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In Passive Radar System, obtaining the mixed weak object signal against the super power signal (jamming) is still a challenging
task. In this paper, a novel framework based on Passive Radar System is designed for weak object signal separation. Firstly, we
propose an Interference Cancellation algorithm (IC-algorithm) to extract the mixed weak object signals from the strong jamming.
Then, an improved FastICA algorithm with 𝐾-means cluster is designed to separate each weak signal from the mixed weak object
signals. At last, we discuss the performance of the proposed method and verify the novel method based on several simulations.The
experimental results demonstrate the effectiveness of the proposed method.

1. Introduction

Passive Radar System is an object signal detection system
that does not generate a radiofrequency signal itself but only
receives the detected target signal [1]. An example of the
Passive Radar System is shown in Figure 1. We can see it is
a kind of signal detection and analysis system that obtains
object signal information from the radiation source.

The signals in Passive Radar System are composed of
two parts: interference signal and mixed object signals. Since
the interference signal is stronger (strong interference signal)
compared with the object signals (weak object signal), it is
very difficult to obtain the weak object signals against the
strong interference signal. Meanwhile, the object signals are
mixed with several signals. Separating each one from the
mixed object signals is another challenging task.

Several existing algorithms are partially related to the
object signal detection, such as the Relax algorithm by Jian et
al. [2, 3], CLEAN technology by Gough [4], FFT signal sep-
aration method by Ziskind and Wax [5], JJM algorithm [6],
and FastICA algorithm by Hyvärinen et al. [7–9]. Although
these algorithms [2–6] are partially related to the weak signal

separation, their performances on passive communication
system are still not sufficient for practical applications.Hence,
it is still necessary to develop more efficient object signal
detection algorithm for the Passive Radar System.

In this paper, a new Interference Cancellation algorithm
(IC-algorithm) and an improved FastICA algorithm with
𝐾-means cluster are proposed to extract the weak object
signals from the Passive Radar System. Firstly, we intro-
duce a framework of QPSK modulation and Interference
Cancellation algorithm (IC-algorithm) theory to get rid of
the strong interference signal. Then, the 𝐾-means cluster
algorithm and the improved FastICA algorithm are proposed
for the weak object signals separation. Finally, we verify the
performance of our algorithms by simulations. The experi-
mental results demonstrate the effectiveness of the proposed
algorithm.

The rest of the paper is organized as follows. In Section 2,
we introduce the Interference Cancellation algorithm (IC-
algorithm). In Section 3, the improved FastICA algorithm
with 𝐾-means cluster is introduced. In Section 4, we intro-
duce and discuss the experimental results. Finally, the con-
clusion is drawn in Section 5.
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Figure 1: Passive Radar System obtains object signal information
from the communication source.

2. Interference Cancellation
Algorithm (IC-Algorithm)

In this section, we introduce the Interference Cancellation
algorithm (IC-algorithm) to separate the weak object signals
from the strong interference signal.

2.1. QPSK Modulation. QPSK (Quadrature Phase Shift Key-
ing) is a type of phase shift keying, which contains two
sinusoids (i.e., sine and cosine) that are used as the basic func-
tions for the modulation [10]. The modulation is achieved by
varying the phase of the basic functions and depends on the
message symbols and can be formulated as [11]

𝑆QPSK (𝑡) = 𝐴 cos (2𝜋𝑓
𝑐
𝑡 + 𝜃
𝑛
) , 𝑛 = 1, 2, 3, 4, (1)

where 𝐴 is the signal amplitude, 𝑓
𝑐
is the signal frequency,

and 𝜃
𝑛
is the modulation phase. The constellation diagram of

QPSK shows the constellation points lying on both 𝑥-axis and
𝑦-axis.Thismeans that theQPSKmodulated signal has an in-
phase component (𝐼) and also a quadrature component (𝑄),
since it has only two basic functions [12].

