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One of the most important issues in application of noninteger order systems concerns their implementation. One of the possible
approaches is the approximation of convolution operation with the impulse response of noninteger system. In this paper, new
results on the Laguerre Impulse Response Approximationmethod are presented. Among the others, a new proof ofL

1
convergence

of approximation is given, allowing less strict assumptions. Additionally, more general results are given including one regarding
functions that are in the joint part ofL

1
andL

2
spaces.Themethodwas also illustrated with examples of use: analysis of “fractional

order lag” system, application to noninteger order filters design, and parametric optimization of fractional controllers.

1. Introduction

Noninteger order (fractional) systems are becoming more
prevalent in control and signal processing applications. The
fact that they cannot be directly implemented on digital or
analog platforms is, however, a known issue.The issues come
from difficulties with realization of noninteger derivatives
and lack of semigroup property. The search for efficient
approximation that will keep the beneficial properties of
fractional system while allowing implementation is a topic of
ongoing research.

In this paper, we discuss new developments in the
Laguerre Impulse Response Approximation (LIRA) method.
This method allows efficient approximation of wide class
of noninteger order systems, in particular noninteger order
filters. Those new developments include formal proofs of
convergence in both general and particular cases and proofs
of important properties needed for implementation.

Besides LIRA, there are also different methods of non-
integer order system approximation. They can be divided
into three groups. The first group is based on approximating
𝑠
𝛼 operator in the frequency domain. The most popular
approaches are Oustaloup’s method [1, 2] and CFE (Con-
tinuous Fraction Expansion) method [3–5]. These methods
are based on different premises but both allow obtaining

relatively easy approximations. CFE method is generally
considered as worse of the two in the aspect of frequency
response representation [6]. Oustaloup’s method gives a very
good representation of frequency response at selected band at
the cost of high numerical sensitivity. This sensitivity can be
lessened with use of time domain realizations [7, 8]. Different
approach to approximation uses discrete realizations based
on truncation of series representations. In particular, this
class of methods includes truncation of Grünwald-Letnikov
derivative definitions and power series expansions (PSE) in
𝑧 variable (discrete frequency) domain. These methods give
good approximations only at high frequencies. Examples of
the method can be found in [9]. Improvements on PSE
methods with better band of correct approximation were
investigated by Ferdi [10, 11]. These two approaches, while
being fundamentally different, have in common the fact that
they are potentially effective but there are no proofs of their
formal convergence to the actual noninteger order system.
Another group of approximation methods uses diffusive
realization of pseudodifferential operators [12] for approx-
imation. First works in the area used finite-dimensional
approximation with trapezoidal integration [13]. Later works
used simple diagonal matrix time domain realization with
modified Oustaloup nodes from frequency domain method
[14–16]. This method is especially useful in analysis of
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infinite-dimensional systems using operator theory. It can be
used, for example, to prove such properties as stability of
closed-loop system [17].

The method of approximation analyzed in this paper
is the Laguerre Impulse Response Approximation (LIRA)
which is based on approximation of noninteger order system
impulse response with Laguerre functions. Early works in
this area were unsuccessful in approximation of 𝛼 order
integrators [18, 19]. In [20], it was shown that under certain
assumptions method is convergent in L

1
and L

2
norms

when approximating asymptotically stable noninteger trans-
fer functions of relative degree equal to or greater than one.
Most applications of the method can be found in filtering
and parametric optimization [21–23]. In [24], it was shown
that in certain cases and at low orders of approximation LIRA
outperforms Oustaloup method.

The main contribution of this paper is Theorem 6 which
gives the justification of approximation of impulse responses
that are in L

1
∩ L
2
. It was analyzed earlier in [20];

however, proof given in that paper was based on analysis
of integrals and was not fully precise. Moreover, there was
an assumption that impulse response has to be bounded
which in the light of results of this paper is not necessary.
In addition to that, Theorem 6 can be considered in spaces
of multivariable functions. Additional contribution is Theo-
rem 2, which describes properties of functions in L

1
∩L
2
.

There is also series of corollaries and lemmas which allows
explicit construction of approximation method. Methods’
operation is illustrated with examples. The first example is
qualitative where we explicitly verify the assumptions and
other two come from applications: approximation of a filter
and controller parameter optimization.

The rest of this paper is organized as follows. The first
section contains the preliminaries necessary for theorems and
lemmas presented further in the paper. In the main section,
we prove the theorems concerning some properties of chosen
types of functions and themain result concerning approxima-
tion inL

1
space.Then explicit formulas for Laguerre Impulse

Response Approximation method are given along with three
examples: “fractional order lag” system, noninteger order
filtering, and parametric optimization of noninteger order
closed-loop system. The paper ends with conclusions and
proposition of further extensions of the method.

2. Preliminaries

In this section, we present necessary definitions andnotations
that will be used throughout the paper.

We focus on stable noninteger order systems given by
transfer functions like

�̂� (𝑠) =

𝑞
𝑚
𝑠
𝛾
𝑚
+ 𝑞
𝑚−1
𝑠
𝛾
𝑚−1
+ ⋅ ⋅ ⋅ 𝑞

0

𝑠
𝜎
𝑛 + 𝑝
𝑛−1
𝑠
𝜎
𝑛−1 + ⋅ ⋅ ⋅ 𝑝

0

or �̂� (𝑠) = 1

(𝑇𝑠 + 1)
𝛼

(1)

with zero initial conditions. Our interest is focused especially
on their time domain representation in the form of convolu-
tion operator; that is,

𝑦 (𝑡) = 𝑢 ∗ 𝑔 = ∫

𝑡

0

𝑢 (𝑡 − 𝜃) 𝑔 (𝜃) 𝑑𝜃. (2)

If realization in the form of noninteger differential equations
is needed, we will, without the loss of generality, use Caputo
definition of noninteger order derivative:

𝐶

0
𝐷

𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

0

𝑓
(𝑛)
(𝜏) 𝑑𝜏

(𝑡 − 𝜏
𝛼+1−𝑛

)

