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We introduce real tangle and its operations, as a generalization of rational tangle and its operations, to enumerating tangles by
using the calculus of continued fraction and moreover we study the analytical structure of tangles, knots, and links by using new
operations between real tangles which need not have the topological structure. As applications of the analytical structure, we prove
the generalized Hyers-Ulam stability of the Cauchy additive functional equation 𝑓(𝑥 ⊕ 𝑦) = 𝑓(𝑥) ⊕ 𝑓(𝑦) in tangle space which is a
set of real tangles with analytic structure and describe the DNA recombination as the action of some enzymes on tangle space.

1. Introduction

In 1970, Conway introduced rational tangles and algebraic
tangles for enumerating knots and links by using Conway
notation. The rational tangles are defined as the family
of tangles that can be transformed into the trivial tangle
by sequence of twisting of the endpoints. Given a tangle,
two operations, called the numerator and denominator, by
connecting the endpoints of the tangle produce knots or 2-
component links. To enumerating and classifying knots, the
theory of general tangles has been introduced in [1].

Moreover the rational tangles are classified by their
fractions by means of the fact that two rational tangles are
isotopic if and only if they have the same fraction [1]. This
implies the known result that the rational tangles correspond
to the rational numbers one to one. It is clear that every
rational number can be written as continued fractions with
all numerators equal to 1 and that every real number 𝑟
corresponds to a unique continued fraction, which is finite
if 𝑟 is rational and infinite if 𝑟 is irrational. Thus the con-
tinued fractions give the relationship between the analytical
structure and topological structure under a certain restricted
operator. See [2], for example. There are some operations
that can be performed on tangles as the sum, multiplication,
rotation, mirror image, and inverted image.

Topologically, the sum and multiplication on tangles are
defined as connecting two endpoints of one tangle to two
endpoints of another. However they are not commutative and
do not preserve the class of rational tangles. Furthermore the
sum and multiplication of two rational tangles are a rational
tangle if and only if one of two is an integer tangle [3].Thus the
set of rational tangles is not a group because it was discovered
that not all rational tangles form a closed set under the sum
and multiplication. Considering a braid of rational tangles, a
series of strands that are always descending, the set of braids
is a group under braid multiplication.

In 1940, Ulam introduced the stability problem of func-
tional equations during talk before a Mathematical Collo-
quium at the University of Wisconsin [4]:

Given a group 𝐺1, a metric group (𝐺2, 𝑑) and a positive
number 𝜖, does there exist a number 𝛿 > 0 such that
if a function 𝑓 : 𝐺1 → 𝐺2 satisfies the inequality𝑑(𝑓(𝑥𝑦), 𝑓(𝑥)𝑓(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺1, there exists a
homomorphism 𝑇 : 𝐺1 → 𝐺2 such that 𝑑(𝑓(𝑥), 𝑇(𝑥)) < 𝜖
for all 𝑥 ∈ 𝐺1?

Analytically, the stability problem of functional equations
originated from a question of Ulam concerning the stability
of group homomorphisms. The functional equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (1)
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Figure 1: Rational, trivial, prime, locally knotted tangles.

is called the Cauchy additive functional equation. In particu-
lar, every solution of the Cauchy additive functional equation
is said to be an additive mapping. In [5], Hyers gave the first
affirmative partial answer to the question of Ulam for Banach
spaces. In [6], Hyers’ theorem was generalized by Aoki for
additive mappings and by Rassias for linear mappings by
considering an unbounded Cauchy difference in [7]. In [8],
a generalization of the Rassias theorem was obtained by
Găvruţa by replacing the unbounded Cauchy difference by
a general control function in Rassias’ approach. There are
many interesting stability problems of several functional
equations that have been extensively investigated by a number
of authors. See [9–14].

In recent years, new applications of tangles to the field of
molecular biology have been developed. In particular, knot
theory gives a nice way to model DNA recombination. The
relationship between topology and DNA began in the 1950s
with the discovery of the helical Crick-Watson structure of
duplex DNA. The mathematical model is the tangle model
for site-specific recombination, which was first introduced by
Sumners [15]. This model uses knot theory to study enzyme
mechanisms. Therefore rational tangles are of fundamental
importance for the classification of knots and the study of
DNA recombination. In this paper, we introduce new tangles
called real tangles to apply the stability problem and DNA
recombination on tangles.

In Section 2, we introduce real tangles and operations
between tangles which can be performed to make up tangle
space and having analytical structure. Moreover we show
that the operations together with two real tangles will always
generate a real tangle. In Section 3, we prove the Hyers-Ulam
stability of the Cauchy additive functional equation in tangle
space and study the DNA recombination on real tangles, as
applications of knots or links.

2. Continued Fractions and Tangle Space

A rational tangle is a proper embedding of two unoriented
arcs (strings) 𝑡1 and 𝑡2 in 3-ball 𝐵3 so that the endpoints of
the arcs go to a specific set of 4 points on the equator of 𝐵3,
usually labeled NW,NE, SW, SE. This is equivalent to saying
that rational tangles are defined as the family of tangles that
can be transformed into the trivial tangle by a sequence of
twisting of the endpoints. Note that there are tangles that
cannot be obtained in this fashion: they are the prime tangles
and locally knotted tangles. For example, see Figure 1.

Geometrically, we have the following operations between
rational tangles: the integer (the horizontal) tangles, denoted

by 𝑅(𝑛), consist in 𝑛 horizontal twists, 𝑛 ∈ 𝑍, the mirror
image of 𝑅(𝑛), denoted by −𝑅(𝑛) or 𝑅(−𝑛), is obtained
from 𝑅(𝑛) by switching all the crossing, and the rotation
of 𝑅(𝑛), denoted by 𝑅𝑅(𝑛), is obtained by rotation 𝑅(𝑛)
counterclockwise by 90∘. Moreover the inverse (the vertical)
tangle of 𝑅(𝑛), denoted by 𝑅(1/𝑛), is defined by −𝑅𝑅(𝑛) or𝑅𝑅(−𝑛) as the composition of the rotation andmirror of𝑅(𝑛).
For example, 𝑅(1/3) = −𝑅𝑅(3), and 𝑅(1/−3) = −𝑅𝑅(−3). For
the trivial tangle 𝑅(0) we define 𝑅(∞) = 𝑅𝑅(0) or 𝑅(1/0).

