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Abstract Using a new recently compiled milliarcsec-
ond compact radio data set of 120 intermediate-luminosity
quasars in the redshift range 0.46 < z < 2.76, whose sta-
tistical linear sizes show negligible dependence on redshifts
and intrinsic luminosity and thus represent standard rulers in
cosmology, we constrain three viable and most popular f (T )

gravity models, where T is the torsion scalar in teleparal-
lel gravity. Our analysis reveals that constraining power of
the quasars data (N = 120) is comparable to the Union2.1
SN Ia data (N = 580) for all three f (T ) models. Together
with other standard ruler probes such as cosmic microwave
background and baryon acoustic oscillation distance mea-
surements, the present value of the matter density parameter
�m obtained by quasars is much larger than that derived
from other observations. For one of the models considered
( f1CDM) a small but noticeable deviation from �CDM cos-
mology is present, while in the framework of f3CDM the
effective equation of state may cross the phantom divide line
at lower redshifts. These results indicate that intermediate-
luminosity quasars could provide an effective observational
probe comparable to SN Ia at much higher redshifts, and
f (T ) gravity is a reasonable candidate for the modified grav-
ity theory.

1 Introduction

The current cosmic acceleration has been supported by many
independent astrophysical observations, including type Ia
supernovae (SN Ia) [1], large-scale structure [2], cosmic
microwave background (CMB) anisotropy [3], etc. A myste-
rious component with negative pressure, dubbed dark energy,
has been proposed to explain this phenomenon in the frame-
work of Einstein’s general relativity, which gave birth to
a large number of dark energy models including the cos-
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mological constant (�CDM), scalar field theory [4–6], and
dynamical dark energy models [7–11]. The other direction
one could follow in search for solution of the accelerating
cosmic expansion enigma is to construct modified theories of
gravity instead of invoking exotic dark energy. A large major-
ity of works in this direction concentrated on the brane-world
Dvali–Gabadadze–Porrati (DGP) model [12], f (R) gravity
[13], and Gauss–Bonnet gravity [14].

Equally well, one can also modify the gravity according
to the scenario described by the so-called f (T ) theory [15],
which was proposed in the framework of the Teleparallel
Equivalent of General Relativity (also known as Teleparallel
Gravity). In this approach, the Levi-Civita connection used in
Einstein’s general relativity is replaced by the Weitzenböck
connection with torsion, while the Lagrangian density of this
theory is the torsion scalar T . Compared with the f (R) the-
ory leading to the fourth order equations, the field equations
of the f (T ) theory are in the form of second order differ-
ential equations, which provides an important advantage of
this approach. In addition, if certain conditions are satisfied,
the behavior of f (T ) cosmologies is similar to several popu-
lar dark energy models, such as quintessence [16], phantom
[17], DGP model [18] and transient acceleration [19]. Due to
the above mentioned property, f (T ) theory and its cosmo-
logical applications has gained a lot interest in the literature.
A detailed introduction to the f (T ) theory could be found in
[18,20].

In this paper, we focus on using the currently released
quasar data [21] to provide the constraints on various f (T )

gravity models. Recently, the angular size of compact struc-
ture in radio quasars versus redshift data from the very-long-
baseline interferometry (VLBI) observations have become
an effective probe in cosmology. Reliable standard rulers and
standard candles at cosmological scales are crucial for mea-
suring cosmic distances at different redshifts. For instance,
the type Ia supernovae are regarded as standard candles, while
the BAO peak location is commonly recognized as a fixed
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comoving ruler. The increasing observational material con-
cerning these two distance indicators has been widely used in
various cosmological studies. In the past, there were contro-
versial discussions about whether the compact radio sources
could act as standard rulers [22–26]. The difficulty lies in
the fact that the linear sizes lm of compact radio sources
might not be constant, i.e., its value is dependent on both red-
shifts and some intrinsic properties of the source (luminos-
ity, for example). Based on a 2.29 GHz VLBI all-sky survey
of 613 milliarcsecond ultra-compact radio sources [27,28],
Cao et al. [21] presented a method to divide the full sample
into different sub-samples, according to their optical counter-
parts and luminosity (low-luminosity quasars, intermediate-
luminosity quasars, and high-luminosity quasars). The final
results indicated that intermediate-luminosity quasars show
negligible dependence on both redshifts z and intrinsic
luminosity L , which makes them a fixed comoving-length
standard ruler. More recently, based on a cosmological-
model-independent method to calibrate the linear sizes lm
of intermediate-luminosity quasars, Cao et al. [29] inves-
tigated the cosmological application of this data set and
obtained stringent constraints on both the matter density �m