AQPSKmodulator can be found in Figure 3. It is seen that
there are two parts of QPSK, that is, QPSK modulated wave-
form in Figure 2 and QPSKmodulated block in Figure 3 [10].
The implementation in Figure 3 is as follows: A demultiplexer
is used to separate odd and even bits from the generated
information bits.The signal on the in-phase arm ismultiplied
by cosine component and the signal on the quadrature arm
is multiplied by sine component. QPSK modulated signal is
obtained by adding the signal from both in-phase arm and
quadrature arm [12].

2.2. Interference Cancellation Algorithm (IC-Algorithm).
After the introduction of QPSK modulation, we introduce
our Interference Cancellation algorithm (IC-algorithm).

In the Passive Radar System, the interference signal has
very high power. Meanwhile, the mixed weak object signals
are weak [13]. Here, we propose Interference Cancellation
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Figure 2: QPSK modulated waveform: the signal on the in-phase
arm ismultiplied by cosine component and the signal on the quadra-
ture arm is multiplied by sine component.
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Figure 3: QPSK modulated block; QPSK modulated signal is
obtained by adding the signal from both in-phase arm and quadra-
ture arm.
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Figure 4: Framework of Interference Cancellation algorithm (IC-
algorithm).

algorithm (IC-algorithm) to get rid of the jamming signal
under the QPSK modulation and obtain the mixed weak
object signals.

The framework of the Interference Cancellation algo-
rithm (IC-algorithm) is displayed in Figure 4, where 𝑆

1
+

𝑆
2

+ 𝑆
3

+ 𝑆
4
is the original transmitted signal. 𝑆

1
, 𝑆
2
, and

𝑆
3
are the weak object signals. 𝑆

4
is the strong jamming.

𝑎𝑆
1

+ 𝑏𝑆
2

+ 𝑐𝑆
3

+ 𝑑𝑆
4

+ 𝑛 are the received mixed signals
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of 𝑆
1

+ 𝑆
2

+ 𝑆
3

+ 𝑆
4
through the Gauss channel [14]. Here,

𝑛 = [𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑛
4
] is the background noise, and

𝑎 = [𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
] ,

𝑏 = [𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑏
4
] ,

𝑐 = [𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
] ,

𝑑 = [𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
] .

(2)

Assume there are four received signals, such as 𝑙
1
, 𝑙
2
, 𝑙
3
, and

𝑙
4
; then we have

[
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]
]

]

=
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]
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⋅

[
[
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1
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4
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]

]

+
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1
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4
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]
]

]

(3)

𝑑𝑆
󸀠

4
+ 𝑛
󸀠 in Figure 4 is the reference strong jamming through

the Gauss channel. Since |𝑑|‖𝑆
󸀠

4
‖ ≫ ‖𝑛

󸀠

‖, we obtain

󵄨󵄨󵄨󵄨𝑑𝑖
󵄨󵄨󵄨󵄨 ⋅
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4
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, 𝑖, 𝑗 = 1, 2, 3, 4. (4)

Because the reference strong jamming is known to us, we
are able to estimate the channel parameters with the reference
strong jamming. Then, the strong interference signal can
be separated from the mixed signal based on the channel
parameters. This process can be represented as

