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A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm
is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube
optimization (HO) algorithm.TheHO algorithm comprises the initialization and evaluation process, displacement-shrink process,
and searching space process.The initialization and evaluation process initializes initial solution and evaluates the solutions in given
hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and
the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these
processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions.
The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions.
The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for
optimization of both low and high dimensional functions.

1. Introduction

One of the basic problems of numerical optimization tech-
niques is the computing globally optimal solutions of high-
dimensional functions. The aim of optimization is the find-
ing of optimum values of the objective function through
learning the parameters of the function given in the defined
domains. The learning algorithms are basically divided into
two categories. The algorithms based on derivatives of the
cost functions (or objective functions) are called derivative
based learning algorithms, and the algorithms that do not
use the derivatives of the cost functions are called derivative
free learning. Recently various learning techniques have been
applied to obtain the solution of different optimization prob-
lems. However, derivative based learning techniques do not
fare well for finding global optimal solutions of the nonlinear
problems having many local optimal solutions. Derivative
free learning techniques and evolutionary computing are
effective optimization techniques that can be used to solve

“local minima” problem and find global optimum of the
problem.

In the literatures, various learning algorithms have been
applied to find global optimal solution. Monte-Carlo method
[1], Vegas algorithm [2], and Cat algorithm [3] are extensively
used for solution of different optimization problems. Some
of more used algorithms are genetic algorithms (GA) [4,
5], evolution strategies [6], differential evolution (DE) [7],
particle swarm optimization [8], and other nonevolutionary
methods such as simulated annealing [9], tabu search [10],
ant-colony optimization (ACO) [11], and artificial bee colony
algorithm [12].The integration of themethodswith computa-
tional intelligence techniques is widely used to solve different
practical problems of engineering and science [13–18].

Recently number of researches has been done on global
optimization, but there are still not many powerful tech-
niques for optimization of dense high-dimensional problems.
This is because the global optimization of high-dimensional
functions is computationally expensive, cost involved. These
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problems are characterized by many parameters, and many
iterations and arithmetic operations are needed for evalua-
tions of these functions. In practical applications, evaluation
of the function is often very expensive and large number of
function evaluations might not be very feasible [19].

Some learning algorithms have been designed for global
optimization of high-dimensional functions. Reference [20]
uses new variant of differential evolution (DE), named
DECC-I and DECC-II for high-dimensional optimization
(up to 1000 dimensions). The algorithms use several novel
strategies that focus on problem decomposition and sub-
components cooperation. An improved differential evolution
algorithm [21], self-adaptive differential evaluation algorithm
[22], differential ant-stigmergy [23], particle swarm opti-
mization [24, 25], modified multiscale particle swarm opti-
mization [26], surrogate-assisted evolutionary programming
[27], and group search optimizer (GSO) inspired by animal
behavior [28] are designed and applied for global optimiza-
tion of high-dimensional functions. As shown the designed
algorithms are basically modification, improvement, and
adaptation of existing evolutionary algorithms in particularly
DE, PSO, and GA. Using these methods the researchers try
to obtain reasonable results for optimization functions. In
spite of some success, these techniques are still not verymuch
suitable for high-dimensional global optimization problems
[19]. The proposed algorithms are more suitable for low-
dimensional problems.The dimension that was used in above
research papers was maximum 100 and some of them 1000.
In this paper, the novel method that solves high-dimensional
global optimization problems having sizes of 1000, 5000,
and 10000 is proposed. The proposed novel method is called
hypercube optimization (HO) algorithm. The HO algorithm
is based on designing hypercube, selecting the best elements
and applied them to multivariate systems for optimization
of the objective function. This algorithm approaches optimal
points using the best elements determined during learning.

The paper is organized as follows. Section 2 presents the
hypercube optimization algorithm proposed. The processes
used in the algorithm are described. Section 3 describes the
test functions used in simulations. Section 4 includes appli-
cation of the algorithm on test functions. Section 5 presents
comparative results of HO algarithm with some existing
methods. Finally, in Section 6 conclusions are presented.