Generally, every rational tangle can be represented by
the continued fractions𝐶(𝑎1, 𝑎2, . . . , 𝑎𝑛) as following Conway
notation:

𝐶 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑎1
+ 1
𝑎2 + ⋅ ⋅ ⋅ + (1/ (𝑎(𝑛−1) + (1/𝑎𝑛)))

(2)

for 𝑎1 ∈ 𝑍, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑍 − {0}, and 𝑛 even or odd and we
denote it by 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛). See Figure 2.

By Conway [1], rational tangles are classified by fractions
by fact of the following: two rational tangles are isotopic
if and only if they have the same fraction. For example,𝐶(2, −2, 3) and 𝐶(1, 2, 2) represent the same tangles up
to isotopy because they have a fraction 7/5. Therefore
the rational tangles 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛) with the exception of{𝑅(0), 𝑅(±1), 𝑅(∞)} are said to be in canonical form if |𝑎𝑛| >1, 𝑎𝑖 ̸= 0 for 2 ≤ 𝑖 ≤ 𝑛. Note that all nonzero entries
have the same sign and every rational tangle has a unique
canonical form. The canonical form of the example above is𝑅(1, 2, 2) and the following corollary, which is a direct result
of Conway’s theorem [1], will give us a means of classifying
rational tangles by way of fractions.

Corollary 1. There is a one-to-one correspondence between
canonical rational tangles and rational numbers 𝛽/𝛼 ∈ 𝑄 ∪{∞}, where𝛼 ∈ 𝑁∪{0},𝛽 ∈ 𝑍, gcd(𝛼, 𝛽) = 1,𝑅(∞) = 𝑅(1/0).

Now we define infinite tangles by infinite continued
fractions of irrational numbers that the chain of fractions
never ends as the following:

𝐶 (𝑎1, 𝑎2, 𝑎3, . . .) = 𝑎1
+ 1
𝑎2 + (1/ (𝑎3 + (1/ (𝑎4 + ⋅ ⋅ ⋅ )))) ,

(3)
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Figure 2: Rational tangles 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛) for 𝑛 odd or even.

where 𝑎1 is allowed to be 0, but all subsequent terms 𝑎𝑖 must
be positive; that is, 𝑎1, 𝑎2, . . . ∈ 𝑍, 𝑎𝑖 > 0 for 𝑖 ≥ 2. Note that
let 𝐶𝑖 = 𝐶(𝑎1, 𝑎2, . . . , 𝑎𝑖) for 𝑖 ≥ 1 and then the limit

𝐶 (𝑎1, 𝑎2, 𝑎3, . . .) = lim
𝑖→∞
𝐶𝑖 (4)

is a unique irrational number and that let 𝑅𝑖 =𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑖) for 𝑖 ≥ 1 be canonical rational tangles
and then the infinite tangles, denoted by 𝑅(𝑎1, 𝑎2, 𝑎3, . . .), are
defined by the limit of canonical rational tangles 𝑅𝑖 as

𝑅 (𝑎1, 𝑎2, 𝑎3, . . .) = lim
𝑖→∞
𝑅𝑖. (5)

Example 2. Let 𝐶1 = 𝐶(1), 𝐶2 = (1, 1), . . . , 𝐶𝑖 = 𝐶(1, 1,1, . . . , 1), and then the limit has an irrational number

lim
𝑖→∞
𝐶𝑖 = 𝐶 (1, 1, 1, . . .) = 1 + √22 . (6)

Corollary 3. There is a one-to-one correspondence between
infinite tangles and irrational numbers.

Note that 𝛼 ∈ 𝑅−𝑄 is quadratic irrational if and only if it
is of the form

𝛼 = 𝑎 + √𝑏𝑐 , (7)

where 𝑎, 𝑏, 𝑐 ∈ 𝑍, 𝑏 > 0, 𝑐 ̸= 0, and 𝑏 is not the square
of a rational number. Thus an irrational number is called
quadratic irrational if it is a solution of a quadratic equation𝐴𝑥2 +𝐵𝑥+𝐷 = 0, where𝐴, 𝐵,𝐷 ∈ 𝑍 and𝐴 ̸= 0. Moreover 𝛼
is eventually periodic of the form

𝐶 (𝑎1, 𝑎2, . . . , 𝑎𝑁, 𝑎𝑁+1, . . . , 𝑎𝑁+𝑝) , (8)

where the bar indicates the periodic part with 𝑝 terms. Thus
an infinite tangle is said to be periodic if it has eventually
periodic of the form

𝑅 (𝑎1, 𝑎2, . . . , 𝑎𝑁, 𝑎𝑁+1, . . . , 𝑎𝑁+𝑝) . (9)

See Figure 5 for𝑁 = 1 and 𝑝 = 2.

Figure 3: Canonical rational tangle 𝑅(2, 1, 1, 3, 4).

Corollary 4. There is a one-to-one correspondence between
infinite periodic tangles and quadratic irrational numbers.

Finally, tangles are said to be real if it is rational tangles or
infinite tangles, and so the real tangles are finite if it is rational
tangles and infinite if it is infinite tangles. Thus continued
fractions of finite real tangles are rational and continued
fractions of infinite real tangles are irrational. Moreover
infinite real tangle is periodic if it is infinite periodic tangles,
and so continued fractions of infinite periodic real tangles
are quadratic irrational numbers. Let 𝑟 be a real number that
corresponds to finite or infinite continued fractions.Then, by
corollaries, the fact that 𝑅(𝑟) has a unique real tangle can be
proved. The following is examples of the corollaries above.

Example 5. (1) Let 77/30 ∈ 𝑄 be a rational number. Then𝑅(77/30) = 𝑅(2, 1, 1, 3, 4) is a canonical rational tangle of77/30. See Figure 3.(2) Let 𝑒 = 2.718281 ⋅ ⋅ ⋅ ∈ 𝑅 − 𝑄 be an irrational number
used as the base of the natural logarithm function. Then
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Figure 4: Infinite tangle 𝑅(2, 1, 2, 1, 1, 4, . . .).

⋱

Figure 5: Infinite periodic tangle 𝑅(3, 2, 1).

𝑅(𝑒) = 𝑅(2, 1, 2, 1, 1, 4, 1, 1, . . .) is an infinite tangle of 𝑒. See
Figure 4.(3)Considering a quadratic irrational number (5+√3)/2,𝑅((5 + √3)/2) = 𝑅(3, 2, 1, 2, 1, . . .) = 𝑅(3, 2, 1) is an infinite
periodic tangle of quadratic irrational number (5+√3)/2. See
Figure 5. In Figure 5, the boxesmean periodic parts as𝑅(2, 1).