𝑙
1

− (𝑙
1

+ 𝑙
2

+ 𝑙
3

+ 𝑙
4
) ⋅

𝑑
1

𝑑
1

+ 𝑑
2

+ 𝑑
3

+ 𝑑
4

≈ 𝑒
1
𝑆
1

+ 𝑓
1
𝑆
2

+ 𝑔
1
𝑆
3

= 𝐿
1
,

𝑙
2

− (𝑙
1

+ 𝑙
2

+ 𝑙
3

+ 𝑙
4
) ⋅

𝑑
2

𝑑
1

+ 𝑑
2

+ 𝑑
3

+ 𝑑̂
4

≈ 𝑒
2
𝑆
1

+ 𝑓
2
𝑆
2

+ 𝑔
2
𝑆
3

= 𝐿
2
,

𝑙
3

− (𝑙
1

+ 𝑙
2

+ 𝑙
3

+ 𝑙
4
) ⋅

𝑑
3

𝑑
1

+ 𝑑
2

+ 𝑑
3

+ 𝑑
4

≈ 𝑒
3
𝑆
1

+ 𝑓
3
𝑆
2

+ 𝑔
3
𝑆
3

= 𝐿
3
,

𝑙
4

− (𝑙
1

+ 𝑙
2

+ 𝑙
3

+ 𝑙
4
) ⋅

𝑑
4

𝑑
1

+ 𝑑
2

+ 𝑑
3

+ 𝑑
4

≈ 𝑒
4
𝑆
1

+ 𝑓
4
𝑆
2

+ 𝑔
4
𝑆
3

= 𝐿
4
.

(5)

Hence, we obtain the mixed useful signals 𝑌
1
, 𝑌
2
, and 𝑌

3
, and

[
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𝑌
3
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]

]

=
[
[

[

𝑒
1

𝑓
1

𝑔
1

𝑒
2

𝑓
2

𝑔
2

𝑒
3

𝑓
3

𝑔
3

]
]

]

[
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𝑆
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𝑆
3
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]
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. (6)

From the above process, the strong interference signal has
been cancelled by (2)–(6). Finally, we obtain the mixed
object signals denoted by 𝑒𝑆

1
+ 𝑓𝑆
2

+ 𝑔𝑆
3

+ 𝑛̂ in Figure 4.
Furthermore, we can construct the vector space L̂ = {𝐿

1
, 𝐿
2
,

𝐿
3
, 𝐿
4
}.Those vectors in this vector space satisfy the following

properties [15].

(1) Closure of the addition:
∀𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ L̂, and

then 𝑥+𝑦 = (𝑥
1
+𝑦(1), 𝑥

2
+𝑦(2), . . . , 𝑥

𝑛
+𝑦(𝑛)) ∈ L̂.

(2) Closure of the scalar multiplication:
∀𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ L̂, ∀𝜆 ∈ 𝑅

1, then, 𝜆𝑥 =

(𝜆𝑥
1
, 𝜆𝑥
2
, . . . , 𝜆𝑥

𝑛
) ∈ L̂.

2.3. Discussions on the Properties of the Proposed Interference
Cancellation Algorithm (IC-Algorithm). In this subsection,
we state properties of proposed Interference Cancellation
algorithm (IC-algorithm), such as computation complexity
and convergence.

2.3.1. Complexity Analysis. The complexity of the introduced
Interference Cancellation algorithm (IC-algorithm) can be
specified by 2 parts [16].

(i) Estimate the channel parameters with the reference
strong jamming.

In (3), suppose the coefficientmatrix order is𝐿×𝐾 and the
source signal matrix order is 𝐾 × 𝑁; then the multiplication
complexity is 𝑂(𝐾 × 𝑁 × 𝐿) and the addition complexity is
𝑂(𝐾 × 𝑁 × 𝐿).

(ii) Separate the strong interference signal from themixed
signal based on the channel parameters.

Equations (5) are also shown by matrix model as follows:

[
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𝑙
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𝑙
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𝑙
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𝑙
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]
]
]
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]

]

−

[
[
[
[
[
[
[
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[
[
[
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𝑑
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+ 𝑑
2

+ 𝑑
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+ 𝑑
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𝑑
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𝑑
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+ 𝑑
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+ 𝑑
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+ 𝑑
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]
]
]
]
]
]
]
]
]
]
]
]
]
]

]
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⋅
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𝑔
2

𝑒
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]
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⋅

[
[
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𝑆
1

𝑆
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𝑆
3

𝑆
4

]
]
]
]
]

]

.

(7)

In (7), suppose the received signal matrix order is 𝐿 × 𝑁,
the coefficient matrix order is 𝐿 × 𝐾, and the received signal
addition matrix order is 𝐾 × 𝑁; then, the multiplication
complexity is 𝑂(𝐾×𝑁×𝐿) and addition complexity is 𝑂(𝐾×

𝑁 × 𝐿).
So, the overall complexity can be determined as 𝑂(𝐾 ×

𝑁 × 𝐿).

