case study I: Ant colony algorithm for the
travelling salesman problem

As we have said earlier, one of the algorithms we
have chosen to parallelize using the designed frame-
work is the Ant Colony (ACO) algorithm for Travelling
Salesman Problem (TSP).

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 211

6.1. Artificial ant colonies and the basic application
to TSP

TSP is the classic problem of finding the shortest
circuit through a set of n cities, visiting each city of the
tour exactly once. A symmetric TSP can be represented
by a complete weighted graph G with n nodes, the
weights representing the distances between the cities.
The Euclidean variant of the TSP defines the cities
as points in a plane and weights the edges with the
Euclidean distances between the corresponding cities.
The resulting graph is complete. TSP is known to be a
NP-hard combinatorial problem.

The Ant Colony Optimization (ACO) is a generaliza-
tion of the Ant System algorithms, which were inspired
by the social behavior observed in real ant colonies.
The interesting aspect of their behavior was their abil-
ity to find the shortest path from the place where food
was found to the nest. The investigations showed that
the ants managed to do this by communicating indi-
rectly via pheromone trails that they left behind. These
pheromone trails act as a form of indirect communica-
tion among ants (called stigmergy) because they attract
other ants thus generating a positive feedback called
autocatalytic effect [6–8]. The idea of ACO is best
illustrated by showing one of the first applications of
the ant algorithm – the Ant System algorithm – which
was targeted to find good solutions for the TSP. Here
is a short description of how it works. The edges of
the graph have pheromone values, which the ants mod-
ify. Initially a number of ants are randomly positioned
among the nodes. The ants move from one node to an-
other following a state transition rule, until each ant has
completed a hamiltonian tour. During a cycle each ants
visits each city (node) exactly once. The state transition
rule is a heuristic based on the weight and the amount
of pheromone of the edge between the two cities. Each
ant move is called an iteration and when every ant has
completed its tour we say that a cycle has ended. The
intensity of pheromones trails on the edges that the ants
used in their tours are updated as it will be explained
below. In some implementations, the pheromones on
the edges of the best tour are strengthened once more
according to a global updating rule. Before the next
cycle begins a small fraction of the pheromones on
all graph edges is evaporated to encourage the ants to
search for new paths rather than to exploit the ones
they already know. After this operation is completed
the ants can start the next cycle from the nodes where
they the ended the previous cycle. After a predefined
number of ant cycles (or when a stopping condition

becomes valid) best result among the ants qualifies as
the optimal solution.

The basic idea explained above will be presented in
a more formal way in the remaining part of this section.

Let τij(t) be the intensity of the pheromone trail on
edge (i,j) at time t and let bi(t) be the number of ants
in city i at time t, i = 1, n; then m =

∑n
i=1 bi(t) is the

total number of ants.
The ant movement from the current node to the next

is governed by the state transition rule: for every un-
visited neighbor of the current node, a probability of
migration is computed. For an ant k which at time t is
in node i the probability of the ant to migrate to node j
at time t+1 is defined in Eq. (1). The choice of the node
to use as destination for the ant move is made using
a “wheel of fortune” probabilistic mechanism which
uses the probabilities that we’ve explained above.

P k
ij(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[τij(t)]
α[ηij(t)]

β∑
l∈allowed(k)

[τil(t)]α[ηil(t)]β

j ∈ allowed(k)
0 otherwise

(1)

– allowedk(t) is the set of cities not visited by ant
k at time t.

– ηij(t) is a local heuristic and for TSP it’s called
visibility; it is usually defined as the distance
between the nodes (the weight of the graph edge
corresponding to the two nodes).

– α, β are two parameters which control the relative
importance of pheromone trail versus visibility.

At time t + n, at the end of the cycle, all ants will
have completed their tours and the intensity of the
pheromone trail on edge (i, j) will be increased with a
value corresponding to all ants which have walked on
edge (i, j) during the cycle. The formula for this value
is given by Eq. (2).