Now we introduce the operations on real tangles with
analytical structure, which need not have the topological
structure. However, on rational tangles, our operations are
applicable to geometrical results obtained from topological
structure. Our operations need to discuss the generalized
Hyers-Ulam stability of the Cauchy additive functional equa-
tion𝑓(𝑥+𝑦) = 𝑓(𝑥)+𝑓(𝑦) andDNA recombinations in next
section.

Let functions 𝑝 : 𝑅 × 𝑅 → 𝑅, defined by 𝑝(𝑟1, 𝑟2) = 𝑟1 +𝑟2, and 𝑚 : 𝑅 × 𝑅 → 𝑅, defined by 𝑚(𝑟1, 𝑟2) = 𝑟1 × 𝑟2
be two binary operators on 𝑅, and 𝜙 a map from the set of
real tangles 𝑇 to the set of real number 𝑅 in which tangles𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛) or 𝑅(𝑎1, 𝑎2, 𝑎3, . . .) are corresponding to the

rational numbers or irrational numbers, respectively, one to
one.Then for 𝜙 : 𝑇 → 𝑅 and each tangles 𝑡1, 𝑡2 ∈ 𝑇, we define
a map 𝜙∗ : 𝑇 × 𝑇 → 𝑅 × 𝑅 by 𝜙∗(𝑡1, 𝑡2) = (𝜙(𝑡1), 𝜙(𝑡2)) and
two binary operators ⊕ and ⊗ on a nonempty set 𝑇 by

⊕ : 𝑇 × 𝑇 󳨀→ 𝑇,
⊗ : 𝑇 × 𝑇 󳨀→ 𝑇, (10)

where

⊕ (𝑡1, 𝑡2) = 𝜙−1𝑝𝜙∗ (𝑡1, 𝑡2) ,
⊗ (𝑡1, 𝑡2) = 𝜙−1𝑚𝜙∗ (𝑡1, 𝑡2) .

(11)

For convenience, we write 𝑡1 ⊕ 𝑡2 and 𝑡1 ⊗ 𝑡2 by ⊕(𝑡1, 𝑡2)
and ⊗(𝑡1, 𝑡2), respectively.
Lemma 6. Let 𝜙 : 𝑇 → 𝑅 be a map from the set of real tangles
to the set of real numbers at which real tangles 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛)
or 𝑅(𝑎1, 𝑎2, . . .) are corresponding to the real number 𝑟, where 𝑟
has continued fraction 𝐶(𝑎1, 𝑎2, . . . , 𝑎𝑛) or 𝐶(𝑎1, 𝑎2, . . .).Then𝜙 satisfies the following properties: for all 𝑡, 𝑡1, 𝑡2 ∈ 𝑇,

(1) 𝜙 (−𝑡) = −𝜙 (𝑡)
(2) 𝜙 (−𝑡𝑅) = 1

𝜙 (𝑡)
(3) 𝑡 ⊕ (−𝑡) = 𝑅 (0)
(4) 𝑡 ⊗ (−𝑡𝑅) = 𝑅 (1)
(5) 𝜙 (𝑡1 ⊕ 𝑡2) = 𝜙 (𝑡1) + 𝜙 (𝑡2)
(6) 𝜙 (𝑡1 ⊗ 𝑡2) = 𝜙 (𝑡1) × 𝜙 (𝑡2) .

(12)

Proof. Let 𝑡 be a real tangle in 𝑇 and 𝜙(𝑡) = 𝑟 ∈ 𝑅, continued
fraction corresponding to 𝑡.(1) Since −𝑡 is obtained from 𝑡 by switching all the
crossing, 𝜙(−𝑡) = −𝑟 and so 𝜙(−𝑡) = −𝜙(𝑡).(2) Since 𝑡𝑅 is obtained by rotation 𝑡 counterclockwise by
90∘, 𝜙(𝑡𝑅) = −1/𝑟 and so 𝜙(−𝑡𝑅) = 1/𝑟 by (1).Thus 𝜙(−𝑡𝑅) =1/𝜙(𝑡).(3) 𝑡 ⊕ (−𝑡) = 𝜙−1𝑝𝜙∗(𝑡, −𝑡) = 𝜙−1𝑝(𝜙(𝑡), 𝜙(−𝑡)) =𝜙−1(𝜙(𝑡) + 𝜙(−𝑡)) = 𝜙−1(0) = 𝑅(0) by (1).(4) 𝑡 ⊗ (−𝑡𝑅) = 𝜙−1𝑚𝜙∗(𝑡, −𝑡𝑅) = 𝜙−1𝑚(𝜙(𝑡), 𝜙(−𝑡𝑅)) =𝜙−1(𝜙(𝑡) × 𝜙(−𝑡𝑅)) = 𝜙−1(1) = 𝑅(1) by (2).(5) 𝜙(𝑡1 ⊕ 𝑡2) = 𝜙(𝜙−1𝑝𝜙∗(𝑡1, 𝑡2)) = 𝑝(𝜙(𝑡1), 𝜙(𝑡2)) =𝜙(𝑡1) + 𝜙(𝑡2).(6) 𝜙(𝑡1 ⊗ 𝑡2) = 𝜙(𝜙−1𝑚𝜙∗(𝑡1, 𝑡2)) = 𝑚(𝜙(𝑡1), 𝜙(𝑡2)) =𝜙(𝑡1) × 𝜙(𝑡2).

In the following, we show that operators ⊕ and ⊗ together
with two real tangles will always generate a real tangle.

Theorem 7. Let 𝑇 be the set of real tangles and ⊕ the binary
operation on 𝑇. Then (𝑇, ⊕) is a group.
Proof. To show associative of ⊕, let 𝑡1, 𝑡2, 𝑡3 ∈ 𝑇.
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Then

(𝑡1 ⊕ 𝑡2) ⊕ 𝑡3 = 𝜙−1𝑝𝜙∗ (𝜙−1𝑝𝜙∗ (𝑡1, 𝑡2) , 𝑡3)
= 𝜙−1𝑝𝜙∗ (𝜙−1 (𝜙 (𝑡1) + 𝜙 (𝑡2)) , 𝑡3)
= 𝜙−1 ((𝜙 (𝑡1) + 𝜙 (𝑡2)) + 𝜙 (𝑡3))
= 𝜙−1 (𝜙 (𝑡1) + (𝜙 (𝑡2) + 𝜙 (𝑡3)))
= 𝜙−1𝑝𝜙∗ (𝑡1, 𝜙−1 (𝜙 (𝑡2) + 𝜙 (𝑡3)))
= 𝜙−1𝑝𝜙∗ (𝑡1, 𝜙−1𝑝𝜙∗ (𝑡2, 𝑡3))
= 𝑡1 ⊕ (𝑡2 ⊕ 𝑡3) .