and the Hubble constant H0, which agree very well with the
recent Planck results. The advantage of this data set, com-
pared with other standard rulers, BAO [30–32], clusters [33],
strong lensing systems [34–36]), is that quasars are observed
at much higher redshifts (z ∼ 3.0). Therefore, it may be
rewarding to test the f (T ) theory with this newly revised
quasar data. In this paper, we examine constraints on the
viable f (T ) cosmological models imposed by the quasars.
We compare them with analogous results obtained with the
newly revised Union2.1 set—the largest published and spec-
troscopically confirmed SN Ia sample to date. We expect that
different systematics and sensitivities of these two different
probes (rulers vs. candles) can give complementary results
on the f (T ) theory.

This paper is organized as follows: In Sect. 2 we briefly
introduce the f (T ) gravity and its cosmological conse-
quences. In Sect. 3 we present the latest data sets for our
analysis and perform a Markov chain Monte Carlo analysis
using different data sets in Sect. 4. Finally, we summarize
the main conclusions in Sect. 5.

2 The f (T ) theory

In this section we brief review the f (T ) gravity in the frame-
work of cosmology, and then we present three specific f (T )

models to be analyzed in this work.

2.1 The f (T ) cosmology

We use the vierbein fields ei (xμ) (i = 0, 1, 2, 3), which is
an orthonormal basis for the tangent space at each point xμ

of the manifold ei · e j = ηi j , and whose components are
eμ
i (μ = 0, 1, 2, 3) (here Latin indices stand for the tan-

gent space and Greek indices refer to the manifold). Its dual
vierbein gives the metric tensor gμν(x) = ηi j eiμ(x) e jν (x).
In f (T ) theory, instead of the torsionless Levi-Civita con-
nection in Einstein’s General Relativity, the curvatureless
Weitzenböck connection is considered, and hence the torsion
tensor describing the gravitational field is

T λ
μν ≡ eλ

i (∂μe
i
ν − ∂νe

i
μ). (1)

The Lagrangian of teleparallel gravity is constructed by the
torsion scalar as [15]

T ≡ Sμν
ρ T ρ

μν, (2)

where

Sμν
ρ = 1

2

(
Kμν

ρ + δμ
ρ T

θν
θ − δν

ρT
θμ
θ

)
, (3)

and the contorsion tensor Kμν
ρ is given by

Kμν
ρ = −1

2

(
Tμν

ρ − T νμ
ρ − Tμν

ρ

)
. (4)

In the f (T ) theory, the Lagrangian density is a function of
T [15], and the action reads

I = 1

16 π G

∫
d4x e f (T ), (5)

where e = det(eiμ) = √−g. The corresponding field equa-
tion is

[e−1∂μ(eSμν
i ) − eλ

i T ρ
μλS

νμ
ρ ] fT

+Sμν
i ∂μT fT T + 1

4
eν
i f (T ) = 1

2
k2eρ

i T
ν
ρ , (6)

where k2 = 8πG, fT ≡ d f/dT , fT T ≡ d2 f/dT 2, Sμν
i ≡

eρ
i S

μν
ρ , and Tμν is the matter energy-momentum tensor. Con-

sidering a flat homogeneous and isotropic FRW Universe, we
have

eiμ = diag (1, a(t), a(t), a(t)) ,

eμ
i = diag

(
1,

1

a(t)
,

1

a(t)
,

1

a(t)