2.3.2. Convergence Analysis. In this subsection, we discuss
the convergence of the proposed Interference Cancellation
algorithm (IC-algorithm). Due to considering the influence
of noise, the vector space L̂ has an ambiguity. Obviously,
the ambiguity will hamper the algorithm convergence, due to
the arbitrary vectors influencing the iterative process [17]. A
convergence point is assumed to be unstable under the Inter-
ferenceCancellation algorithm (IC-algorithm) update rules if
a small perturbation on the convergence proceduremay cause
the Interference Cancellation algorithm (IC-algorithm) to
diverge away from the convergence point [18]. However, these
can be easily avoided if each iteration minimizes ‖𝐿

𝑖
− 𝐿
𝑖
‖.

The following statement discusses the convergence point of
the Interference Cancellation algorithm (IC-algorithm).

Theorem 1. Let L̂ = {𝐿
1
, 𝐿
2
, 𝐿
3
, 𝐿
4
} denote the vector

estimation space; then, for any initialization of the Interference
Cancellation algorithm (IC-algorithm), the limit lim

𝑖→∞
exists;

that is, the Interference Cancellation algorithm (IC-algorithm)
is convergent [19].

Proof. Construct monotonic increasing sequence (𝐿
1𝑛

, 𝐿
2𝑛
,

𝐿
3𝑛

, 𝐿
4𝑛

) ∈ L̂. The sequence has an upper bound because
noise has a little disturbance.Then, we have∀𝜀 > 0, ∃𝑁; when
𝑛 > 𝑁, |‖(𝐿

1𝑛
, 𝐿
2𝑛

, 𝐿
3𝑛

, 𝐿
4𝑛

)‖−‖(𝐿
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, 𝐿
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, 𝐿
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, 𝐿
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)‖| < 𝜀; that
is,

lim
𝑛→∞

(𝐿
1𝑛

, 𝐿
2𝑛

, 𝐿
3𝑛

, 𝐿
4𝑛

) = (𝐿
10

, 𝐿
20

, 𝐿
30

, 𝐿
40

) . (8)

From the above procedure, we prove the convergence of
the proposed Interference Cancellation algorithm (IC-algo-
rithm).

3. Improved FastICA Algorithm through
𝐾-Means Cluster

In this section, we separate each interesting object signal with
an improved FastICA algorithm combined with 𝐾-means
clustering.

3.1. FastICA Algorithm. The FastICA algorithm is a popular
procedure for blind source separation [20]. The size of the

Gaussian character is usually measured by negative entropy
and can be written as [21]

𝑁
𝑔

(𝑌) = 𝐻 (𝑌Gauss) − 𝐻 (𝑌) , (9)

where 𝑌Gauss is the random variable with the same covariance
and 𝐻(𝑌) is the formula for entropy calculation, which is
defined as [22]

𝐻 (𝑌) = − ∫ 𝑃
𝑌

(𝜉) log𝑃
𝑌

(𝜉) 𝑑𝜉. (10)

Here, 𝑃
𝑌
(𝜉) is the probability density function. The detailed

process of the FastICA algorithm can be concluded as follows.

(1) Standardize data.
(2) Choose the original vector 𝑊

0
and set ‖𝑊

0
‖ = 1.

(3) Select a nonquadratic function; for example,

𝑔
1

(𝑦) = tanh (𝑎
1
𝑦) ,

𝑔
2

(𝑦) = 𝑦 exp(−
𝑦
2

2
) ,

𝑔
3

(𝑦) = 𝑦
3

.