, (3)

where Γ(⋅) denotes the gamma function

Γ (𝑡) = ∫

∞

0

𝑥
𝑡−1
𝑒
−𝑥
𝑑𝑥. (4)

Wewill consider function spacesL
1
(Ω,R) andL

2
(Ω,R)

of real functions 𝑓 : Ω → R, where Ω is an open subset of
R𝑚. SpaceL

1
(Ω,R) is a Banach space of absolute integrable

functions with the norm





𝑓



1
= ∫

Ω





𝑓 (𝜃)





𝑑𝜃. (5)

Space L
2
(Ω,R) is a Hilbert space of square integrable

functions, with norm





𝑓



2
= √⟨𝑓, 𝑓⟩ (6)

induced by the scalar product

√⟨𝑓, 𝑔⟩ = ∫

Ω

𝑓 (𝜃) 𝑔 (𝜃) 𝑑𝜃. (7)

Additionally, we will consider the Banach space
L
∞
([0,∞],R) of essentially bounded functions and a

sequence space ℓ
2
with norm

‖𝑐‖
ℓ
2

=
√
∑

𝑖

𝑐
2

𝑖
. (8)

We will denote by 𝑒
𝑖
, 𝑖 = 1, 2, . . ., a set of orthonor-

mal basis functions in L
2
(Ω,R). Additionally, for space

L
2
([0,∞],R), we will consider orthonormal Laguerre func-

tions denoted by 𝑒
𝑖
(𝜃, 𝜇) and given by

𝑒
𝑘
(𝜃, 𝜇) = √2𝜇𝑒

−𝜇𝜃
𝑙
𝑘
(2𝜇𝜃) , 𝑘 = 0, 1, 2, . . . , (9)

where𝜇 is an arbitrary positive constant and 𝑙
𝑘
is 𝑘th Laguerre

polynomial of the form

𝑙
𝑘
(𝑧) =

𝑒
𝑧

𝑘!

𝑑
𝑘

𝑑𝑧
𝑘
(𝑒
−𝑧
𝑧
𝑘
) . (10)
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3. Main Results

In this section, wewill prove the theorem regardingL
1
(Ω,R)

convergence of the function approximation and its conse-
quences that can be used for approximation of convolution
operator. In order to do so certain assumptions and lemmas
have to be stated.

We will start with proving an important result regarding
functions inL

1
(Ω,R) ∩L

2
(Ω,R).

Remark 1. In this paper, we will take the domain of a quotient
of two functions 𝑔 and ℎ as a set, where 𝑔/ℎ exists.

Theorem 2. The following statements are equivalent:
(1) 𝑓 ∈L

1
(Ω,R) ∩L

2
(Ω,R).

(2) There exists a function𝑤 ∈L
2
(Ω,R) such that 𝑓/𝑤 ∈

L
2
(Ω,R).

Proof. (1) ⇒ (2).
Let V
𝑚
: R𝑚 → R be defined as

V
𝑚
(𝜃) = (1 + |𝜃|)

𝑚(1+𝛿)
, |𝜃| = √𝜃

⊤
𝜃, (11)

where 𝛿 > 0 is an arbitrary constant. Then 𝑤 = √|𝑓| + V−1
𝑚

is
inL
2
(Ω,R). As V

𝑚
(𝜃) > 0, we have that 𝑓/𝑤 ∈L

2
(Ω,R).

(2) ⇒ (1).
We have





𝑓



2
=










𝑓

𝑤

⋅ 𝑤








2

≤ ‖𝑤‖2










𝑓

𝑤








2

< ∞, (12)

so 𝑓 ∈ L
2
(Ω,R). Using Hölder’s inequality yields also the

norm of 𝑓 inL
1
(Ω,R) space:





𝑓



1
=










𝑓

𝑤

⋅ 𝑤








1

≤ ‖𝑤‖2










𝑓

𝑤








2

< ∞. (13)

Hence, 𝑓 ∈L
1
(Ω,R) ∩L

2
(Ω,R).

Remark 3. As an example of𝑓we can take bounded function
inL
1
(Ω,R).

In order to prove the main result, we will need the
following two lemmas.

Lemma 4. If there exists a function 𝑤 ∈ L
2
(Ω,R), such that

𝑓/𝑤 ∈L
2
(Ω,R) and 𝑒

𝑖
/𝑤 ∈L

2
(Ω,R), 𝑖 = 1, 2, . . ., then





𝛽
𝑛


ℓ
2

< ∞, (14)

where

𝛽
𝑛

𝑗
=

𝑛

∑

𝑖=0

𝛼
𝑖
𝛾
𝑖

𝑗
(15)

and 𝛾𝑖
𝑗
= ⟨𝑒
𝑖
/𝑤, 𝑒
𝑗
⟩ = 𝛾
𝑗

𝑖
and 𝛼

𝑖
= ⟨𝑓, 𝑒

𝑖
⟩.

Proof. As 𝑒
𝑖
/𝑤 ∈ L

2
(Ω,R), we can write function 𝑒

𝑖
/𝑤 as a

series expansion of orthonormal basis functions inL
2
(Ω,R):

𝑒
𝑖

𝑤

=

∞

∑

𝑗=0

𝛾
𝑖

𝑗
𝑒
𝑗 (16)

with coefficients 𝛾𝑖
𝑗
= ⟨𝑒
𝑖
/𝑤, 𝑒
𝑗
⟩ = 𝛾
𝑗

𝑖
. Therefore, we have

𝑒
𝑖
= 𝑤

∞

∑

𝑗=0

𝛾
𝑖

𝑗
𝑒
𝑗
. (17)

The same operation is done for 𝑓 and 𝑓/𝑤, since both are in
L
2
(Ω,R) as proven inTheorem 2. We have

𝑓 =

∞

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
, (18)

where 𝛼
𝑖
= ⟨𝑓, 𝑒

𝑖
⟩ and

𝑓

𝑤

=

∞

∑

𝑗=0

𝛽
𝑗
𝑒
𝑗
, (19)

where 𝛽
𝑗
= ⟨𝑓/𝑤, 𝑒

𝑗
⟩. On the other hand, we have

𝑓

𝑤

=

1

𝑤

∞

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
. (20)