∆ij(t, t + n) =
m∑

k=1

∆k
ij(t, t + n) (2)

∆k
ij(t, t+n) is the intensity of the pheromone trail laid

by ant k on edge (i, j) in time interval [t, t+n] and is
given by Eq. (3).

∆k
ij(t, t+n) =

{ Q
Lk

if ant k uses edge (i, j)
0 otherwise

(3)

At the end of the cycle, after the evaporation process
is completed, the intensity of pheromone value on edge
(i, j) will be:

τij(t + n) = (1 − ρ) · τij(t) + ∆ij(t, t + n) (4)

212 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

where ρ is a coefficient representing pheromone evap-
oration (0 < ρ < 1).

The outline of the Ant System algorithm is given
below.

Initialize: place the m ants randomly among
the cities

for t=1 to number of cycles do
for k=1 to m do
repeat until ant k has completed a tour

Probabilistic choice for the next city
j to be visited

end repeat
Evaluate the solution: calculate the
length

Lk of the tour generated by ant k
end for
Save the best solution found so far
Update the trail levels on all edges (i,j)

used by the ants in the current cycle
Evaporate the pheromone on all edges
Apply the global updating rule (if defined)

end for
Print the best solution found

The new ACO metaheuristic further extends the con-
cepts defined by this simple Ant System algorithm,
making it possible to be used in solving any combi-
natorial optimization problem whose solutions can be
represented as paths in a graph.

6.2. Other approaches/previous work

There are quite a few parallelizations of ACO algo-
rithms in the literature. We describe the most impor-
tant of them briefly: In [3] Stutzle points out the fact
that there is no rule to efficiently parallelize ACO algo-
rithms because this process greatly depends on the un-
derlying computing platform and on the interconnec-
tion network. He suggests the use of the MIMD archi-
tecture in the process (for example, a cluster of work-
stations), and then he focuses on parallel independent
runs of the same sequential algorithm. The author com-
pares the quality of the solution obtained by executing
several independent short runs of an ant algorithm with
the solution quality of the execution of one long run
equaling the sum of the running times of the short runs.
In some specific conditions the short runs prove to be
better. Also, with no communication between them,
they can be easily run in parallel with virtually linear
speedup.

In [1] an MPI implementation with master-slave
architecture is presented, and this is similar to our
approach. However for the sake of simplicity syn-
chronous communication has been used, which affects

the performance, because of the time needed for the
processors to synchronize. In order to improve the com-
munication overhead, they have chosen to perform in-
formation exchanges between the master and the slaves
once every some predefined number of iterations. This
choice reduces the communication overhead but it also
modifies the usual behavior of the algorithm.

A similar, master slave synchronous approach is de-
scribed in [5] by Bullnheimer and Strauss, though they
don’t have a practical implementation. Instead they
use N-MAP, a tool that can simulate the execution of
message passing algorithms and analyze their perfor-
mance (the ratio of computation, communication and
idle times). They have achieved a speedup that in-
creases proportionally with the instance size. However
the communication model that was used assumes that
simultaneous transmission of messages is possible and
that it takes as long as the delivery of a single message.
This is generally not true, of course. The authors have
also felt compelled to minimize the communication
overhead by performing data exchanges once every k
iterations of the algorithm. This kind of data exchange
certainly has a positive effect on efficiency and speedup
but they are also aware of the fact that it distorts the ant
algorithm as the ants in a processor don’t interact with
others at all during those k iterations. Furthermore, the
way in which this influences the quality of the solutions
is not analyzed.

In [9] the authors take note of the fact that in a
master-slave approach, with centralized data structures,
a bottleneck can occur at the master. A solution for
this problem is to have a hierarchy of master processes
instead of a single one. At the bottom level of the
hierarchy each master takes care of a number of slaves.

In [2] a description of the implementation using the
shared memory model and the OpenMP as a parallel
environment is given. The authors try to show that the
shared memory model is more adequate to the prob-
lem (parallelization of ant colonies) than the message
passing model. Synchronization and timing issues are
taken into account and also the necessary amount of
effort.