(11)

(4) Let

𝑊
𝑝

= 𝐸 {𝑍𝑔 (𝑊
𝑇

𝑝
)} − 𝐸 {𝑔

󸀠

(𝑊
𝑇

𝑝
)} 𝑊
0
. (12)

(5) Let

𝑊
𝑝

= 𝑊
𝑝

− ∑ (𝑊
𝑇

𝑝
𝑊
𝑗
) 𝑊
𝑗
, 𝑗 = 1, 2, . . . , 𝑝 − 1. (13)

(6) Let

𝑊
𝑝

=

𝑊
𝑝

󵄩󵄩󵄩󵄩󵄩
𝑊
𝑝

󵄩󵄩󵄩󵄩󵄩

. (14)

(7) If 𝑊
𝑝
is a convergence, go to (8). Otherwise, return to

(4).
(8) Suppose 𝑝 is the number of the current extraction

signals and 𝑚 is the number of the source numbers;
let 𝑝 = 𝑝 + 1; if 𝑝 ≤ 𝑚 return to (2).

Although FastICA algorithm is efficient, the performance
heavily depends on the selection of the original vector 𝑊

0

[23, 24]. Here, we improve the original FastICA algorithm by
using the 𝐾-means for setting 𝑊

0
, which is introduced in the

next section.
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Figure 5: Primary data and the classification.

3.2. Improved FastICA Algorithm with 𝐾-Means Algorithm.
There is a rich and diverse history in 𝐾-means algorithm as it
was independently discovered in different scientific fields by
Steinhaus (1957) [25], Lloyd (proposed in 1957, published in
1982) [26], Ball and Hall (1967) [27], and MacQueen (1967)
[28], and it is the most popular and the simplest partitional
algorithm [29, 30].

𝐾-means algorithm aims to classify or group out objects
based on attributes or features into number of groups. The
group is done by minimizing the sum of squares of distances
between every datum and corresponding cluster center. The
main steps of 𝐾-means algorithm are as follows [31–33]:

(1) provide an initial number, 𝐾, of clusters;

(2) compute the squared Euclidean distance 𝑑 from each
object to each cluster and assign each object to the
closest cluster;

(3) minimize Within-Cluster Sum of Squares (WCSS) in
(13) and update the cluster center for each cluster;

(4) recalculate the squared Euclidean distance 𝑑 based on
the new memberships;

(5) repeat steps (3) and (4) until there is no possibility to
move the objects to clusters.

Given a set of observations (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
), where

each observation is an 𝑁-dimensional vector, the 𝐾-means
clustering method aims to separate the 𝑁 observations into
𝐾 sets (𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑁
) (𝐾 ≤ 𝑁) with regard to minimizing

the function as follows [34]:

WCSS = min
𝑘

∑

𝑖=1

∑

𝑋𝑗∈𝑆𝑖

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑗

− 𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩

2

, (15)

where 𝜇
𝑖
is the mean vector of 𝑆

𝑖
cluster 𝑖 = 1, 2, . . . , 𝐾.

The output of the 𝐾-means is the means vector 𝜇
1
, 𝜇
2
,

. . . , 𝜇
𝐾
. The examples are shown in Figures 5 and 6. It is seen

that 𝜇
𝑖
(𝑖 = 1, 2, . . . , 𝐾) are the cluster centers and stand for

the general feature of the corresponding class. So, we choose
the original vector 𝑊

0
in 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝐾
. The flowchart of the

proposed algorithm is shown in Figure 7.

𝜇1

𝜇2

𝜇3

𝜇4

𝜇5𝜇6

𝜇7
𝜇K· · ·

Figure 6: Cluster centers.

Interference Cancellation 
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Input original mixed signals
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No

and reference strong jamming S4
S1 + S2 + S3 + S4

Pearson’s correlation coefficient value
≥ r0

Yes

Output S1, S2, and S3

Figure 7: Flowchart of the proposed algorithm.

4. Simulation and Blind Source
Signal Separation Results

In this section, we verify the proposed method. In the
simulation, QPSK modulation signal will be separated from
the mixed sensor signals.