Let us take partial sum of series (20). As it is convergent
in L
2
(Ω,R), also norm of its partial sum is finite. We have

then

1

𝑤

𝑛

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
=

(17)

1

𝑤

𝑛

∑

𝑖=0

(𝛼
𝑖
⋅ (𝑤 ⋅

∞

∑

𝑗=0

𝛾
𝑖

𝑗
𝑒
𝑗
))

=

𝑛

∑

𝑖=0

∞

∑

𝑗=0

𝛼
𝑖
𝛾
𝑖

𝑗
𝑒
𝑗
=

∞

∑

𝑗=0

𝑒
𝑗

𝑛

∑

𝑖=0

𝛼
𝑖
𝛾
𝑖

𝑗
=

(15)

∞

∑

𝑗=0

𝛽
𝑛

𝑗
𝑒
𝑗
.

(21)

As norm inL
2
(Ω,R) of left side of (21) is finite, we have













∞

∑

𝑗=0

𝛽
𝑛

𝑗
𝑒
𝑗













=

∞

∑

𝑗=0

(𝛽
𝑛

𝑗
)

2

=




𝛽
𝑛


ℓ
2

< ∞ (22)

which implies thesis.

Lemma 5. Let 𝑐𝑛 = (𝑐
𝑛

𝑗
), 𝑛, 𝑗 = 0, 1, 2, . . ., be a family of

sequences parametrized by 𝑛, such that

(1) ∀𝑗: |𝑐𝑛
𝑗
| → 0 when 𝑛 → ∞,

(2) ∀𝑛: ‖𝑐𝑛‖
ℓ
2

< ∞.

Then




𝑐
𝑛


ℓ
2

→ 0 when 𝑛 → ∞. (23)

Proof. Let us consider 𝜀 > 0. The sequence (𝑐𝑛
𝑗
) is square-

summable with respect to 𝑗 for all 𝑛. Therefore, we can find a
functionR+ → N : 𝑚(𝜀) such that

∞

∑

𝑗=𝑚(𝜀)+1






𝑐
0

𝑗







2

<

1

2

𝜀. (24)
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Using the first assumption, we have
∞

∑

𝑗=0






𝑐
𝑛

𝑗







2

=

𝑚(𝜀)

∑

𝑗=0






𝑐
𝑛

𝑗







2

+

∞

∑

𝑗=𝑚(𝜀)+1






𝑐
𝑛

𝑗







2

≤

𝑚(𝜀)

∑

𝑗=0






𝑐
𝑛

𝑗







2

+

∞

∑

𝑗=𝑚(𝜀)+1






𝑐
0

𝑗







2

≤

𝑚(𝜀)

∑

𝑗=0






𝑐
𝑛

𝑗







2

+

1

2

𝜀.

(25)

From assumption (1), we know that we can choose 𝑛
0
, such

that |𝑐𝑛0
𝑗
| ≤ 𝜀/2𝑚(𝜀), for all 𝑗 = 0, 1, 2, . . . , 𝑚(𝜀) and that

∞

∑

𝑗=0






𝑐
𝑛

𝑗







2

< 𝜀 ∀𝑛 ≥ 𝑛
0
. (26)

Therefore, for any 𝜀 > 0, there is 𝑛
0
, such that ‖𝑐𝑛‖

ℓ
2

< 𝜀 for
all 𝑛 ≥ 𝑛

0
.

Now we can formulate and prove the intended theorem.

Theorem6. If there exists a function𝑤 ∈L
2
(Ω,R), such that

𝑓/𝑤 ∈L
2
(Ω,R) and 𝑒

𝑖
/𝑤 ∈L

2
(Ω,R), where 𝑒

𝑖
are functions

of orthonormal basis inL
2
(Ω,R) 𝑖 = 1, 2, . . ., then












𝑛

∑

𝑖=0

⟨𝑓, 𝑒
𝑖
⟩ 𝑒
𝑖
− 𝑓










1

→ 0 when 𝑛 → ∞. (27)

Proof. From Theorem 2 and assumptions, we know that 𝑓,
𝑓/𝑤, and 𝑒

𝑖
/𝑤 are inL

2
(Ω,R) and as such may be written in

form of infinite series:

𝑒
𝑖
= 𝑤

∞

∑

𝑗=0

𝛾
𝑖

𝑗
𝑒
𝑗
, (28)

𝑓 =

∞

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
, (29)

𝑓

𝑤

=

∞

∑

𝑗=0

𝛽
𝑗
𝑒
𝑗
=

1

𝑤

∞

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
, (30)

with coefficients 𝛾𝑖
𝑗
= ⟨𝑒
𝑖
/𝑤, 𝑒
𝑗
⟩ = 𝛾

𝑗

𝑖
, 𝛼
𝑖
= ⟨𝑓, 𝑒

𝑖
⟩, and 𝛽

𝑗
=

⟨𝑓/𝑤, 𝑒
𝑗
⟩, respectively. Let

𝛽
𝑛

𝑗
=

𝑛

∑

𝑖=0

𝛼
𝑖
𝛾
𝑖

𝑗
. (31)

The following estimate holds:











𝑛

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
− 𝑓










1

=

(28)













𝑛

∑

𝑖=0

𝛼
𝑖
(𝑤

∞

∑

𝑗=0

𝛾
𝑖

𝑗
𝑒
𝑗
) −

𝑓

𝑤

𝑤











1

=

(31),(21)













𝑤(

∞

∑

𝑗=0

𝛽
𝑛

𝑗
𝑒
𝑗
−

𝑓

𝑤

)











1

≤

Hölder
‖𝑤‖2













∞

∑

𝑗=0

𝛽
𝑛

𝑗
𝑒
𝑗
−

𝑓

𝑤











2

=

(30)

‖𝑤‖2













∞

∑

𝑗=0

(𝛽
𝑛

𝑗
− 𝛽
𝑗
) 𝑒
𝑗











2

.