An implementation using OpenMP would have at
least one weak point: it hinders the programmer to
have control over the slave threads by imposing the
synchronization of all threads at the end of the parallel
section. This results in idle times for synchronization
of the threads and moreover all child threads would
try to update the central data structures simultaneously.
Whether or not this is the best choice greatly depends
on the underlying parallel system and – as we have

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 213

seen earlier – in some cases it is preferable to do things
the other way around. We have chosen to control the
threads and the timing of data exchanges ourselves,
with a bit of extra work.

6.3. Implementation

We have explained the choice of message-passing
model and MPI over shared memory and OpenMP in
the previous section. After having decided upon the
most suitable model to adopt, the way in which the
work will be shared among processors has still to be
discussed. In our case we could distribute either the
vertices or the ants to processors. The first choice is not
very appropriate because imbalance can occur: if there
were a vertex with a high degree then the processor
that contained it would have more work to do than the
others. Therefore we have chosen the latter alternative
(the ants are to be evenly distributed to processors).

Since each ant acts independently of the others lin-
ear speedups can be obtained. In practice, however,
the communication incurred by the management of the
pheromone trails as global information is an important
overhead. Since all ants use and update the pheromone
trails, access to the latter is clearly the key point to
efficient parallel implementations.

It is necessary for the pheromone values to be shared
by all ants even if the ants are hosted by different pro-
cessors. Throughout the cycle however the ants in one
processor have no contact with the other ants. The
“global” pheromone matrix is maintained by the mas-
ter.

In the beginning, all workers read the problem in-
stance and are told by the master about their work share
(i.e. the number of ants). Each worker (slave) has its
own local copy of the pheromone matrix, which ants
modify during the cycle. The local matrix is synchro-
nized with the master’s, as we have discussed, at the
end of each ant cycle, through checkpoint operations.
The synchronization is by no means accomplished by
sending whole matrices over the network as for large
instances this could result in serious data traffic on the
interconnect and therefore high communication over-
head; instead the patcher object is called in to pack
and send (or to receive and unpack) the collections of
changes. The collections of changes for all ants in a
processor are lumped together by the patcher object in
a single transfer in such a way that there will be at most
one change object for any modified edge, even if more
than one update of its pheromonevalue were performed
(by different ants), thus minimizing communication.

0
5

10
15
20
25
30

0 5 10 15 20 25 30 35 40

Sp
ee

du
p

CPUs

Fig. 5. The speedup achieved with the two-level parallel framework
for TS.

The generic change we have mentioned earlier when
describing the design of the framework is represented
by an edge and a real value reflecting amount of
pheromone to be added to the specified edge.

There is no need to take into consideration the
pheromone evaporation when building the patch with
changes to be sent over the network, as the evaporation
process can be handled locally by each CPU.

The generic classes described in Subsection 5 were
subclassed as follows:

– SeqAlg: AcoAlg.
– BookKeeper: AcoBookKeeper.
– Change: AcoChange.
– Patcher: AcoPatcher.

As a final note, we have already showed in Subsec-
tion 4 some of the ways the framework can be cus-
tomized, by modifying or even overriding different
functions.

6.4. Experiments

In order to test the framework and the paralleliza-
tion of ACO for TSP, a TSP instance with 229 cities
(gr229.tsp) from the TSPLIB library was used. For tests
and practical implementation of the parallel framework
we have used a Sun Fire 15 HPC service having a back-
end with 48 processors. The tests have been carried
out with an increasing number of processors, from 2
up to 36 processors. Each value is an average over five
runs and the sequential time was measured to 234.978
seconds.

The diagram in Fig. 5 below depicts the speedup that
was achieved.

214 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

7. Case study II: Parallel image processing:
symmetrical neighborhood filter

The framework application we are presenting in this
section is from the field of image processing and it is
about applying a convergent filter onto an image. We
are not claiming that in this case the best choice for
parallelization is to use our framework, but this rather
wants to be another usage example of the framework
for a new kind of application (image processing).