(13)

For the remainder, the identity element is the trivial tangle𝑅(0) ∈ 𝑇 and the inverse of 𝑡 ∈ 𝑇 is −𝑡. See Lemma 6. Thus
the set 𝑇 forms a group with respect to ⊕.

In particular, for 𝑡1, 𝑡2 ∈ 𝑇, we write 𝑡1 ⊖ 𝑡2 for 𝑡1 ⊕ (−𝑡2).
Theorem 8. Let 𝑇 be the set of real tangles and ⊗ the binary
operation on 𝑇. Then (𝑇, ⊗) is a group.
Proof. To show associative of ⊗, let 𝑡1, 𝑡2, 𝑡3 ∈ 𝑇. Then

(𝑡1 ⊗ 𝑡2) ⊗ 𝑡3 = 𝜙−1𝑚𝜙∗ (𝜙−1𝑚𝜙∗ (𝑡1, 𝑡2) , 𝑡3)
= 𝜙−1𝑚𝜙∗ (𝜙−1 (𝜙 (𝑡1) × 𝜙 (𝑡2)) , 𝑡3)
= 𝜙−1 ((𝜙 (𝑡1) × 𝜙 (𝑡2)) × 𝜙 (𝑡3))
= 𝜙−1 (𝜙 (𝑡1) × (𝜙 (𝑡2) × 𝜙 (𝑡3)))
= 𝜙−1𝑚𝜙∗ (𝑡1, 𝜙−1 (𝜙 (𝑡2) × 𝜙 (𝑡3)))
= 𝜙−1𝑚𝜙∗ (𝑡1, 𝜙−1𝑚𝜙∗ (𝑡2, 𝑡3))
= 𝑡1 ⊗ (𝑡2 ⊗ 𝑡3) .

(14)

For the remainder, the identity element is the integer tangle𝑅(1) ∈ 𝑇 and the inverse of 𝑡 ∈ 𝑇 is −𝑡𝑅 and denoted as𝑡−1, where 𝑡𝑅 means rotation counterclockwise by 90∘. See
Lemma 6.Thus the set𝑇 forms a group with respect to ⊗.
Corollary 9. (𝑇, ⊕) and (𝑇, ⊗) are abelian groups.

For the symbolization, we write 𝑛𝑡 for 𝑡 ⊕ 𝑡 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑡(𝑛
summands) and write 𝑡𝑛 for 𝑡 ⊗ 𝑡 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑡(𝑛 products). Note
that, by distributive law between two operations, we have

(𝑡1 ⊕ 𝑡2) ⊗ (𝑡3 ⊕ 𝑡4) ⇐⇒
(𝑡1 ⊗ 𝑡3) ⊕ (𝑡1 ⊗ 𝑡4) ⊕ (𝑡2 ⊗ 𝑡3) ⊕ (𝑡2 ⊗ 𝑡4) . (15)

For 𝑡1, 𝑡2, 𝑡 ∈ 𝑇 and 𝑟 ∈ 𝑅, let ⊕ : 𝑇 × 𝑇 → 𝑇
and ⋅ : 𝑅 × 𝑇 → 𝑇 be addition and scalar multiplication
operators, respectively, defined by ⊕(𝑡1, 𝑡2) = 𝑡1 ⊕ 𝑡2 and⋅(𝑟, 𝑡) = 𝜙−1𝑚(𝑟, 𝜙(𝑡)) ∈ 𝑇, denoted by 𝑟 ⋅ 𝑡, where (⋅, ⋅) :𝑅 × 𝑇 → 𝑅 × 𝑅 is a map. Then the set 𝑇 of the real tangles
with addition and scalar multiplication operators satisfy the
following result.

Theorem 10. (𝑇, ⊕, ⋅) is a vector space.
Proof. ByTheorem 7, (𝑇, ⊕) is a group.Moreover, we have the
following properties:

(1) 𝑟 ⋅ (𝑡1 ⊕ 𝑡2) = 𝜙−1𝑚(𝑟, 𝜙 (𝑡1 ⊕ 𝑡2))
= 𝜙−1𝑚(𝑟, 𝜙𝜙−1𝑝𝜙∗ (𝑡1, 𝑡2))
= 𝜙−1𝑚(𝑟, 𝜙 (𝑡1) + 𝜙 (𝑡2))
= 𝜙−1 (𝑟 × (𝜙 (𝑡1) + 𝜙 (𝑡2)))
= 𝜙−1 (𝑟 × 𝜙 (𝑡1) + 𝑟 × 𝜙 (𝑡2))
= 𝜙−1𝑝 (𝜙𝜙−1𝑚(𝑟, 𝜙 (𝑡1)) , 𝜙𝜙−1𝑚(𝑟, 𝜙 (𝑡2)))
= 𝜙−1𝑝 (𝜙 (𝑟 ⋅ 𝑡1) , 𝜙 (𝑟 ⋅ 𝑡2))
= 𝜙−1𝑝𝜙∗ (𝑟 ⋅ 𝑡1, 𝑟 ⋅ 𝑡2)
= (𝑟 ⋅ 𝑡1) ⊕ (𝑟 ⋅ 𝑡2) .

(16)

Similarly,

(2) (𝑟1 + 𝑟2) ⋅ 𝑡 = (𝑟1 ⋅ 𝑡) ⊕ (𝑟2 ⋅ 𝑡) ,
(3) 𝑟1 ⋅ (𝑟2 ⋅ 𝑡) = (𝑟1𝑟2) ⋅ 𝑡,
(4) 1 ⋅ 𝑡 = 𝑡

(17)

hold. Thus (𝑇, ⊕, ⋅) is a vector space over 𝑅.
In particular, we write 𝑟(𝑡1 ⊕ 𝑡2) for 𝑟 ⋅ (𝑡1 ⊕ 𝑡2); that is, the

operator ⋅ is often omitted.

Remark 11. Wehave the following relations, which are proved
from the above facts

(1) − (𝑡1 ⊕ 𝑡2) = −𝑡1 ⊕ (−𝑡2) ,
(2) − (𝑡1 ⊖ 𝑡2) = (−𝑡1 ⊕ 𝑡2) ,
(3) 𝑡1 ⊖ 𝑡2 = −𝑡2 ⊕ 𝑡1.