(32)

Let us denote 𝑐𝑛 as a sequence with elements 𝑐𝑛
𝑗
= 𝛽
𝑗
−𝛽
𝑛

𝑗
.

From (32) and orthonormality of the basis 𝑒
𝑖
, we have












𝑛

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
− 𝑓










1

≤ ‖𝑤‖2





𝑐
𝑛


ℓ
2

. (33)

We will investigate the behavior of the sequence 𝑐𝑛. Using
linearity of inner product inL

2
(Ω,R), we have

𝛽
𝑗
= ⟨

𝑓

𝑤

, 𝑒
𝑗
⟩ =

(28)

⟨

𝑓

𝑤

,𝑤

∞

∑

𝑖=0

𝛾
𝑗

𝑖
𝑒
𝑖
⟩

=

∞

∑

𝑖=0

⟨

𝑓

𝑤

𝑤, 𝑒
𝑖
⟩𝛾
𝑗

𝑖
=

∞

∑

𝑖=0

𝛼
𝑖
𝛾
𝑗

𝑖
= 𝛽
𝑛

𝑗
+

∞

∑

𝑖=𝑛+1

𝛼
𝑖
𝛾
𝑖

𝑗
;

(34)

hence,

𝛽
𝑗
− 𝛽
𝑛

𝑗
= 𝑐
𝑛

𝑗
=

∞

∑

𝑖=𝑛+1

𝛼
𝑖
𝛾
𝑖

𝑗
. (35)

Using the Schwartz inequality, we have






𝑐
𝑛

𝑗






≤

(34)

∞

∑

𝑖=𝑛+1






𝛼
𝑖
𝛾
𝑗

𝑖







≤

Schwartz
√

∞

∑

𝑖=𝑛+1





𝛼
𝑖






2
√

∞

∑

𝑖=𝑛+1






𝛾
𝑖

𝑗







2

. (36)

𝑓 ∈ L
2
(Ω,R) and (36) imply that |𝑐𝑛

𝑗
| → 0 when 𝑛 → ∞,

for all 𝑗 = 0, 1, 2, . . .. From Lemma 4 sequence (𝛽𝑛
𝑗
) is square-

summable for all 𝑛. From properties of series expansion in
L
2
(Ω,R), we can conclude that 𝛽

𝑗
is also square-summable.

As a consequence, the sequence 𝑐𝑛 is square-summable. The
assertion of the theorem follows from inequality (33) and
Lemma 5.

Remark 7. Although Theorem 2 guarantees the existence of
𝑤 for every function 𝑓 in L

1
(Ω,R) ∩L

2
(Ω,R), it does not

ensure that 𝑒
𝑖
/𝑤 ∈ L

2
(Ω,R) for a given basis. Therefore,

the choice of appropriate basis functions determines the
existence of approximation.

As a direct consequence of Theorem 6, we have the
following results.

Corollary 8. If 𝑓 ∈L
1
(R𝑚,R)∩L

2
(R𝑚,R) and there exists

a basis 𝑒
𝑖
∈ L
2
(R𝑚,R), such that 𝑒

𝑖
V
𝑚
∈ L
2
(R𝑛,R) for 𝑖 =

0, 1, 2, . . ., with V
𝑚
given by (11), then












𝑛

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
− 𝑓










1

→ 0 when 𝑛 → ∞. (37)

Proof. From Theorem 2, we know that there exists 𝑤 such
that 𝑓/𝑤 ∈ L

2
(R𝑚,R). Using the assumption that 𝑒

𝑖
V
𝑚
∈

L
2
(R𝑚,R), we have 𝑒

𝑖
/𝑤 ∈ L

2
(R𝑚,R). So the assumptions

of Theorem 6 are fulfilled which completes the proof.

Corollary 9 (convergence of Laguerre series). If 𝑓 ∈

L
1
([0,∞],R) ∩L

2
([0,∞],R) and 𝑒

𝑖
(𝜇, 𝜃) are orthonormal

Laguerre functions, then











𝑛

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
− 𝑓










1

→ 0 when 𝑛 → ∞, (38)
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where

𝛼
𝑖
= ∫

∞

0

𝑒
𝑖
(𝜇, 𝜃) 𝑓 (𝜃) 𝑑𝜃. (39)

Proof. Because for V
1
from Corollary 8 we have 𝑒

𝑖
V
1
∈

L
2
([0,∞],R) for 𝑖 = 0, 1, 2, . . ., the assumptions of Corol-

lary 8 are fulfilled.

Corollary 10 (convolution approximation in Laguerre basis).
Let 𝑓 ∈ L

1
([0,∞],R) ∩ L

2
([0,∞],R) and 𝑢 ∈

L
∞
([0,∞],R), then for

𝑦 (𝑡) = ∫

𝑡

0

𝑢 (𝑡 − 𝜃) 𝑓 (𝜃) 𝑑𝜃,

𝑦
𝑛
(𝑡) = ∫

𝑡

0

𝑢 (𝑡 − 𝜃) 𝑓
𝑛
(𝜃) 𝑑𝜃,

(40)

where

𝑓
𝑛
(𝜃) =

𝑛

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
(𝜃, 𝜇) (41)

with 𝛼
𝑖
given by (39), we have





𝑦 (𝑡) − 𝑦

𝑛
(𝑡)




→ 0 when 𝑛 → ∞, ∀𝑡 ≥ 0. (42)

Proof. Using Hölder’s inequality, we have





𝑦 (𝑡) − 𝑦

𝑛
(𝑡)




≤ ‖𝑢‖∞












𝑛

∑

𝑖=0

𝛼
𝑖
𝑒
𝑖
(𝜇, 𝜃) − 𝑓










1

. (43)

Applying Corollary 9 ends the proof.

4. Laguerre Impulse Response
Approximation Method

Corollaries 9 and 10 give theoretical basis for approximating
convolution operator (2) with a Laguerre series. In the follow-
ingwe present three lemmas that allow practical construction
of approximant for systems described with SISO (single-input
single-output) noninteger transfer functions.