We first introduce the parameter setting in our experi-
ments. We set the sample rate as 𝑓𝑏 = 2 ∗ 10

4Hz, the trans-
mission bit rate as𝑓𝑏 = 10

3 bps, themodulation frequency as
𝑓
0

= 2 ∗ 10
3Hz, the bit numbers as 𝑚 = 80, and the original

signal numbers as MK = 4.
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Figure 8: Source signals waves. Signal 1 to signal 3 are mixed weak
object signal waveforms. Signal 4 is the strong interference signal
waveform.
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Figure 9:The received mixed signal waves after Gaussian channels.
Four Gaussian channels are considered.

The sent original signal waveforms are shown in Figure 8.
It is seen that signal 4 is the strong interference signal, while
signal 1 to signal 3 are the weak object signals. We aim to
separate each object signal from the sent source signals.

4.1. Channel Characteristic Estimation. After the Gauss chan-
nel based transitions, the received mixed signal waveforms
are shown in Figure 9 (Received Composite Signal). Here, we
consider four channels to fully simulate the realistic signal
transmission, which are shown from top row to bottom row
in Figure 9, respectively.

After using the proposed Interference Cancellation algo-
rithm (IC-algorithm), the strong interference signal is

signal component

signal component

signal component

signal component

Channel-1 signal after removing the super power

Channel-2 signal after removing the super power

Channel-3 signal after removing the super power

Channel-4 signal after removing the super power

100 200 300 400 500 600 700 8000
Time

100 200 300 400 500 600 700 8000
Time

100 200 300 400 500 600 700 8000
Time

100 200 300 400 500 600 700 8000
Time

−2
0
2

A
m

pl
itu

de

−5
0
5

A
m

pl
itu

de

−5
0
5

A
m

pl
itu

de

−2
0
2

A
m

pl
itu

de
Figure 10:The four extractedweak object signal waveformswith the
proposed Interference Cancellation algorithm (IC-algorithm).

removed from the four received mixed signal waves in Fig-
ure 8. The corresponding four extracted mixed weak object
signal waveforms are shown in Figure 10, respectively. In Fig-
ure 11, we further display the result of the strong interference
signal channel parameter estimation error under different
𝑆
𝑞
/𝑁
0
; here 𝑆

𝑞
/𝑁
0
is the ratio of the strong interference

signal and background noise. The computational formula is
composed of two steps.

(1) Vector standardization: suppose vector is 𝑎 = (𝑎
1
, 𝑎
2
,

𝑎
3
); the standardization vector is

𝑎

‖𝑎‖
= (

𝑎
1

‖𝑎‖
,

𝑎
2

‖𝑎‖
,

𝑎
3

‖𝑎‖
) . (16)

(2) Error function:

Error =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑎̂

‖𝑎̂‖
−

𝑎

‖𝑎‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

, (17)

where 𝑎̂ = (𝑎
1
, 𝑎
2
, 𝑎
3
) is the estimation of 𝑎 = (𝑎

1
, 𝑎
2
,

𝑎
3
).

It is seen that the Error becomes small along with the
increase of 𝑆

𝑞
/𝑁
0
, which demonstrates the effectiveness of

our Interference Cancellation algorithm (IC-algorithm).
The Interference Cancellation algorithm (IC-algorithm)

includes four steps as follows.

(1) Set the factors.
(2) Generate the mixed signals.
(3) Mixed parameter estimation.
(4) Calculating error value.

The algorithm detail is provided in Appendix.
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Figure 11: Influence of the strong interference signal on the mixed
weak signals with the proposed Interference Cancellation algorithm
(IC-algorithm).
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Figure 12: Blind source separation waveform using the proposed
improved FastICA with 𝐾-means algorithm.

4.2. Simulations of the Separation Effect. The final blind
source separation waveforms (the interested object signal) by
the proposed improved FastICAwith𝐾-means algorithm are
shown in Figure 12. The three signals are displayed. It is seen
that the obtained three object signals are very similar to the
initial object signals in Figure 8.

We compare the signals between Figures 12 and 8 by
objective evaluation and further compare the separation per-
formance with the classical FastICA algorithm [34]. Pearson’s
correlation coefficient value is used. The results are shown in

The separation performance under different SIR

Signal 1 (this paper’s method)
Signal 1 (the classical FastICA method)
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Figure 13: Blind source separation result; this paper’s method has a
better performance than classical FastICA algorithm.