)
, (7)

where a(t) is the cosmological scale factor. By substituting
Eqs. (7), (1), (3) and (4) into Eq. (2), one could obtain the
torsion scalar as [15]

T ≡ SρμνTρμν = −6H2, (8)

where H is the Hubble parameter H = ȧ/a. The dot rep-
resents the first derivative with respect to the cosmic time.
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Substituting Eq. (7) into (6), one can obtain the correspond-
ing Friedmann equations

12H2 fT + f = 2k2ρ, (9)

48H2 Ḣ fT T − (12H2 + 4Ḣ) fT − f = 2k2 p, (10)

where ρ and p are the total energy density and pressure,
respectively. By defining the effective energy density ρeff ,
pressure peff and effective equation of state (EoS) parameter
weff as

ρeff = 1

2k2 (−12H2 fT − f + 6H2), (11)

peff = − 1

2k2 [48Ḣ H2 fT T − 4Ḣ fT + 4Ḣ ] − ρeff , (12)

weff = − f/T − fT + 2T fT T
[1 + fT + 2T fT T ] [ f/T − 2 fT ]

. (13)

The Friedmann equations could be rewrite as

3

k2 H
2 = ρ + ρeff , (14)

1

k2 (2Ḣ + 3H2) = −(p + peff). (15)

Therefore, the cosmic acceleration could be driven by the tor-
sion instead of dark energy. In this cosmological framework,
the corresponding normalized Hubble parameter is

E2(z) ≡ H2(z)

H2
0

= T (z)

T0
, (16)

where T0 = −6H2
0 (the subscript “0” denotes the current

value). Here we consider the matter and radiation in the
Universe—the components whose energy density evolves
with redshift z as ρm = ρm0(1 + z)3, ρr = ρr0(1 + z)4,
respectively. Then Eq. (16) could be expressed as [37,38]

E2(z,p) = �m(1 + z)3 + �r (1 + z)4 + �F y(z,p) (17)

where �F = 1 − �m − �r , and �i = k2ρi0
3H2

0
. In this way, a

specific form of f (T ) is embodied in the function y(z,p),
whose expression is

y(z,p) = 1

T0�F
( f − 2T fT ) , (18)

where p stands for the parameters in different forms of f (T )

theory.

2.2 Specific f (T ) models

In this subsection we briefly review three specific f (T ) mod-
els, which have passed basic observational tests [37] and will
be further investigated in this paper.

(1) The power-law model [15] (hereafter f1CDM) assumes
that the Lagrangian density f (T ) of the theory is the follow-
ing:

f (T ) = α(−T )b (19)

where α and b are two model parameters. The distortion
parameter b quantifies deviation from the �CDM model,
whereas the parameter α can be expressed through the Hub-
ble constant and density parameter �F0 by inserting Eq. (19)
into Eq. (17) with the boundary condition E(z = 0) = 1:

α = (6H2
0 )1−b �F0

2b − 1
, (20)

Now Eq. (18) may be rewritten as

y(z, b) = E2b(z, b). (21)

Depending on the choice of parameter b, this f (T ) model
can be connected with some popular dark energy models.
For b = 0, it reduces to the �CDM, while it can mimic the
Dvali–Gabadadze–Porrati (DGP) model when b = 1/2.