Lemma 11 (computation of scalar products). If 𝑔(𝑡) ∈

L
2
([0,∞],R) has a Laplace transform �̂�(𝑠), then

⟨𝑔 (𝜃) , 𝑒
𝑘
(𝜃, 𝜇)⟩ =

√2𝜇

𝑘!

𝑘

∑

𝑗=0

(

𝑘

𝑗

) 𝑐
𝑘

𝑗
(𝜇) �̂�
(𝑘−𝑗)

(𝜇) , (44)

where 𝑒
𝑖
(𝜃, 𝜇) is the 𝑖th orthonormal Laguerre function with

parameter 𝜇:

𝑐
𝑘

𝑗
=

𝑘 − 𝑗 + 1

2𝜇

𝑐
𝑘

𝑗−1
,

𝑐
𝑘

0
(𝜇) = (2𝜇)

𝑘

,

𝑗 = 1, 2, . . . , 𝑘,

�̂�
(𝑗)
(𝑠) =

𝑑
𝑗
�̂� (𝑠)

𝑑𝑠
𝑗
.

(45)

Proof. Proof is given in [25, page 65].

Lemma 12 (choice of optimal 𝜇). Let 𝑔(𝜃) ∈ L
2
([0,∞],R)

and

𝑔
𝑛
(𝜃) =

𝑛

∑

𝑖=0

𝛽
𝑖
(𝜇) 𝑒
𝑖
(𝜃, 𝜇) , (46)

where 𝛽
𝑖
(𝜇) = ⟨𝑔(𝜃), 𝑒

𝑖
(𝜃, 𝜇)⟩ and 𝑒

𝑖
(𝜃, 𝜇) is the 𝑖th orthonor-

mal Laguerre function with parameter 𝜇. The norm of the
difference ‖𝑔 − 𝑔

𝑛
‖
2
for given 𝑛 is minimal if

𝜇 = argmax
𝜇

𝑛

∑

𝑘=0

𝛽
2

𝑘
(𝜇) . (47)

Proof. Wewill compute the square of error norm (arguments
are dropped):





𝑔 − 𝑔
𝑛






2

2
= ∫

∞

0

(𝑔 − 𝑔
𝑛
)
2

𝑑𝑡

= ∫

∞

0

𝑔
2
𝑑𝑡 − 2∫

∞

0

𝑔𝑔
𝑛
𝑑𝑡 + ∫

∞

0

𝑔
2

𝑛
𝑑𝑡

=




𝑔





2

2
+

𝑛

∑

𝑘=0

𝛽
2

𝑘
(𝜇) − 2∫

∞

0

𝑔

𝑛

∑

𝑘=0

𝛽
𝑘
(𝜇) 𝑒
𝑘
𝑑𝑡

=




𝑔





2

2
+

𝑛

∑

𝑘=0

𝛽
2

𝑘
(𝜇) − 2

𝑛

∑

𝑘=0

𝛽
2

𝑘
(𝜇)

=




𝑔





2

2
−

𝑛

∑

𝑘=0

𝛽
2

𝑘
(𝜇) .

(48)

It can be easily seen that the above expression is minimal
when thesis is fulfilled.

Lemma 13 (convolution state space realization). The convo-
lution of 𝑢 ∈L

∞
([0,∞],R) with 𝑔

𝑛
given by

𝑦
𝑛
(𝑡) = ∫

𝑡

0

𝑢 (𝑡 − 𝜃) 𝑔
𝑛
(𝜃) 𝑑𝜃, (49)

where

𝑔
𝑛
(𝜃) =

𝑛

∑

𝑖=0

𝛽
𝑖
𝑒
𝑖
(𝜃, 𝜇) , (50)

where 𝑒
𝑖
(𝜃, 𝜇) is the 𝑖th orthonormal Laguerre function with

parameter 𝜇, is equal to the solution of the following system of
differential equations:

̇𝜉 =

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝜇 0 0 0 ⋅ ⋅ ⋅ 0

−2𝜇 −𝜇 0 0 ⋅ ⋅ ⋅ 0

−2𝜇 −2𝜇 −𝜇 0 ⋅ ⋅ ⋅ 0

−2𝜇 −2𝜇 −2𝜇 −𝜇 ⋅ ⋅ ⋅ 0

.

.

.

.

.

.

.

.

.

.

.

. d
.
.
.

−2𝜇 −2𝜇 −2𝜇 ⋅ ⋅ ⋅ −2𝜇 −𝜇

]

]

]

]

]

]

]

]

]

]

]

]

]

𝜉 +

[

[

[

[

[

[

[

[

[

[

[

[

[

√2𝜇

√2𝜇

√2𝜇

√2𝜇

.

.

.

√2𝜇

]

]

]

]

]

]

]

]

]

]

]

]

]

𝑢 (51)

𝑦
𝑛
= [𝛽0

𝛽
1
𝛽
2
𝛽
3
𝛽
4
⋅ ⋅ ⋅ 𝛽
𝑛] 𝜉 (52)

with 𝜉(0) = 0.
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Proof. It can be easily seen that

𝑦 (𝑡) =

𝑛

∑

𝑘=0

𝛽
𝑘
∫

𝑡

0

𝑒
𝑘
(𝑡 − 𝜃, 𝜇) 𝑢 (𝜃) 𝑑𝜃. (53)

Let us set

𝜉
𝑘
(𝑡) = ∫

𝑡

0

𝑒
𝑘
(𝑡 − 𝜃, 𝜇) 𝑢 (𝜃) 𝑑𝜃 (54)

which along with (53) gives (52). From boundedness of 𝑢 and
definition (54), we get 𝜉

𝑘
(0) = 0.

We will now use two additional facts. First, the derivative
of a Laguerre function with respect to first argument can
be expressed with Laguerre functions of the same and lower
order; that is,

̇𝑒
𝑘
(𝜃, 𝜇) = −𝜇𝑒

𝑘
(𝜃, 𝜇) − 2𝜇

𝑘−1

∑

𝑖=0

𝑒
𝑖
(𝜃, 𝜇) . (55)

Additionally, the derivative of the convolution operator with
respect to 𝑡 is given by

𝑑

𝑑𝑡

∫

𝑡

0

𝑓 (𝑡 − 𝜏) 𝑔 (𝜏) 𝑑𝜏

= 𝑓 (0) 𝑔 (𝑡) + ∫

𝑡

0

̇
𝑓 (𝑡 − 𝜏) 𝑔 (𝜏) 𝑑𝜏.