2. Hypercube Optimization Algorithm

The HO algorithm is an evolutionary algorithm that takes
inspiration from the behaviour of a dove discovering new
areas for food in natural life. In such behaviour a flying dove
searches for new locations of food. The dove flies down in a
unique way and marks the area that may have food.The dove
flies up again and it chooses the previously marked areas and
changes and shrinks the sizes of the search area. In a search
process, the dove is not limited to a single area.The dove picks
new search area according to the density of food (domain for
the objective function). The dove stops flying and keeps in
mind the area which has food. After eating the food, the dove
is looking for a new search area.The dove jumps or flies down
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Figure 1: Flowchart of the hypercube optimization algorithm. Here
A is initialization and evaluation, B is displacement-shrink, and C is
searching space processes.

another area branch to find a new area. The dove does not fly
to another area when it gets to an area that has the most food.

In the paper, the hypercube is used to describe the
search area. Inside the search area, the value of an objective
function is evaluated according to the quantity and density
of food. Next, the functional distances between each of two
solutions are determined.This distance helps the algorithm to
determine the next new search area. This is performed using
the displacement-shrink process.

The hypercube optimization algorithm is a derivative-
free learning method based on evaluation of set of points
randomly distributed in an 𝑚-dimensional hypercube. After
evaluation the point shifts and contracts according to the
average between previous best points in order to determine
new best points inside the hypercube. The contraction is
greater when the movement is smaller to accelerate the
convergence. This operation will be reported as an optimal
solution at the end of the iterations.

TheHO algorithm is an intense stochastic search method
based on hypercube (HC) evaluation. The general structure
regarding the visualization of the flowchart of the hypercube
optimization algorithm is illustrated in Figure 1. As shown
from the figure, the HO algorithm includes three basic
processes.

Step A (initialization and evaluation process).The algorithm
begins with the generation of a hypercube and initializa-
tion of matrices and variables within the hypercube. Here
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the hypercube is represented by the center and size (radii).
The new points with uniform distribution are randomly
generated within the hypercube. It proceeds to the through
main loop, by which convergence to the global minimum is
sought, and it finishes when any of the termination criteria is
fulfilled.

Step B (displacement-shrink process). The displacement-
shrink process is deployed to find the new best point. This
is implemented by computing the average of the current best
point and the previous best one. The average between both
values is taken as a conservative measure to avoid excessive
fluctuations in the search.

Step C (searching space process).The searching space process
controls the movements of 𝑋 solutions according to the
defined interval (commonly [0, 0.1]). The searching space
process initializes a new hypercube and repeats the whole
process.

The initialization and evaluation process, displacement-
shrink process, and searching space process are repeated in
each learning iteration.While specific termination conditions
are satisfied the whole processes are continued to execute.

At each iteration, the newly generated hypercube changes
and shrinks its sizes until the optimum points are located.
Unlike other methods, like particle swarm optimization, the
points in the hypercube optimization algorithm do not move
according to a specific rule nor does themethod record them,
except for the best points. This permits a rapid selection of a
new best zone and an intense search in it.Thus, the hypercube
optimization algorithmdoes not perform any local search but
rather it is always global. This behavior allows the algorithm
to move rapidly to globally best points, as it does not waste
time in local searches.

Following in the next subsections the descriptions of each
step are presented in detail.

2.1. Hypotheses and Representation of Solution. As in all real-
valued single-objective unconstrained optimization algo-
rithms, we try to find theminimum (or equivalently themax-
imum) of a scalar objective function 𝑓(𝑥) and represent the
free parameters as a vector or point 𝑋 = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚),
where 𝑚 is the dimension of the problem. Therefore, 𝑓 is a
mappingR𝑚 → R. We assume the following hypotheses.

(i) 𝑓 is available only as a black box; that is, we have
no knowledge or possibility of control of its interior
functions. We access 𝑓 only via input-output.

(ii) 𝑓 has a continuous domain inside the bounds; that is,
every point inside the bounds has a mapping by 𝑓.

(iii) 𝑓 is well-behaved in the domain, at least numeri-
cally; that is, it is continuous and presents certain
smoothness. This constrains overly noisy functions,
where there is no spatial correlation. But implicit is
also the assumption of some noisiness, whereby finite
differences in the neighborhood of a point are not
similar to the derivatives of the noiseless function.