7.1. How SNF works

The Symmetrical Neighborhood Filter (SNF) is used
in image segmentation algorithms, which cluster pixels
into homogenous regions. Before starting to classify
the pixels by adjacency and similar properties, the noise
inherent to real images (due to physical equipment,
lighting conditions, physical imperfections) has to be
reduced in order to not have single pixel outliers. The
SNF filter smoothes out the interior of a region to a near-
homogenous level and not only it preserves the existing
edges but also sharpens blurred edges (as opposed to
most existing preprocessing filters, which smooth the
interior of regions at the cost of degrading the edges).

The SNF works the following way: for each pixel
the gray values of symmetric neighbor pairs around the
center pixel are compared with the pixel’s gray value.
The value for a pair is chosen to be the closest value –
of the two values in the pair – to the center pixel, if
this value is within e of the center pixel, or the value of
the center pixel itself otherwise. An average value is
computed over the center pixel and the computed values
of the 4 pairs, and then the center pixel’s gray value
is set as the mean between that average and the center
pixel’s current gray value. If the new value doesn’t
differ from the previous one the center pixel is called
to be fixed.

The filter is convergent and is applied for a predefined
number of times or until a termination condition is
fulfilled (eg: until a percentage of the pixels become
fixed)

7.2. Other approaches

Several previous successful parallelization attempts
(for SIMD machines, systolic arrays and pipelined
computers) are mentioned in [10]. The authors also
have their own implementation, with an obvious data
exchange pattern where a processor is taking care of
a region of the matrix representing the image, of size

Fig. 6. The ghost regions [10].

n√
p with n being the size of the (square) matrix and p

is the number of processors. For computing the gray
values for the pixels on the border of the region a pro-
cessor needs to know those pixels’ neighbors. They
name those pixel regions as ghost regions and for a
region by size q × r held by a processor they define 8
ghost regions: for North, South (r pixels each), East,
West (q pixels each) and also four one-pixel regions for
North-East, North-West, South-East and South-West,
as shown in Fig. 6. The pixels in the ghost regions
are in neighbor regions and are actually processed by
a “neighbor” processor (which, in turn needs to know
about pixels on the border of the current processor).
Therefore when an iteration of the filter is finished each
processor needs to synchronize with its neighbor pro-
cessors to exchange the new values – if any – that were
computed for the pixels in the ghost regions. If a pixel
was or becomes fixed there is no need to synchronize
it.

In the communication scheme they use, a processor
exchanges “ghost regions” with its eight neighbors after
each iteration of the filter.

7.3. Implementation

The strategy for data exchange is very similar to the
one described in [10] as this is a natural and obvious

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 215

approach: the pixels that a processor has “touched”
in the last application of the filter have to be spread
to the neighbor processors in order for them to update
their ghost regions. The implementation of this data
exchange, however, differs in some respects.

In terms of our framework, the set of changes that
a worker has made in the last cycle and needs to com-
municate to master in a checkpoint is the current set of
non-fixed pixels on the border, i.e. those that got their
gray value updated and are located on the border. The
other modified pixels will be kept ready for the next
iteration and only after the last cycle they will be sent
to the master in order to re-assembly the whole matrix.

The bookkeeper in the master knows about what
pixels each worker is interested in keeping in synch and
when it receives the lists of changes from all processors
it knows to assembly response-patches containing the
combined lists of values which were modified by other
processors and for which the worker is interested in.
Moreover, as a slave can deduce how the image was
split among processors, it is able to tell which pixels are
not interesting to any of its neighbors and it can filter
them out from the set of changes in order to lower the
communication cost. This is the case with the pixels
on the out-border of the big image, which are not near
any of the neighbor regions.

For this application the new classes that were derived
from the ones described in Section 5 are as follows:

– SeqAlg: SnfAlg: contains the logic for updating
the gray values for the pixels in the region allocated
to the current worker.