Figure 13, where Pearson’s correlation coefficient is defined as
follows [35]:

𝑟 =
∑
𝑛

𝑖=1
(𝑥
𝑖
− 𝑥) (𝑦

𝑖
− 𝑦)

√∑
𝑛

𝑖=1
(𝑥
𝑖
− 𝑥)
2

∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝑦)
2

. (18)

We can see that blind sources signals can be efficiently
separated by the proposedmethod, with a better performance
than the classical FastICA algorithm.

5. Conclusions

In this paper, we suppose a special situation for blind
source signal separation. Firstly, we propose an Interference
Cancellation algorithm (IC-algorithm) to get rid of the
jamming signal and the algorithm has a good performance.
Then, we design an improved FastICA with 𝐾-means algo-
rithm to improve the traditional FastICA algorithm, and the
algorithm’s robust performance can be markedly improved.
The experiment results demonstrate the effectiveness of the
proposed method.

Appendix

The Detail of Interference Cancellation
Algorithm (IC-Algorithm)

See Algorithm 1.
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(1) Set the Factors
for 𝑖 = 1 :MK

if 𝑖 == list
𝑢 = 𝑢𝑢(𝑝𝑝);
for 𝑗𝑗 = 1 : 1000

train signal(𝑗𝑗, :) = 𝑢 ∗ bpsk(𝑚, 𝑁, train(𝑗𝑗, :),𝑓
0
, 𝑓
𝑠
);

end
bpsk signal(𝑖, :) = 𝑢 ∗ bpsk(𝑚, 𝑁, 𝑎(𝑖, :), 𝑓

0
, 𝑓
𝑠
);

else
𝑢0 = 1;
bpsk signal(𝑖, :) = 𝑢0 ∗ bpsk(𝑚, 𝑁, 𝑎(𝑖, :), 𝑓

0
, 𝑓
𝑠
);

end
end
𝑠 = [];

(2) Generate the Mixed Signals
for 𝑖𝑖 = 1 :MK

if 𝑖𝑖 ∼= list
𝑠1 = bpsk signal(𝑖𝑖, :);
𝑠 = [𝑠; 𝑠1];

end
end
𝐴 = rand(MK,MK);
𝑁
0

= 0.05 ∗ randn(MK, 𝑁);
(3) Mixed Parameter Estimation

𝐵 = zeros(1,MK);
for 𝑗𝑗 = 1 : 1000

train 𝑠 = 𝐴(:, list) ∗ train signal(𝑗𝑗, :);
train 𝑠 = train 𝑠 + 𝑢 𝑛0 ∗ randn(MK, 𝑁);
𝑏1 𝑏2 = mean(train 𝑠(1, :)./train 𝑠(2, :));
𝑏1 𝑏3 = mean(train 𝑠(1, :)./train 𝑠(3, :));
𝑏1 𝑏4 = mean(train 𝑠(1, :)./train 𝑠(4, :));
𝑏2 𝑏3 = mean(train 𝑠(2, :)./train 𝑠(3, :));
𝐵𝐵 = [1 1/𝑏1 𝑏2 1/𝑏1 𝑏3 1/𝑏1 𝑏4];
𝐵 = 𝐵 + 𝐵𝐵;

end
𝐵 = 𝐵/1000;

(4) Calculating Error
if norm(𝐵/norm(𝐵) − (𝐴(:, list)/norm(𝐴(:, list)))’) > 0.01
fprintf(’ ’);
elimate error(𝑝𝑝) = norm(𝐵/norm(𝐵) − (𝐴(:, list)/norm(𝐴(:, list)))’);
continue;

end
elimate error(𝑝𝑝) = norm(𝐵/norm(𝐵) − (𝐴(:, list)/norm(𝐴(:, list)))’);

Algorithm 1: Interference Cancellation algorithm (IC-algorithm) code.
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