(56)

Differentiating (54) and using (55) and (56), we obtain

̇
𝜉
𝑘
= −𝜇𝜉

𝑘
− 2𝜇

𝑘−1

∑

𝑖=0

𝜉
𝑖
+ √2𝜇𝑢. (57)

Collecting (57) for 𝑘 = 0, 1, . . . , 𝑛 leads to (51).

Lemma 11 enables efficient computation of approximation
coefficients. Lemma 12 shows how to choose the basis
parameter 𝜇 allowing minimal approximation error for given
approximation order. Finally, Lemma 13 gives a tool how
to construct a state space (or if needed transfer function)
realization of the approximant allowing among the others
simulation, filtering, use in real time applications, or opti-
mization.

Wewill nowpresent three examples of using the proposed
method for approximation of noninteger order systems.

4.1. “Fractional Order Lag”. This class of systems is widely
used in various applications, usually without serious analysis.
These systems are classified as noninteger order; however,
their realization is in the form of noninteger differential
equations (at least not their finite number). Their transfer
function takes the form

�̂� (𝑠) =

1

(𝑇𝑠 + 1)
𝛼
, (58)

where𝑇 is a constant. Impulse response for (58) can be found
using inverse Laplace transform:

𝑔 (𝑡) =L
−1
{

1

(𝑇𝑠 + 1)
𝛼
} (59)

=L
−1
{

1

𝑇
𝛼
(𝑠 + 1/𝑇)

𝛼
} (60)

=

1

𝑇
𝛼
⋅L
−1
{

1

(𝑠 + 1/𝑇)
𝛼
} (61)

=

1

𝑇
𝛼
⋅ 𝑒
−1/𝑇

L
−1
{

1

𝑠
𝛼
} (62)

=

1

𝑇
𝛼
⋅

𝑡
𝛼−1
𝑒
−𝑡/𝑇

Γ (𝛼)

, (63)

where Γ(𝑥) denotes gamma function [26]. It can be easily
verified that (63) for 𝛼 ≥ 1 is bounded and itsL

1
([0,∞],R)

norm can be easily computed. The impulse response is
positive for all 𝑡 ≥ 0; therefore, the absolute value in norm
can be omitted. Consider

∫

𝑡

0





𝑔 (𝑡)





𝑑𝑡 = ∫

𝑡

0

𝑔 (𝑡) 𝑑𝑡 = ℎ (𝑡) . (64)

Therefore

∫

∞

0





𝑔 (𝑡)





𝑑𝑡 = lim
𝑡→∞

ℎ (𝑡) − lim
𝑡→0

ℎ (𝑡) (65)

and it is sufficient to use initial and final value theorems:

lim
𝑡→∞

ℎ (𝑡) = lim
𝑠→0

(𝑠 ⋅

1

𝑠 (𝑇𝑠 + 1)
𝛼
) = 1,

lim
𝑡→0

ℎ (𝑡) = lim
𝑠→∞

(𝑠 ⋅

1

𝑠 (𝑇𝑠 + 1)
𝛼
) = 0.

(66)

Because of that and Remark 3, we can see that 𝑔 ∈

L
1
([0,∞],R) ∩L

2
([0,∞],R).

However, it can be shown that while for 𝛼 ∈ (1/2, 1)

the impulse response is unbounded the assumptions of
Theorem 6 are fulfilled.

Corollary 14. Approximation of function

𝑔 (𝑡) =

1

𝑇
𝛼
⋅

𝑡
𝛼−1
𝑒
−𝑡/𝑇

Γ (𝛼)

(67)

with Laguerre series is convergent in the sense of L
1
(Ω,R)

norm.

Proof. We will prove that function (67) fulfills the assump-
tions of Theorem 6.

First we will prove that 𝑔 ∈ L
2
(Ω,R). The following

calculations are valid:

∫

∞

0

𝑔
2
(𝑡) 𝑑𝑡 =

1

𝑇
2𝛼
⋅ Γ
2
(𝛼)

∫

∞

0

𝑡
2𝛼−2

𝑒
−2𝑡/𝑇

𝑑𝑡

= −

2
1−2𝛼

𝑇
2𝛼−1

𝑇
2𝛼
⋅ Γ
2
(𝛼)

⋅ Γ (2𝛼 − 1,

2𝑡

𝑇

)











∞

0

,

(68)
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where

Γ (𝑎, 𝑥) = ∫

∞

𝑥

𝑡
𝑎−1
𝑒
−𝑡
𝑑𝑡 (69)

is the “upper” incomplete gamma function and Re 𝑎 > 0.
The limit of (68) for 𝑡 → 0 can be written as

lim
𝑡→0

(−

2
1−2𝛼

𝑇
𝛼−1

Γ (𝛼)

⋅ Γ (2𝛼 − 1,

2𝑡

𝑇

))

= −

2
1−2𝛼

𝑇
𝛼−1

Γ (𝛼)

lim
𝑡→0

Γ (2𝛼 − 1,

2𝑡

𝑇

)

= −

2
1−2𝛼

𝑇
𝛼−1

Γ (𝛼)

Γ (2𝛼 − 1, 0)

= −

2
1−2𝛼

𝑇
𝛼−1

Γ (𝛼)

Γ (2𝛼 − 1)

(70)

and is bounded for 2𝛼 − 1 > 0; that is, 𝛼 > 1/2. The same
analysis was conducted for the second limit 𝑡 → ∞:

lim
𝑡→∞

(−

2
1−2𝛼

𝑇
𝛼−1

Γ (𝛼)

⋅ Γ (2𝛼 − 1,

2𝑡

𝑇

)) = −

2
1−2𝛼

𝑇
𝛼−1

Γ (𝛼)

⋅ lim
𝑡→∞

Γ (2𝛼 − 1,

2𝑡

𝑇

) = −

2
1−2𝛼

𝑇
𝛼−1

Γ (𝛼)

⋅ lim
𝑡→∞

(∫

∞

0

𝑥
2𝛼−2

𝑒
−𝑥
𝑑𝑥 − ∫

2𝑡/𝑇

0

𝑥
2𝛼−2

𝑒
−𝑥
𝑑𝑥) = 0.