(18)

If we define a function 𝐷 : 𝑇 × 𝑇 → 𝑅+ as 𝐷(𝑡1, 𝑡2) =|𝜙(𝑡1) −𝜙(𝑡2)| for each 𝑡1, 𝑡1 ∈ 𝑇, then (𝑇,𝐷) is a metric space
from the following theorem.

Theorem 12. (𝑇,𝐷) is a metric space.

Proof. Let 𝑡1, 𝑡2, 𝑡3 ∈ 𝑇. Then

(1) 𝐷 (𝑡1, 𝑡2) = 0 ⇐⇒
󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨 = 0 ⇐⇒
𝜙 (𝑡1) = 𝜙 (𝑡2) ⇐⇒
𝑡1 = 𝑡2,

(2) 𝐷 (𝑡1, 𝑡2) = 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝜙 (𝑡2) − 𝜙 (𝑡1)󵄨󵄨󵄨󵄨
= 𝐷 (𝑡2, 𝑡1) ,
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Figure 6: Addition and multiplication of tangles.

(3) 𝐷 (𝑡1, 𝑡2) = 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡3) + 𝜙 (𝑡3) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡3)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜙 (𝑡3) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
≤ 𝐷 (𝑡1, 𝑡3) + 𝐷 (𝑡3, 𝑡2) .

(19)

Thus (𝑇,𝐷) is a metric space.

Define the norm of 𝑡 by ‖𝑡‖ = 𝐷(𝑅(0), 𝑡). Then we have
that ‖𝑡‖ = |𝜙(𝑡)| and 𝐷(𝑡1, 𝑡2) = |𝜙(𝑡1) − 𝜙(𝑡2)| = |𝜙(𝑡1) +𝜙(−𝑡2)| = |𝜙(𝑡1 ⊕ (−𝑡2))| = ‖𝑡1 ⊕ (−𝑡2)‖ = ‖𝑡1 ⊖ 𝑡2‖.
Remark 13. We have the following relations:

(1) 󵄩󵄩󵄩󵄩𝑡1 ⊗ 𝑡2󵄩󵄩󵄩󵄩 = 𝐷 (𝑅 (0) , 𝑡1 ⊗ 𝑡2) = 󵄨󵄨󵄨󵄨0 − 𝜙 (𝑡1 ⊗ 𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1) × 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1)󵄨󵄨󵄨󵄨 × 󵄨󵄨󵄨󵄨𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄩󵄩󵄩󵄩𝑡1󵄩󵄩󵄩󵄩 × 󵄩󵄩󵄩󵄩𝑡2󵄩󵄩󵄩󵄩 ,

(2) 󵄩󵄩󵄩󵄩𝑡1 ⊕ 𝑡2󵄩󵄩󵄩󵄩 = 𝐷 (𝑅 (0) , 𝑡1 ⊕ 𝑡2) = 󵄨󵄨󵄨󵄨0 − 𝜙 (𝑡1 ⊕ 𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1) + 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜙 (𝑡1)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄩󵄩󵄩󵄩𝑡1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑡2󵄩󵄩󵄩󵄩 .

(20)

Define an inequality ≺ (resp. ≼) of 𝑡1, 𝑡2 on 𝑇 as 𝑡1 ≺𝑡2 (resp. 𝑡1 ≼ 𝑡2) ⇔ 𝜙(𝑡1) < 𝜙(𝑡2) (resp. 𝜙(𝑡1) ≤ 𝜙(𝑡2)).
Remark 14. (1) For each 𝜖 > 0, ‖𝑡‖ < 𝜖means that −𝑡𝜖 ≺ 𝑡 ≺𝑡𝜖 for some 𝜙(𝑡𝜖) = 𝜖.

(2) For each 𝜖 > 0, we have that
󵄩󵄩󵄩󵄩𝑡1 ⊖ 𝑡2󵄩󵄩󵄩󵄩 < 𝜖 ⇐⇒

−𝑡𝜖 ≺ 𝑡1 ⊖ 𝑡2 ≺ 𝑡𝜖 ⇐⇒
−𝑡𝜖 ⊕ 𝑡2 ≺ 𝑡1 ≺ 𝑡𝜖 ⊕ 𝑡2 ⇐⇒
𝑡2 ⊖ 𝑡𝜖 ≺ 𝑡1 ≺ 𝑡2 ⊕ 𝑡𝜖,

(21)

for some 𝜙(𝑡𝜖) = 𝜖.
In order to determine a group (generally, a vector space)

from the set of rational tangles (generally, real tangles),
two binary operators ⊕ and ⊗ are necessary. For other
operators, restricted on rational tangles, addition (denote
by #) and multiplication (denote by ∗) of horizontal and
vertical rational tangles are considered in [1]. In detail, the
multiplication of two rational tangles is defined as connecting
the top two ends of one tangle to the bottom two endpoints
of another, and the addition of two rational tangles is defined
as connecting the two leftmost endpoints of one tangle with
the two rightmost points of the other as shown in Figure 6.

However the addition of two rational tangles is not
necessarily rational, but it can be algebraic tangle [1]. For
example, it can be easily seen that the sum of 𝑅(1/2) and𝑅(1/2) is not a rational tangle. As the results, in [3], the
multiplication (resp., addition) of two rational tangles will be
rational tangle if one of two is a vertical (resp., horizontal)
tangle. Note that, as a special case of rational tangles, the set
of braids is a group under the multiplication. Therefore two
operators ⊕ and ⊗ on rational tangles are a generalization
of operators # and ∗ introduced in [1]. For two operators ⊕
and ⊗ on real tangles, we do not know yet whether it has a
topological or geometrical structure.

In Section 3, we will study some applications for two
operators ⊕ and ⊗ on real tangles. In this paper, the set (𝑇,𝐷)
of the real tangles with a metric𝐷 is called the tangle space.
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3. Some Applications on Tangle Space

3.1. Tangle Space and Stability. Let 𝑇 be the tangle space and𝑓 : 𝑇 → 𝑇 a mapping. Then we prove the generalized Hyers-
Ulam stability of the Cauchy additive functional equation as
follows.