– BookKeeper: SnfBookKeeper: manages the up-
date lists for each worker, based on their interest
lists. The image is stored in a matrix of integers
P , where each element Pij contains the gray level
for pixel at coordinate (i, j) in the initial image. In
our approach the image is split in chunks of rows
(or columns) instead of square regions. The inter-
est lists that are built in the master’s bookkeeper
are based on what rows/columns each processor
has.

– Change: SnfChange: contains a pair of coordi-
nates for the pixel along with an integer represent-
ing the new gray value that was computed.

– Patcher: SnfPatcher: for handling the updates of
the ghost and border regions in each processor.

At checkpoint time each worker first sends its list of
cycle changes (pixels on the border that were modified
in the past cycle, as discussed above) packed in a single
message to the master node. In the second step it

2
4
6
8

10
12
14
16
18
20

0 5 10 15 20 25

Sp
ee

du
p

CPUs

speedup

Fig. 7. The speedup achieved with the two-level parallel framework
for SNF.

receives the list of changes that need to be applied to
the local region in order to update the pixels in the
ghost regions that were modified by other processors.
Therefore instead of eight data transfers only two are
necessary. We have not studied whether or not this
brings a performance gain over the approach in [10].

7.4. Experimental results

The tests of the SNF algorithm within our parallel
framework were done on a Sun HPC service having a
backend with 24 processors. The test runs have been
carried out with an increasing number of processors,
from 4 up to 24 processors. The tests consisted of
applying the SNF filter on a randomly generated image
of 1024 × 768 pixels in size, with 16 bit gray levels.
The filter was configured to stop after 50 iterations and
had the parameter e (described in section A) set to 20.
The diagram in Fig. 7 below depicts the speedup that
was achieved.

8. Conclusions, actual and future work

The algorithms tested by means of our parallel frame-
work have good performance: the approximatively lin-
ear speedup (for up to 22 CPUs) and low communica-
tion cost. It is assumed that the pronounced degrad-
ing of the speedup, that occurs over 22 processors in
the case of ACO, is happening when the sum of com-
munication times of all slaves during a cycle reaches
values close enough to the average processor compu-
tation time for one cycle. This is the point when wait
times begin to occur inside processing units when they
reach checkpoints, because at that time there are still
one or more processors which haven’t finished their
checkpoint. The reason we think it comes to such a
bottleneck situation is that as the number of processors

216 M. Craus and L. Rudeanu / Parallel framework for cooperative processes

grows the checkpoint communication time doesn’t nec-
essarily decrease to make it possible for the increasing
number of checkpoints to fit within the per-processor
cycle computation time, which usually gets shorter (in
the case of a parallel ACO algorithm more processors
mean less ants per processor to move around, therefore
less work to do). This means that a processor that is
trying to perform a checkpoint while another still has
not finished its own checkpoint would have to wait un-
til it receives the acknowledge signal from the master,
signaling that the ongoing checkpoint has finished; oth-
erwise it would have to try to overlap the checkpoints,
which as we have shown is not always a good idea as it
doesn’t necessarily lead to better communication time.

These suppositions have driven us to develop a multi-
level model, which tries to go around the discussed
bottleneck issues. These is part of our actual and future
work.

We briefly describe a three-level parallel framework.
There are three types of processing nodes: a single mas-
ter, several submasters and several slaves. The mas-
ter communicates with the submasters and each sub-
master communicates with a predefined set of slaves.
The system is useful only if the number of submasters
is at least 2 and there is at least one submaster with
more than one slave. The number of submasters (and
therefore the number of slaves) is a parameter in the
program and is known before runtime. Based on the
rank number, each processor is able to tell whether it is
a slave, a submaster or a master. Also each slave can
deduce the rank of its submaster and each submaster
can compute the list of the slaves it has to take care of.
At first, the problem instance is read and the central
data structures are initialized. The control then passes
to the slaves which start the algorithm while the master
and the submasters are waiting for requests to update
the data. Each slave works with a local instance of the
sequential algorithm that operates over a local copy of
the central data structures. It receives the input data (the
problem instance) and initializes the local data struc-
tures together with the sequential algorithm. It then
passes the control further to the sequential algorithm
instance, providing it with a callback mechanism to be
used whenever the algorithm decides it’s time to pass
the control back to the framework, for updating the data
structures with what other slaves have computed and
other bookkeeping operations. Inside a checkpoint the
slave sends the data it has modified to its submaster, as a
list of generic change objects. The submaster has some
temporary data structures for forwarding the data be-
tween the slaves and the central master. A bookkeeper