Table 1: Initial points.

Symbol Definition
𝑚 Dimension of hypercube
𝑅 radii of HC
𝑋𝑐 Center of 1st HC (zone)
𝑋 = 𝑋0 Take initial point as 1st HC

LB, UB Lower and upper bounds of first HC
(zone)

𝑁 Number of points in each HC
𝑋 𝑁 × 𝑚 points, solutions
𝐹 𝑁 × 1 points, values of functions
𝐹best Best value of objective function
Create matrices:

𝑋(𝑁 ×𝑚)
𝐹(𝑁 × 1)
𝐹best: best value of objective function

(iv) The number of searching points (𝑁) is enough for
correctly sampling𝑓’s domain (related to the previous
point). Therefore, 𝑁 is directly related to the dimen-
sion of the problem (𝑚) and 𝑓’s smoothness.

2.2. Initialization and Evaluation Process. Initialization and
evaluation is the first block of hypercube optimization algo-
rithm. The starting conditions are

(1) initial (and global) boundaries for all points: these
boundaries are the sides of the hypercube;

(2) initialization of solutions inside the hypercube and
an initial random choice of a best point 𝑋0 (if not
available, the central point of the initial hypercube
will be taken) in the given set.

Initial points of the hypercube optimization algorithm
are presented in Table 1. At the starting stage the data radii
and centre of the HC are generated randomly and these
parameters are used to initialize the first HC.Then uniformly
distributed 𝑁 searching points are generated inside the
hypercube. Using these points, the values of the objective
function are determined. Here the concept is to have an
approximate knowledge about the location of the lowest val-
ues of 𝑓. This initial sampling has to be sufficiently dense so
as to probe all the possible zones of higher and lower values;
otherwise, the algorithm can take the zone sought (global
optimum) as a simply better one (local optimum). As pointed
out above, this density (and hence the number of points 𝑁)
is a function of the dimension 𝑚 and the smoothness of the
function. The problems with higher dimension will require
higher𝑁.

The hypercube optimization algorithm begins with the
initialization of matrices and variables; it proceeds to the
main loop, by which convergence to the global minimum is
sought, and it finishes when any of the termination criteria
is fulfilled. The details regarding the visualization of the
flowchart initialization and evaluation of the HO algorithm
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Figure 2: Flowchart of the initialization and evaluation process.
Here B is displacement-shrink process and C is searching space
process.

are illustrated in Figure 2. After the start block, initial point
𝑋0 is generated as the centre of the first hypercube (HC).
The initial value of the radii of the first HC is determined
according to the change interval of the test (objective)
functions. Next using the value of centre 𝑋0 the dimension
of the hypercube is derived according to formula (1). After
creating the hypercube, the 𝑋 matrix is generated within
this hypercube. The size of 𝑋 is defined by (𝑁 × 𝑚). 𝑁 is
a number of generated points. We need to comment that in
future iterations (𝑖 = 2, 3, . . .) the hypercube is created using
the values of𝑋matrix.

We have illustrated this process as follows with initial
points to create them with default values.

(1) Dimension of hypercube is

𝑚 = length (𝑋0) . (1)

(2) Row vectors with lower and upper boundaries of HC
are

LB = min (𝑋 bounds) ,

UB = max (𝑋 bounds) .
(2)

(3) Dimensions of𝑚-dimensional HC’s are

𝐷 = UB − LB. (3)

(4) Central values are

𝑋𝑐 =
(LB + UB)

2

. (4)

(5) Vector with radii of HC is

𝑅0 =
𝐷

2

,

𝑅 = 𝑅0.