Theorem 15. Let 𝑓 : 𝑇 → 𝑇 be a mapping such that

󵄩󵄩󵄩󵄩𝑓 (𝑥 ⊕ 𝑦) ⊖ (𝑓 (𝑥) ⊕ 𝑓 (𝑦))󵄩󵄩󵄩󵄩 < 𝜖 (22)

for all 𝑥, 𝑦 ∈ 𝑇 and for some 𝜖 > 0. Then there exists a unique
additive mapping 𝑄 : 𝑇 → 𝑇 such that ‖𝑓(𝑥) ⊖ 𝑄(𝑥)‖ < 𝜖 for
all 𝑥 ∈ 𝑇.
Proof. Suppose that 𝑓 : 𝑇 → 𝑇 is a mapping such that

󵄩󵄩󵄩󵄩𝑓 (𝑥 ⊕ 𝑦) ⊖ (𝑓 (𝑥) ⊕ 𝑓 (𝑦))󵄩󵄩󵄩󵄩 < 𝜖 (23)

for all 𝑥, 𝑦 ∈ 𝑇 and for some 𝜖 > 0. Then we have

󵄩󵄩󵄩󵄩𝑓 (𝑥 ⊕ 𝑦) ⊖ (𝑓 (𝑥) ⊕ 𝑓 (𝑦))󵄩󵄩󵄩󵄩 < 𝜖 󳨐⇒
𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊖ 𝑎𝜖 ≺ 𝑓 (𝑥 ⊕ 𝑦) ≺ 𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊕ 𝑎𝜖, (I)

for some 𝜙(𝑎𝜖) = 𝜖.(1) Putting 𝑥 = 𝑦 in (I),

2𝑓 (𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (2𝑥) ≺ 2𝑓 (𝑥) ⊕ 𝑎𝜖 󳨐⇒ (II)
𝑓 (𝑥) ⊖ 𝑎𝜖2 ≺

𝑓 (2𝑥)
2 ≺ 𝑓 (𝑥) ⊕ 𝑎𝜖2 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (2𝑥)
2 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

𝜖
2 .

(III)

(2) Putting 𝑥 = 2𝑥 in (II),

2𝑓 (2𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (4𝑥) ≺ 2𝑓 (2𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑓 (2𝑥)
2 ⊖ 𝑎𝜖4 ≺

𝑓 (4𝑥)
4 ≺ 𝑓 (2𝑥)2 ⊕ 𝑎𝜖4 󳨐⇒

𝑓 (𝑥) ⊖ 𝑎𝜖2 ⊖
𝑎𝜖4 ≺

𝑓 (4𝑥)
4

≺ 𝑓 (𝑥) ⊕ 𝑎𝜖2 ⊕
𝑎𝜖4 (∵ by (III)) 󳨐⇒

𝑓 (𝑥) ⊖ 34𝑎𝜖 ≺
𝑓 (4𝑥)
4 ≺ 𝑓 (𝑥) ⊕ 34𝑎𝜖 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (4𝑥)
4 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

3
4𝜖.

(IV)

(3) Putting 𝑥 = 4𝑥 in (II),
2𝑓 (4𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (8𝑥) ≺ 2𝑓 (4𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑓 (4𝑥)
4 ⊖ 𝑎𝜖8 ≺

𝑓 (8𝑥)
8 ≺ 𝑓 (4𝑥)4 ⊕ 𝑎𝜖8 󳨐⇒

𝑓 (𝑥) ⊖ 𝑎𝜖2 ⊖
𝑎𝜖4 ⊖

𝑎𝜖8 ≺
𝑓 (8𝑥)
8

≺ 𝑓 (𝑥) ⊕ 𝑎𝜖2 ⊕
𝑎𝜖4

⊕ 𝑎𝜖8 (∵ by (IV)) 󳨐⇒
𝑓 (𝑥) ⊖ 78𝑎𝜖 ≺

𝑓 (8𝑥)
8 ≺ 𝑓 (𝑥) ⊕ 78𝑎𝜖 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (8𝑥)
8 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

7
8𝜖.

(24)

Putting recursively 𝑥 = (2𝑛−1)𝑥 in (II), we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (2𝑛𝑥)
2𝑛 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

2𝑛 − 1
2𝑛 𝜖 < 𝜖, (V)

where 𝑛 ≥ 1.
Define 𝑄 : 𝑇 → 𝑇 by

𝑄 (𝑥) = lim
𝑛→∞

𝑓 (2𝑛𝑥)
2𝑛 (25)

for all 𝑥 ∈ 𝑇; that is, lim𝑛→∞‖𝑓(2𝑛𝑥)/2𝑛 ⊖ 𝑄(𝑥)‖ = 0.
Now putting 𝑥 = 2𝑛𝑥 and 𝑦 = 2𝑛𝑦 in ‖𝑓(𝑥 ⊕ 𝑦) ⊖ 𝑓(𝑥) ⊖𝑓(𝑦)‖ < 𝜖, we have
󵄩󵄩󵄩󵄩𝑓 (2𝑛𝑥 ⊕ 2𝑛𝑦) ⊖ 𝑓 (2𝑛𝑥) ⊖ 𝑓 (2𝑛𝑦)󵄩󵄩󵄩󵄩 < 𝜖 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (2𝑛 (𝑥 ⊕ 𝑦))

2𝑛 ⊖ 𝑓 (2𝑛𝑥)2𝑛 ⊖ 𝑓 (2𝑛𝑦)2𝑛
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

𝜖
2𝑛 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 lim𝑛→∞
𝑓 (2𝑛 (𝑥 ⊕ 𝑦))

2𝑛 ⊖ lim
𝑛→∞

𝑓 (2𝑛𝑥)
2𝑛 ⊖ lim

𝑛→∞

𝑓 (2𝑛𝑦)
2𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< lim
𝑛→∞

𝜖
2𝑛 = 0.

(26)

Thus ‖𝑄(𝑥 ⊕ 𝑦) ⊖ 𝑄(𝑥) ⊖ 𝑄(𝑦)‖ = 0; that is, 𝑄(𝑥 ⊕ 𝑦) =𝑄(𝑥) ⊕ 𝑄(𝑦). Moreover, from (V),
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 lim𝑛→∞

𝑓 (2𝑛𝑥)
2𝑛 ⊖ lim

𝑛→∞
𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < lim

𝑛→∞
(2𝑛 − 12𝑛 ) 𝜖 = 𝜖. (27)

Thus we have ‖𝑄(𝑥) ⊖𝑓(𝑥)‖ < 𝜖.Therefore this means that𝑄
is an additive mapping such that ‖𝑄(𝑥) ⊖ 𝑓(𝑥)‖ < 𝜖.