(71)

From formulas (70) and (71), one obtains that the L
2
(Ω,R)

norm of 𝑔(𝑡) is bounded for 𝛼 ∈ (1/2, 1).
Next, it can be easily seen that setting

𝑤 = 𝑒
−𝜀𝑡 (72)

for 𝜀 > 0 gives 𝑓/𝑤 ∈ L
2
(Ω,R) and 𝑒

𝑖
(𝜇, 𝜃)/𝑤 ∈ L

2
(Ω,R),

for 𝑖 = 0, 1, 2 and 𝜇 > 𝜀, which completes the proof.

We will now present examples of approximation for
different “fractional order lags,” one for each case. In this
example and in the next example, we will analyze three
types of plots. We will compare impulse responses of original
noninteger order system with one of its approximants (with
𝜇 chosen according to Lemma 12) and with an approximant
with nonoptimal𝜇. Analogous comparisonwill be performed
with bode plots, which are a good method for transfer
function evaluation. Finally, we will present the function
∑
𝑛

𝑘=0
𝛽
2

𝑘
(𝜇)with marked optimal and nonoptimal values of 𝜇.

In case of fractional order lag approximations presented are
of order 20.

In Figures 1(a), 2(a), and 3(a), we analyze fractional
order lag with 𝛼 = 0.7 and 𝑇 = 1. As it can be seen
in Figure 1(a), while both approximants are bounded, they
rather closely approximate the unbounded impulse response.
Differences with optimal and nonoptimal 𝜇 are especially
visible in Figure 2(a), where magnitude and phase start
to diverge for higher frequencies. It should be noted that
phase approximation is strongly oscillatory. As it can be

seen in Figure 3(a), function maximized with respect to 𝜇 is
unimodal; however, the more complicated system becomes
the function changes.

In Figures 1(b), 2(b), and 3(b), we can see analogous
analysis for fractional order lag with 𝛼 = 1.5 and 𝑇 = 1. In
Figure 1(b), the differences between optimal and nonoptimal
𝜇 are more visible. Frequency responses for optimal 𝜇 are
also better and less oscillatory (see Figure 2(b)). Finally, the
analysis of 𝜇 optimization shows much more irregular shape
of maximized function.

More detailed analysis of Laguerre Impulse Response
Approximation method for fractional order lag can be found
in [23].

4.2. Noninteger Order Filter. The main area of application of
LIRA method investigated by authors was the realization of
noninteger order filters. Our focus was mostly on generaliza-
tions of second-order filters developed by Radwan et al. [27].
Detailed analysis of method operation was presented in [24].
Here we will present only a brief description of the idea, with
an example of low-pass filter. We consider a filter in a form

𝐺 (𝑠) =

1

𝑠
2𝛼
+ 𝑏𝑠
𝛼
+ 𝑐

, (73)

where 𝑎 and 𝑏 fulfill the conditions of stability (see [28, 29]).

Remark 15. We do not have at the moment condition when
the noninteger transfer function has an impulse response in
L
2
([0,∞],R). At the moment working hypothesis is that

sufficient conditions are stability and transfer function’s rel-
ative degree (difference betweenmax. degree of denominator
and max. degree of numerator) is at least 1. Despite multiple
trials, no counter example was found.

Equivalent representation of (73) is the realization in the
form of a system of differential equations of order 𝛼. This
system can take the form (see [30])

𝐶

0
𝐷

𝛼

𝑡
x (𝑡) = Ax (𝑡) + B𝑢 (𝑡) ,

𝑦 (𝑡) = Cx (𝑡)
(74)

with the following matrices:

A = [
0 1

−𝑏 −𝑎

] ,

B = [
0

1

] ,

C = [1 0] .

(75)

The impulse response of filter (73) is given by [30]

𝑔 (𝑡) = 𝑡
𝛼−1CE

𝛼,𝛼
(A𝑡𝛼)B, (76)

where E
𝛼,𝛼
(𝑥) is the two-parameter Mittag-Leffler function.

In order to illustrate the operation of LIRA for filter we
have chosen one, for which poles are a conjugate pair in right
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Figure 1: Impulse responses for two values of 𝛼.
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Figure 2: Frequency responses for two values of 𝛼.

complex half plane. Such filters are oscillatory and always
have resonance peak. We compare both impulse responses
and frequency responses. All approximations are of 25th
order with optimally and nonoptimally chosen 𝜇. The case
is presented in Figure 4. As it can be seen in Figure 4(a),
the optimal approximant of impulse response is almost

indistinguishable from the exact value. Nonoptimal one well
approximates initial behavior but for longer time stops at
zero. In the frequency response (Figure 4(b)) the optimal
approximation is again almost indistinguishable from nonin-
teger order filter. However, nonoptimal 𝜇 causes oscillatory
behavior on magnitude and phase responses. Moreover,
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Figure 3: Analysis of 𝜇 for two values of 𝛼.

phase response exhibits bias. It can be seen in Figure 4(c) that
the difference between optimal and nonoptimal 𝜇 is on the
level of 10% of optimized function value.

4.3. Optimization Problem. The third example chosen to
show the use of approximation method consists of optimiza-
tion of noninteger order closed-loop system. In contrast to
classical integer order systems, the solution of noninteger
order system yields problems with either exact form of
the solution or its numerical implementation as it requires
the whole “history” beginning with initial conditions (lack
of semigroup property). Moreover, even though there are
exact solutions presented, for example, in [26], it is worth
noticing that they require special functions, that is, Mittag-
Leffler function. Furthermore, taking into account that 𝑠𝛼 is a
multivalued function for complex 𝑠 and noninteger 𝛼, we can
notice that direct calculation of integral of impulse response
is complicated.Therefore, an approximationmethod is indis-
pensable for effective optimization.