(5)

According to 𝑋matrix, the row vector with lower and upper
boundaries of the hypercube (2) is determined. Using these
boundaries, obtained from the first hypercube (zone), the
radii (4) and the centre (5) points of the next hypercube
are determined. 𝑋 matrix, defined as 𝑁 searching points,
is applied to determine the values of the test function, that
is, 𝐹(𝑓(𝑥)) matrix, as pointed out above in Table 1. In the
next step using the HC, the new uniformly random points
are derived. The number of points is defined according to
the dimension of the HC. These points form the new 𝑋new
matrix. This matrix is used to evaluate the test functions. As
a result of evaluation, the best (minimum) value of function
𝐹best and the corresponding 𝑋best points are determined. By
“best” we mean the vector that corresponds to the best fitness
(e.g., the lowest objective function value for a minimization
problem) in the entire population at 𝑖th iteration. The 𝑋best
point is improved (updated) using local search; that is,𝑋new

best =
𝑋best + 𝜌Δ𝐹. Here 0 ≤ 𝜌 ≤ 1, 𝐹 is the objective function.
The improvement is continued until Δ𝐹 becomes acceptably
small value less than a preset value (tol𝐹). The derived best
points are used to determine the centre and the radii of the
next hypercube. This operation is realized by calculating the
mean of the center of the last HC (𝑋last centre) and the previous
best (𝑋best) points; that is, (𝑋last centre + 𝑋best)/2. This process
is called “displacement.” As shown the created second HC is
derived from the previous HC and the sizes of the second
HC will be less than the sizes of the previous one. In future
operations, the last-secondHCwill be used to create the next-
third hypercube.

In summary, we can unify the evaluation and learning
processes as follows. When the new hypercube is initialized,
the function is evaluated at new points, randomly (with
uniform distribution) chosen from inside of the hypercube.
The new minimum is determined and compared with the
last minimum. If the new minimum is worse (greater) than
the previous one, then a new iteration will be started. If
the same value is repeated several consecutive times then



Computational Intelligence and Neuroscience 5

the algorithm ends, and the best minimum is considered as
the global minimum.

After the above given initialization and evaluation pro-
cesses the implementation of displacement-shrink process
and searching space process is performed.The whole process
is repeated until specific termination conditions are satisfied.

2.3. Displacement and Shrink Process. The center of the next
hypercube will be just the average between the current best
point and the previous one; that is, (𝑋last centre + 𝑋best)/2.
The average between both values is taken as a conservative
measure to avoid excessive fluctuations in the search and
to prevent moving suddenly to a neighboring zone where
a lower value was found, but which perhaps is just a local
minimum. The radii of the new hypercube are determined
as 𝑅new = 𝑅old ∗ 𝑆. Here 𝑆 is a factor of convergence which is
defined in the next section (see (10)).

In addition to moving, the hypercube has to contract
in order to refine the search and to converge to a unique
and certain—assumed global—minimum.This contraction is
controlled by the movement of the average of best values. For
large displacements, there is no contraction, as we interpret
that the global minimum is still very uncertain. For small or
null displacements, the hypercube will shrink, as we interpret
this to mean that we are closer to the global minimum: the
contraction is greater for smaller movements. This derives
the fast convergence of the method, while it prohibits getting
stuck at undesired (local) minima.

The details regarding the visualization of the flowchart
of the displacement-shrink process of the hypercube opti-
mization algorithm is illustrated in Figure 3. At first, the
minimum of value of 𝐹best is compared with the new value
of 𝐹mean corresponding to the point mean = (𝑋last centre +
𝑋best)/2 determined as pointed out in the previous section. If
𝐹mean value is less than 𝐹best value then, in given iteration, 𝑋
displacement (or𝑋movement) is computed and normalized
twice: first each element of𝑋 is divided by the corresponding
initial range (and thus the displacement is transformed into a
unity-sided hypercube) and then that quantity is normalized
again, dividing it by the diagonal of hypercube √𝑚. These
operations are illustrated as follows:

(1) normalized𝑋𝑛 (previous𝑋 for minimum):

𝑋𝑛 =
(𝑋 − 𝑋𝑐)

𝐷

, (6)

(2) normalized𝑋min (current𝑋 for minimum):

𝑋min 𝑛 =
(𝑋min − 𝑋𝑐)

𝐷

, (7)

(3) normalized distance (should be bounded by 0 and
sqrt of𝑚):

𝑑𝑛 =

sum ((𝑋𝑛 − 𝑋min 𝑛)
2
)

0.5

𝐷

,
(8)
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Figure 3: Flowchart of the displacement-shrink process. Here A
is initialization and evaluation process and C is searching space
process.