in each submaster stores the list locally, builds a com-
plete list of changes that need to be sent to that specific
slave and then sends it. The slave then carries on exe-
cuting another cycle of the sequential algorithm. When
all or a tunable percent of a submaster’s slaves have
completed their checkpoints, the submaster initiates a
checkpoint with the central master. It efficiently packs
all the changes it had received from the slaves in the last
cycle and sends them to the master. The master applies
the list of changes to its structures and also packs the
data that the submaster is unaware of and sends them
to the submaster (that contains changes made by other
slaves in other submasters). So the checkpoint between
a slave and a submaster is similar to the checkpoint that
takes place between a submaster and the master.

The first tests for the three-level framework have
proven that the multi-level model can overcome the
limitations of the basic master-slave model.

Acknowledgements

The authors would like to acknowledge the sup-
port of the European Commission through grant num-
ber HPRI-CT-1999-00026 (the TRACS Programme at
Edinburgh Parallel Computing Centre) and the HPC-
Europa consortium. As well, the authors would like
to acknowledge the support of the the Romanian HPC
Center CoLaborator.

References

[1] D.A.L. Piriyakumar and P. Levi, A New Approach to Exploint-
ing Parallelism in Ant Colony Optimization, 2001.

[2] P. Delisle, M. Krajecki, M. Gravel and C. Gagne, Parallel
Implementation of an Ant Colony Optimization Metaheuristic
with OpenMP, in Proceedings of the 3rd European Workshop
on OpenMP (EWOMP?1), (Barcelone, Espagne), 2001.

[3] T. Stutzle, Parallelization strategies for ant colony optimiza-
tion, Lecture Notes in Computer Science 1498 (1998), 722–
731.

[4] E.G. Talbi, O. Roux, C. Fonlupt and D. Robillard, Parallel
ant colonies for combinatorial optimization problems, Lecture
Notes in Computer Science 1586 (1999), 239–247.

[5] B. Bullnheimer, G. Kostis and C. Strauss, Parallelization
Strategies for the Ant System, in: High Performance Algo-
rithms and Software in Non-linear Optimization, (), R.D.L.
et all., ed., Vol. 24 of Applied Optimization, Kluwer, 1998,
pp. 87–100.

[6] M. Dorigo and G.D. Caro, Ant algorithms for discrete opti-
mization, Artificial Life (5) (1999), 137–172.

[7] M. Dorigo and L.M. Gambardella, Ant colony system: A co-
operative learning approach to the travelling salesman prob-
lem, IEEE Transactions on Evolutionary Computation 1(1),
1997.

M. Craus and L. Rudeanu / Parallel framework for cooperative processes 217

[8] A. Colorni, M. Dorigo and V. Maniezzo, Distributed Opti-
mization by Ant Colonies, in Proceedings of Ecal91 – Euro-
pean Conference on Artificial Life, (Paris, France), 134–142,
Elsevier Publishing, 1997.

[9] V.D. Cung, S.L. Martins, C.C. Ribeiro and C. Roucairol, Es-
says and Surveys in Metaheuristics, ch. Strategies for the Par-

allel Implementation of Metaheuristics, p. 644, Hardbound,
2001.

[10] D.A. Bader, J. Ja Ja, D. Harwood and L.S. Davis, Parallel al-
gorithms for image enhancement and segmentation by region
growing with an experimental study, The Journal of Super-
computing 10(2) (1996), 141–168.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