To prove the uniqueness of the additive mapping 𝑄,
assume that there is another additive mapping 𝑄󸀠 : 𝑇 → 𝑇
such that

𝑄󸀠 (𝑥 ⊕ 𝑦) = 𝑄󸀠 (𝑥) ⊕ 𝑄󸀠 (𝑦) ,
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥) ⊖ 𝑄󸀠 (𝑥)󵄩󵄩󵄩󵄩󵄩 < 𝜖.

(28)



8 Advances in Mathematical Physics

· · ·

R(1, 1, 2)

f(16x)

f(16x)

16

R(1, 1, 5, 1, 6)

R(29, 1, 2)

29 crossings

Figure 7

From the fact 𝑄󸀠(2𝑛𝑥) = 2𝑛𝑄󸀠(𝑥), we have 𝑄󸀠(𝑥) =𝑄󸀠(2𝑛𝑥)/2𝑛. Since ‖𝑓(𝑥) ⊖ 𝑄󸀠(𝑥)‖ < 𝜖, we have that
𝑄󸀠 (𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (𝑥) ≺ 𝑄󸀠 (𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑄󸀠 (2𝑛𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (2𝑛𝑥) ≺ 𝑄󸀠 (2𝑛𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑄󸀠 (2𝑛𝑥)
2𝑛 ⊖ 𝑎𝜖2𝑛 ≺

𝑓 (2𝑛𝑥)
2𝑛 ≺ 𝑄󸀠 (2𝑛𝑥)2𝑛 ⊕ 𝑎𝜖2𝑛 󳨐⇒

𝑄󸀠 (𝑥) ⊖ 𝑎𝜖2𝑛 ≺
𝑓 (2𝑛𝑥)
2𝑛 ≺ 𝑄󸀠 (𝑥) ⊕ 𝑎𝜖2𝑛 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (2𝑛𝑥)
2𝑛 ⊖ 𝑄󸀠 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

𝜖
2𝑛 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 lim𝑛→∞
𝑓 (2𝑛𝑥)
2𝑛 ⊖ lim

𝑛→∞
𝑄󸀠 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < lim

𝑛→∞

𝜖
2𝑛 = 0,

(29)

where 𝜖 > 0 and 𝜙(𝑎𝜖) = 𝜖. Thus we have ‖𝑄(𝑥) ⊖ 𝑄󸀠(𝑥)‖ = 0;
that is, 𝑄(𝑥) = 𝑄󸀠(𝑥). This completes the proof.

For example, let 𝑓 : 𝑇 → 𝑇 be a mapping defined by𝑓(𝑥) = 𝑟1 ⋅ 𝑥 ⊕ 𝑟2, where 𝑟1, 𝑟2 ∈ 𝑅, 𝑥 ∈ 𝑇. In fact, 𝑟2 means𝑟2 ⋅𝑅(1).Then𝑓 is not additive mapping. However amapping𝑓 : 𝑇 → 𝑇 defined by𝑓(𝑥) = 𝑟⋅𝑥, 𝑟 ∈ 𝑅 and𝑥 ∈ 𝑇 is additive.
In tangle space 𝑇, let 𝑥 = 𝑅(1, 1, 2), 𝑓(𝑥) = 𝑥 ⊕ 3, and 𝑛 = 4;
then 𝑓(16𝑥) = 𝑅(29, 1, 2) and 𝑓(16𝑥)/16 = 𝑅(1, 1, 5, 1, 6),
where 16𝑥 = 𝑅(26, 1, 2). See Figure 7.

Generally, for each 𝑛, the real tangles are as the following:
𝑓 (2𝑛𝑥)
2𝑛 = 𝑅(14 + ∑𝑛𝑘=1 52𝑘−12𝑛3 ) (30)

and so the additive mapping 𝑄(𝑥) is real tangle as the
following:

𝑄 (𝑥) = lim
𝑛→∞

𝑅(14 + ∑𝑛𝑘=1 52𝑘−12𝑛3 ) . (31)

3.2. Tangle Space and Rational Knot or Link. Suppose that𝑇󸀠 ⊂ 𝑇 is the set of rational tangles. Given 𝑡 ∈ 𝑇󸀠, the
numerator closure 𝑁(𝑡) is formed by connecting the NW
and NE endpoints and the SW and SE endpoints, and the
denominator closure 𝐷(𝑡) is formed by connecting the NW
and SW endpoints and connecting the NE and SE endpoints.
We note that two operations𝑁(𝑡) and𝐷(𝑡) by connecting the
endpoints of 𝑡 produce knots or 2-component links, called
rational knot or link if 𝑡 is a rational tangle, and that every
2-bridge knot is a rational knot because it can be obtained as
the numerator or denominator closure of a rational tangle.
See Figure 8.

Let 𝑇󸀠 ⊂ 𝑇 be the set of rational tangles and 𝐾 the
set of rational knots or links. Then for given 𝑡 ∈ 𝑇󸀠, it
allows defining a function 𝑁 : 𝑇󸀠 → 𝐾 in order that 𝑁(𝑡)
is the numerator closure. The following theorem discusses
equivalence of rational knots or links obtained by taking the
numerator closure of rational tangles. We call this theorem
the tangle classification theorem

Theorem 16 (see [16]). Let 𝑅(𝑝/𝑞) and 𝑅(𝑝󸀠/𝑞󸀠) be the ratio-
nal tangles with reduced fractions 𝑝/𝑞 and 𝑝󸀠/𝑞󸀠, respectively.
Then𝑁(𝑅(𝑝/𝑞)) and𝑁(𝑅(𝑝󸀠/𝑞󸀠)) are topologically equivalent
if and only if 𝑝 = 𝑝󸀠and 𝑞± ≡ 𝑞󸀠mod𝑝.

For example, 𝑁(𝑅(0, 3, 2)) = 𝑁(𝑅(2/7)) = 𝑁(𝑅(2/1)) =𝑁(𝑅(2)) because 7 ≡ 1 mod 2.
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Figure 8: The numerator closure and denominator closure of tangle.

Corollary 17. If two rational tangles are isotopic, then their
each numerator’s closures are topological equivalent.

Proof. Let 𝑅(𝑝/𝑞) and 𝑅(𝑝󸀠/𝑞󸀠) be the rational tangles with
reduced fractions 𝑝/𝑞 and 𝑝󸀠/𝑞󸀠, respectively. Then 𝑝 = 𝑝󸀠
and 𝑞 = 𝑞󸀠 because 𝑅(𝑝/𝑞) and 𝑅(𝑝󸀠/𝑞󸀠) are isotopic.