(4) renormalized distance (should be bounded by 0–0.1):

𝑑𝑛𝑛 =
𝑑𝑛

√𝑚

. (9)

In the result of these operations, 𝑋𝑛 points are shrunk
(become smaller) to the centre point 𝑋𝑐. These points are
used to evaluate the test functions again. In the next blocks
the hypercube continues moving and shrinking until one of
the following conditions are not met.
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(i) The change in consecutive 𝐹best values is smaller than
a preset value (tol𝐹), for a preset consecutive number
of times. This is also interpreted as convergence in 𝐹

space.

(ii) The same or worse 𝐹 value is found consecutively
a preset number of times. This is interpreted as
nonconvergence in 𝐹 space.

(iii) The change in best 𝑋 value (renormalized distance)
is smaller than a preset value (tol𝑋), for a preset
consecutive number of times. This is interpreted
as convergence in R𝑚 space. The whole process is
repeated until specific termination conditions are
satisfied.

(iv) The maximum number of iterations is reached: of
course, in this case convergence is not guaranteed,
as possibly lower values could be found with more
iteration.

Each condition is tested for thirty consecutive times. If
these conditions are not satisfied then the searching space
process will be initialized.

We need to notice that the movement of 𝑋 will not be
performed if the 𝐹mean value will be larger than 𝐹best value. In
such case, the searching space process will be initialized.

2.4. Searching Space Process. The searching space process
initializes new center and size (radii) in order to create new
hypercube. The objective function is evaluated at new points
which are randomly chosen from the hypercube and having
uniform distribution. The searching space process controls
the movements of 𝑋 according to the interval defined, in
particularly for 𝑋movements < 0.1. The value of 𝑋movement
is determined by 𝑑𝑛𝑛. The flowchart of the searching space
process of the HO algorithm is illustrated in Figure 4.

If the movement of𝑋 satisfies the condition then a factor
of convergence 𝑆 is calculated and updated at each iteration:

𝑆 = 1 − 0.2𝑒
−3𝑑
𝑛𝑛

, (10)

where 𝑑𝑛𝑛 is computed by (9) and describes the normalized
distance moved by the average of last two best values of 𝑋.
Next the update of solutionswill be performed.The size (in all
the dimensions) of the hypercube is reduced by multiplying
by this factor. Thus, the hypercube reduces or maintains
its size for nontrivial movements and shrinks otherwise.
The whole process is repeated until specific termination
conditions are satisfied.

3. Test Functions

The proposed hypercube optimization algorithm is tested on
five continues test functions which are widely used in the lit-
eratures: Ackley path function, Rastrigin function, Rosenbrock
function, Griewank function, and Sphere function [19–23].
The test functions are more applicable for the experimental
evaluations ofmethods used in global optimization problems.
The designed algorithm is implemented in MATLAB.
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3.1. Ackley Path Function. Ackley path function is continuous,
scalable, and nonseparable and is an extensively multimodal
test function.

This test function is formulated as follows:

𝑓1 (𝑥) = −20 exp(−0.2√
1

𝐷

𝐷

∑

𝑖=1

𝑥𝑖
2
)

− exp( 1

𝐷

𝐷

∑

𝑖=1

cos (2𝜋𝑥𝑖)) + 20 + 𝑒,

(11)

where𝐷 is a number of dimensions and 𝑥𝑖 = (𝑥1, 𝑥2, . . . , 𝑥𝐷)

is𝐷 dimensional row vector.The test area is usually evaluated
in the interval of −32 ≤ 𝑥𝑖 ≤ 32, 𝑖 = (1, . . . , 𝐷). Global
minimum 𝑓(𝑥) = 0 is obtainable for 𝑥𝑖 = (0, 0).

3.2. Rastrigin Function. Rastrigin function is continuous,
scalable, and separable and is highly multimodal global
optimization function.