The main purpose is to find optimal 𝑃𝐷𝛼 controller
parameters, 𝛼, 𝐾

𝐷
, and 𝐾

𝑃
, in order to efficiently bring the

closed-loop system to zero. For this purpose, we chose the
following objective function

𝐽 = ∫

∞

0

𝑔
2
(𝑡) 𝑑𝑡, (77)

where 𝑔(𝑡) denotes the impulse response of the system. It can
be observed (see, e.g., [21, 24]) that

𝐽 = ∫

∞

0

𝑦
2
(𝑡) 𝑑𝑡 =





𝑦



L2

≈

𝑛

∑

𝑖=1

𝛽
2

𝑖
. (78)

Thus, the optimization consists in minimizing the per-
formance index (77) with respect to three parameters of

controller (80). It is important to notice that during the
procedure both types of parameters are optimized, 𝜇 and
controller parameters.

Other examples of performance indicators were analyzed,
for example, in [31].

4.3.1. Optimization Algorithm. The algorithm consists of two
main steps described below:

(1) Set starting points for controller parameters in such
a way that the noninteger order system is asymptoti-
cally stable.

(2) Perform the optimization routine calculating the
chosen performance indicator.

(a) For given values of parameters of the controller
perform the stability check of the noninteger
order system. If the parameters lie outside the
asymptotic stability region, set the value of
performance indicator to infinity and go to the
third step. If the system is asymptotically stable,
then go to second step.

(b) In order to approximate the stable system with
LIRA method, find current optimal 𝜇 for given
controller parameters. If 𝜇 is infinite in this iter-
ation, set the performance indicator to infinity.
Otherwise, calculate the value of performance
indicator using the approximation method.

(c) On the basis of value of performance indicator,
find the controller parameters for next step
according to chosen optimization routine.

It is worth noticing that although the optimization is
performed on approximated system, the stability test is
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Figure 4: Analysis for a chosen filter.

performed for noninteger order one. To verify the stability,
we used an original algorithm based on D-partition method
for noninteger order systems (see, e.g., [32]).

4.3.2. Closed-Loop System. As an example, we analyzed an
integer order system from Figure 5 with transfer function

𝐺
0
(𝑠) =

5

𝑠
4
+ 8𝑠
3
+ 21𝑠
2
+ 20𝑠 + 5

(79)

and noninteger order 𝑃𝐷𝛼 controller

𝐺
𝐶
(𝑠) = 𝐾

𝑃
+ 𝐾
𝐷
𝑠
𝛼
. (80)

The transfer function of a closed-loop system is

𝐺 (𝑠) =

5

𝑠
4
+ 8𝑠
3
+ 21𝑠
2
+ 20𝑠 + 𝐾

𝐷
𝑠
𝛼
+ 5 + 𝐾

𝑃

. (81)

The poles of system (79) are real and negative. The similar
system was widely analyzed in literature (see, e.g., [33]) in
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Figure 6: Closed-loop system impulse response compared with
original system.

form of RC ladder system. Among the others, it is very
useful as it allows approximating some distributed systems,
for example, transmission line [34].

4.3.3. Optimization with respect to 𝛼, 𝐾
𝑃
, and 𝐾

𝐷
. The

system was analyzed in, for example, [22]. The parameters
of approximation are highly nonlinear with respect to 𝛼 and
therefore the performance indicator is not necessarily strictly
convex.

The optimal values are 𝛼 = 0.4467,𝐾
𝑃
= −1, and𝐾

𝐷
= 16

for 𝜇 = 0.4378. In Figure 6, we depicted the results in the
form of impulse response of original system and the system
with the controller.

4.3.4. Analysis of the Method. The approximation method
proved to be useful for tuning noninteger order controllers.
It allows approximating noninteger order system with an
asymptotically stable system of integer order differential
equations. Therefore, it is possible to use classical the-
ory, especially for calculation of performance indicators.
Although the approximation is stable, it does not ensure
stability of noninteger order system.

5. Conclusions

In this paper, we have shown theoretical basis and actual
effectiveness of LIRA method for approximating noninteger
order systems. As it can be seen (documented in earlier
works, i.e., [21–24, 35]), it is an approximation of input-
output relationships, adequate for such purposes like filtering
or control loop optimization. The main contribution of
this paper over the earlier results was relaxation of the
assumptions regarding the impulse response of approximated
system, as it is no longer required for it to be bounded.

The main weakness of the method lies in computa-
tion of approximation coefficients 𝛽

𝑖
. While formula for

computation of scalar products in Lemma 11 is useful for
any order of approximation, it still requires computation of
transfer function derivatives. The best results with respect
to precision come from symbolic computation (particularly
in Maple, MATLAB Symbolic toolbox gives worse results
when converting from symbolic to numeric). It is, however,
very time consuming, which is especially troublesome during
optimization. Different approach is to use Leibnitz formula
for derivative of 𝑛th order described in [20]; unfortunately,
this formulation, for high 𝑛, introduces multiple factorials
of high numbers which leads to numerical errors caused by
factorial approximation (it was shown in [23]). Also changes
in transfer function for this approach lead to rather advanced
code modifications. Difference approximations of derivatives
are too sensitive to be considered at all. One could consider
computing scalar products directly from definition but it
requires the time domain form of impulse response, which is
usually either unavailable or expressedwith special functions.

The other less severe problem is that there are still no
definitive criteria on when an impulse response of noninteger
order system is in L

1
∩L
2
. The working hypothesis that is

described in Remark 15 even if proved will be only a sufficient
condition. It was observed in [24] that approximation can be
convergent also for relative degrees less than one.

Further development of the method will include address-
ing the mentioned flaws. However, the main interest of the
authors is in applications. At the moment, we work on
EEG signal filtering, vibration signal filtering, optimization
of noninteger order controllers, and development of circuit
realizations of noninteger order systems.
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