Thus, by Theorem 16, 𝑁(𝑅(𝑝/𝑞)) and 𝑁(𝑅(𝑝󸀠/𝑞󸀠)) are
topological equivalent.

However there is a counterexample for the converse of
Corollary 17 as follows.

Example 18. Let 𝑅(1, 2, 2) and 𝑅(2, 3) be two rational tangles
with fractions 7/5 and 7/3, respectively. By Theorem 16,𝑁(𝑅(7/5)) and𝑁(𝑅(7/3)) are topological equivalent, but two
tangles 𝑅(7/5) and 𝑅(7/3) are not isotopic.

Define the numerator closure of the sum of two rational
tangles as the following:

𝑁(𝑅(𝑦1𝑥1) ⊕ 𝑅(
𝑦2𝑥2)) = 𝑁(𝑅(

𝑥2𝑦1 + 𝑥1𝑦2𝑥1𝑥2 )) , (32)

where gcd(𝑥1, 𝑦1) = gcd(𝑥2, 𝑦2) = 1. Note that the rational
knot or link

𝑁(𝑅(𝑥2𝑦1 + 𝑥1𝑦2𝑥1𝑥2 )) (33)

is denoted by 𝑏(𝑥2𝑦1+𝑥1𝑦2, 𝑥1𝑥2), called the 2-bridge knot or
link, and that 𝑏(𝑥2𝑦1 + 𝑥1𝑦2, 𝑥1𝑥2) is to be the 2-bridge knot
if 𝑥2𝑦1 + 𝑥1𝑦2 is odd number and the 2-bridge link if not.

A tangle equation is an equation of the form𝑁(𝐴 ⊕ 𝐵) =𝐾, where 𝐴, 𝐵 ∈ 𝑇󸀠 and 𝐾 ∈ 𝐾. Solving equations of this
type will be useful in the tangle model and gaining a better
understanding of certain enzyme mechanisms [15].

Example 19. Considering rational tangles 𝑅(2) and 𝑅(23/17),
then𝑅(2)⊕𝑅(23/17) is the rational tangle𝑅(3, 2, 1, 5) because
of 𝑅(23/17) = 𝑅(1, 2, 1, 5). Thus a tangle equation 𝑁(𝑅(2) ⊕𝑅(23/17)) = 𝑁(𝑅(3, 2, 1, 5)) is representing the 2-bridge
knot 𝑏(57, 17) from the computation of the numerator closure
above.

If one of the tangles in the equation is unknown and the
other tangle and the knot 𝐾 are known, then there is one
tangle as the solution of equation, but it is not unique. In fact,
let 𝐴 be known rational tangle and 𝐾 rational knot or link.
Then there are two different rational tangles as the solution
of the equation 𝑁(𝑋 ⊕ 𝐴) = 𝐾 which is the topological
equivalent under numerator operation inTheorem 16.

Example 20. Let 𝐴 = 𝑅(1/3), 2-bridge knot 𝐾 = 𝑏(5, 2)
known, and 𝑋 = 𝑅(𝑥) unknown. Then 𝑋 = 𝑅(13/6) is a
solution of the equation𝑁(𝑋 ⊕ 𝐴) = 𝐾. However 𝑏(5, 2) and𝑏(5, 3) are topological equivalent fromTheorem 16.Thus𝑋 =𝑅(4/3) is the other solution of the equation𝑁(𝑋 ⊕ 𝐴) = 𝐾 if𝐾 = 𝑏(5, 3).

FromTheorem 16 and Corollary 17, we obtain the follow-
ing corollary by the method as in Example 20.

Corollary 21. Let𝐴 and𝐾 be known rational tangle in𝑇󸀠 and
rational knot or link in 𝐾, respectively. Then there exist two
solutions𝑋 ∈ 𝑇󸀠 of the equation𝑁(𝑋 ⊕ 𝐴) = 𝐾.
3.3. Tangle Space and DNA. Suppose that tangles 𝑆, 𝑇,
and 𝑅 below are rational. As discussed in the introduction
of Section 1, DNA must be topologically manipulated by
enzymes in order for vital life processes to occur. The
actions of some enzymes can be described as site-specific
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Figure 9: Example of a site-specific recombination.

recombination. Site-specific recombination is a process by
which a piece of DNA is moved to another position on the
molecule or to import a foreign piece of a DNA molecule
into it. Recombination is used for gene rearrangement, gene
regulation, copy number control, and gene therapy. This
process is mediated by an enzyme called a recombinase. A
small segment of the genetic sequence of the DNA that is
recognized by the recombinase is called a recombination site
or a specific site. See Figure 9. Note that the tangle in Figure 9
is where the enzyme acts.

The DNA molecule and the enzyme itself are called
the synaptic complexes. Before recombination the DNA
molecule is called the substract, that is, it is unchanged by
the enzyme. After recombination the DNAmolecule is called
the product. In Figure 9, (a) is the substract and (b) is the
product.This is the result which replaces a tangle (or enzyme)
with a new tangle, called the recombination tangle. Thus the
following tangle equations hold:

𝑁(𝑆 ⊕ 𝑇) = the substract,
𝑁 (𝑆 ⊕ 𝑅) = the product, (34)

where the product is a result that the enzyme replaces a
tangle 𝑇 with a tangle 𝑅. Generally it will repeat the tangle
replacement a number of times. If it is possible to observe
the substract and the product; then the ideal situation would
be to determinate tangles 𝑆, 𝑇, and 𝑅 from the tangle
equations. However it is a hard question in general to solve
the tangle equations because there are only two equations
but three unknowns. As above, the tangle model has been
used to mathematically show the enzyme mechanism of
recombination. See [17] for similar examples.

Example 22. Let the knot types of the substrate and the
product yielding equations in the recombination variables 𝑆,𝑇, and 𝑅 be as follows:

𝑁(𝑆 ⊕ 𝑇) = the unknot 𝑏 (1, 1) ,
𝑁 (𝑆 ⊕ 𝑅) = the trefoil knot 𝑏 (3, 1) . (35)

Then solutions of the equations are either (𝑆, 𝑇, 𝑅) =(𝑅(−1/2), 𝑅(0), 𝑅(2)) or (𝑆, 𝑇, 𝑅) = (𝑅(1/2), 𝑅(0), 𝑅(−2)).

In our study of tangle space with operator ⊕, it is still
unknown how to construct a link or knot associated with a
given real tangle and analyze DNAmolecules by real tangles.
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