This test function is formulated as follows:

𝑓2 (𝑥) = 10𝐷 +

𝐷

∑

𝑖=1

(𝑥𝑖
2
− 10 cos (2𝜋𝑥𝑖)) , (12)

where𝐷 is a number of dimensions and 𝑥𝑖 = (𝑥1, 𝑥2, . . . , 𝑥𝐷)

is𝐷 dimensional row vector.The test area is usually evaluated
in the interval of −5.12 ≤ 𝑥𝑖 ≤ 5.12, 𝑖 = (1, . . . , 𝐷). Global
minimum 𝑓(𝑥) = 0 is obtainable for 𝑥𝑖 = (0, 0).
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3.3. Rosenbrock Valley Function. Rosenbrock’s valley function
is known as the second function ofDe Jong.This test function is
continuous, scalable, naturally nonseparable, nonconvex, and
unimodal.

This test function is formulated as follows:

𝑓3 (𝑥) =

𝐷−1

∑

𝑖=1

[100 (𝑥𝑖+1 − (𝑥𝑖)
2
)

2
+ (𝑥𝑖 − 1)

2
] , (13)

where D ≥ 2 is a number of dimensions and 𝑥𝑖 =

(𝑥1, 𝑥2, . . . , 𝑥𝐷) is 𝐷 dimensional row vector. The test area
is usually evaluated in the interval of −2.048 ≤ 𝑥𝑖 ≤ 2.048,
𝑖 = (1, . . . , 𝐷). Global minimum 𝑓(𝑥) = 0 is obtainable for
𝑥𝑖 = (1, 1).

3.4. Sphere Function. The simplest benchmark function is
spheremodelwhich is also calledDe Jong’s function 1.This test
model is continuous, unimodal, and appearance of convex.

This test function is formulated as follows:

𝑓4 (𝑥) =

𝐷

∑

𝑖=1

𝑥𝑖
2
, (14)

where𝐷 is a number of dimensions and 𝑥𝑖 = (𝑥1, 𝑥2, . . . , 𝑥𝐷)

is a dimensional row vector. The test area is usually evaluated
in the interval of −5.12 ≤ 𝑥𝑖 ≤ 5.12, 𝑖 = (1, . . . , 𝐷). Global
minimum 𝑓(𝑥) = 0 is obtainable for 𝑥𝑖 = (0, 0).

3.5. Griewank Function. Griewank function is continuous,
scalable, nonseparable, and multimodal test function.

This test function is formulated as follows:

𝑓5 (𝑥) =
1

4000

𝐷

∑

𝑖=1

𝑥𝑖
2
−

𝐷

∏

𝑖=1

cos(
𝑥𝑖

√𝑖

) + 1, (15)

where𝐷 is a number of dimensions and 𝑥𝑖 = (𝑥1, 𝑥2, . . . , 𝑥𝐷)

is a dimensional row vector. The test area is usually evaluated
in the interval of −600 ≤ 𝑥𝑖 ≤ 600, 𝑖 = (1, . . . , 𝐷). Global
minimum 𝑓(𝑥) = 0 is obtainable for 𝑥𝑖 = (0, 0).

4. Simulation Studies

The performance of the hypercube optimization algorithm
is tested on the five benchmark functions given above. The
benchmark functions 𝑓1 ÷ 𝑓5 are evaluated by considering
the cases in which the problem dimensions are set as 1000,
5000, or even 10000 dimensions. At first the dimension is set
as 1000. The population size is also set to 100, 1000, or even
10000. We have summarized the best average fitness (e.g., the
lowest objective function value) and the average number of
the test function evaluations over successful 30 runs. For each
evaluation, the learning of the algorithm is continued 5000
iterations. The hypercube optimization algorithm has global
minimum that was obtained with much well convergence
process for these test functions.

No optimization algorithm guarantees convergence for
any function, but it is a good practice to test theHOalgorithm
for several benchmark functions and tune the parameters.
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Figure 5: The convergence graphic for the Ackley function with
dimension of 5000 and population of 100.

Therefore, we have tested the hypercube optimization
algorithmon a set of benchmark functions, and the algorithm
has yielded improved results, sometimes reaching the better
solution faster than well-established algorithms. The details
regarding the visualization of the test function results are
given below.

In the next step, the test functions are evaluated for the
cases in which the problem dimensions of 𝑓1 ÷ 𝑓5 are set to
5000 or even 10000 dimensions. The population size is set
to 100. The convergence graphics have also been obtained
and averaged through evaluations over successful 30 runs.
The details of results regarding the visualization of the test
function are given as follows.

4.1. Ackley Path Function. The Ackley path function is an
extensively used multimodal test function. Figure 5 ilustrates
the convergence graphic of HO algorithm for 5000 dimen-
sions. The population size of the HO algorithm is almost
insensitive to the dimension of the problems. The minimum
of Ackley test function was obtained as 2.76𝑒 − 07.

Figure 6 depicts the convergence graphic of the HO algo-
rithm for the Ackley test function having 10000 dimensions.
The minimum value of the function was obtained as 1.16𝑒 −
06.

4.2. Rastrigin Function. The Rastrigin function is a typical
nonlinear multimodal function. This test function is a fairly
difficult problem for evolutinary algorithms due to the high
number of dimensions and large number of local minima.

Figure 7 depicts the convergence graphic of HO algo-
rithm for the Rastrigin test function having 5000 dimensions.
Theminimumwas obtained as 7.13𝑒 − 10. The HO algorithm
can find near-optimal solutions with much well convergence
with high dimension for this test function.
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Figure 6: The convergence graphic for the Ackley function with
dimension of 10000 and population of 100.
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Figure 7: The convergence graphic for the Rastrigin function with
dimension of 5000 and population of 100.

Figure 8. It depicts the convergence graphic for the test
function having 10000 dimensions. The minimum value of
function was obtained as 2.99𝑒 − 09.

4.3. Rosenbrock Function. TheRosenbrock function is a typical
naturally nonseparable, nonconvex, and unimodal. This test
function is also a fairly hard problem for evolutionary
algorithms.

Figure 9 depicts the convergence graphic for the Rosen-
brock test function having 5000 dimensions. The minimum
value of function was obtained as 1.15𝑒 − 08. The HO
algorithm can find optimal or near-optimal solutions with
muchwell convergence.This fact indicates thatHOalgorithm
is almost insensitive to the dimension of the problems.
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Figure 8: The convergence graphic for the Rastrigin function with
dimension of 10000 and population of 100.
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Figure 9: The convergence graphic for the Rosenbrock function
having dimension of 5000 and population of 100.

Figure 10 depicts the convergence graphic for the Rosen-
brock function having 10000 dimensions.Theminimumvalue
of function was obtained as 3.38𝑒 − 08.

4.4. Sphere Function. The Sphere function is a typical uni-
modal test function. Figure 11 depicts convergence graphic
of HO algorithm for the Sphere test function having 5000
dimensions. The minimum value of test function using HO
algorithm was obtained as 4.64𝑒 − 020.

In Figure 12, the convergence graphic of hypercube opti-
mization algorithm for the Sphere test function having 10000
dimensions is given. The minimum value was obtained as
2.40𝑒 − 016 with much well convergence. This test function
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Figure 10: The convergence graphic for the Rosenbrock function
having dimension of 10000 and population of 100.
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Figure 11: The convergence graphic for the Sphere function having
5000 dimensions and 100 populations.

is a fairly easy problem for finding the total optimum and in
the fast convergence.

4.5. Griewank Function. The Griewank function is also a
typical nonlinear multimodal function. This test function
is tested using many multiobjective evolutionary algorithms
[23].

Figure 13 depicts the convergence graphic for the
Griewank test function having 5000 dimensions. The
minimum value of function was obtained as 3.34𝑒 − 013.

In Figure 14, the minimum value of test function using
HO algorithm was obtained as 1.11𝑒 − 016 for 10000 dimen-
sions. The HO algorithm can find optimal or near-optimal
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Figure 12: The convergence graphic for the Sphere function having
10000 dimensions and 100 populations.

O
bj

ec
tiv

e f
un

ct
io

n

10
0

10
−5

10
−10

10
5

10
−15

10
10

0 1000 2000 3000 4000 5000 6000

Iterations

Griewank function

Figure 13: The convergence graphic for the Griewank function
having dimension of 5000 and population of 100.

solutions with much well convergence with high dimension
for this test function.

5. Comparison

The hypercube optimization algorithm has yielded in general
quite better results, sometimes reaching the better solution
faster than well-established algorithms. The usage of mul-
tiobjective evolutionary algorithms allows us to find global
optimal solutions and avoid local optimum problem.

The simulation results of HO algorithm that was obtained
with test functions with different dimensions and averaged
over 30 runs are given in Table 2. Using the table we can see
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Figure 14: The convergence graphic for the Griewank function
having dimension of 10000 and population of 100.

Table 2: Results of the mean best functions values averaged over 30
runs obtained by HO algorithm.

Function Population Dimension The best Iterations

𝑓1

100 1000𝑑 5.01𝑒 − 012 5000
1000 1000𝑑 2.46𝑒 − 013 5000
10000 1000𝑑 5.12𝑒 − 012 5000

𝑓2

100 1000𝑑 1.83𝑒 − 010 5000
1000 1000𝑑 4.54𝑒 − 011 5000
10000 1000𝑑 3.63𝑒 − 011 5000

𝑓3

100 1000𝑑 5.68𝑒 − 017 5000
1000 1000𝑑 8.16𝑒 − 017 5000
10000 1000𝑑 2.06𝑒 − 017 5000

𝑓4

100 1000𝑑 1.56𝑒 − 059 5000
1000 1000𝑑 5.86𝑒 − 059 5000
10000 1000𝑑 1.12𝑒 − 072 5000

𝑓5

100 1000𝑑 2.22𝑒 − 015 5000
1000 1000𝑑 6.32𝑒 − 015 5000
10000 1000𝑑 5.44𝑒 − 015 5000

that by increasing learning iterations from 1000 to 5000, the
performance of HOA is increased for functions𝑓1, 𝑓2, 𝑓3, and
𝑓4 as 2.46𝑒 − 013, 4.54𝑒 − 011, 8.16𝑒 − 017, 6.32𝑒 − 015, and
5.86𝑒 − 059 correspondingly.

This chapter presents comparison of the performances of
the hypercube optimization algorithm, with the two popular
global optimization approaches, namely, genetic algorithm
(GA) and particle swarm optimization (PSO) acting on
above given four benchmark functions, namely, Ackley path
function, Rastrigin function, Rosenbrock function, and Sphere
function. These test functions are evaluated by considering
the cases in which the problem dimensions of 𝑓1, 𝑓2, 𝑓3, and
𝑓4 are set as 𝐷 = 1000 for the 1000 iterations. The proposed
algorithm is tested by using above given test functions and
the main unknown parameters are determined.The values of

Table 3: Comparison of the results.

Function HO algorithm GA PSO Iterations
𝑓1 1.07𝑒 − 003 7.87 9.02 1000
𝑓2 6.07𝑒 − 004 1.07𝑒 + 04 1.40𝑒 + 04 1000
𝑓3 5.13𝑒 − 002 1.12𝑒 + 03 6.58𝑒 + 06 1000
𝑓4 1.16𝑒 − 008 3.45𝑒 + 03 5.50𝑒 + 03 1000

main parameters for GA and PSO used in this chapter can be
found in detail in [19, 29].

In Table 3, comparison of all the three algorithms for test
functions of 1000 dimensions is provided.

All the algorithms were tested for 1000 dimensions.
As evident from the results presented in Table 3, the HO
algorithm obtains better results (reflected in the average
fitness) than other techniques.The comparative results of the
algorithms demonstrate that the performance of HO algo-
rithm improves upon other well-known global optimization
techniques: GA and PSO.

6. Conclusion

This paper proposes the hypercube optimization algorithm
to solve multivariate systems for global optimization. The
designed algorithm is based on a hypercube evaluation
driven by convergence. The use of stochastic search method
approach allows it to speed up the learning of the system
and, respectively, to decrease training time of the system
with a faster convergence. The simulations have been carried
out using benchmarking functions, such as Ackley function,
Rastrigin function, Rosenbrock function, Sphere function, and
Griewank function. The computational results have demon-
strated that the performance of the system have considerably
increased in optimization problems for solving a set of global
optimization problems with large numbers of populations.
The population size of the HO algorithm is almost sensitive
to the dimension of the problems for these test functions.
The comparative results of HOA, GA, and PSO algorithms
demonstrate that the performance of HO algorithm is an
improvement upon other two global optimization tech-
niques.
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