(2) The exponential model [39] (hereafter f2CDM) is
characterized by

f (T ) = αT0(1 − e−p
√
T/T0), (22)

where α and p are two dimensionless parameters. Similarly
the expressions for α and y(z, p) can also be obtained:

α = �F0

1 − (1 + p)e−p
, (23)

y(z, p) = 1 − (1 + pE)e−pE

1 − (1 + p)e−p
. (24)

This model reduces to the �CDM in the limit p → +∞. By
setting b = 1/p, Eq. (24) is rewritten as

y(z, b) = 1 − (
1 + E

b

)
e−E/b

1 − (
1 + 1

b

)
e−1/b

, (25)

and �CDM is recovered when b → 0+.
(3) Motivated by the exponential f (R) gravity, the

hyperbolic-tangent model [17] (hereafter f3CDM) arises
from the ansatz

f (T ) = α(−T )n tanh

(
T0

T

)
(26)

where α and n are the two model parameters. We obtain the
expressions for α and y(z,p) as

α = − �F0(6H0)
1−n

[
2sech2(1) + (1 − 2n)tanh(1)

] , (27)
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y(z, n)=E2(n−1)
2sech2

(
1
E2

)
+(1 − 2n)E2tanh

(
1
E2

)

2sech2(1)+(1 − 2n)tanh(1)
,

(28)

respectively. Compared with two previous f (T ) theories, this
f (T ) model cannot be reduced to the �CDM for any value
of its parameters. In addition, in order to have a positive value
for ρe f f , the parameter n must be greater than 3/2 [17].

3 Observational data and fitting method

In order to measure the angular-diameter distance, we always
turn to objects of known comoving size acting as “standard
rulers”. In this paper, we will consider a combination of three
types of standard rulers using the most recent and signifi-
cantly improved observations, i.e., the compact radio quasars
data from VLBI, baryonic acoustic oscillations (BAO) from
the large-scale structure, and the cosmic microwave back-
ground (CMB) measurements.

3.1 Quasars data

It is well known that the baryon acoustic oscillations (BAO)
peak location is commonly recognized as a fixed comov-
ing ruler of about 100 Mpc. Therefore it has already been
used in cosmological studies [30–32]. In the same spirit, as
extensively discussed in the literature, compact radio sources
(quasars, in particular) constitute another possible class of
standard rulers of about 10 pc comoving length. Follow-
ing the analysis of Gurvits [28], the luminosity and redshift
dependence of the linear sizes of quasars can be parametrized
as

lm = l Lβ(1 + z)n (29)

where β and n are two parameters quantifying the “angu-
lar size–redshift” and “angular size–luminosity” relations,
respectively. The parameter l is the linear size scaling fac-
tor representing the apparent distribution of radio bright-
ness within the core. The data used in this paper were
derived from an old 2.29 GHz VLBI survey undertaken
by Preston et al. (1985), which contains 613 milliarcsec-
ond ultra-compact radio sources covering the redshift range
0.0035 < z < 3.787. More recently, Cao et al. [29] pre-
sented a method to identify a sub-sample which can serve
as a certain class of individual standard rulers in the Uni-
verse. According to the optical counterparts and luminosi-
ties, the full sample could be divided into three sub-samples:
low-luminosity quasars (L < 1027 W/Hz), intermediate-
luminosity quasars (1027 W/Hz < L < 1028 W/Hz) and
high-luminosity quasars (L > 1028W/Hz). The final results

showed that only intermediate-luminosity quasars show neg-
ligible dependence (|n| � 10−3, β � 10−4), and thus they
could be a population of rulers once the characteristic length
l is fixed. In our analysis, we will use the observations of 120
intermediate-luminosity quasars covering the redshift range
0.46 < z < 2.80, while the linear size of this standard ruler
is calibrated to l = 11.03 pc through a new cosmology-
independent technique [29].

The observable quantity in this data set is the angular size
of the compact structure in intermediate-luminosity radio
quasars, whose theoretical (i.e. determined by the cosmo-
logical model) counterpart is

θth(z) = l

DA(z)
(30)

where DA is the angular-diameter distance at redshift z and
the f (T ) model parameters p directly enter the angular-
diameter distance through

DA(z;p) = 3000h−1

(1 + z)

∫ z

0

dz′

E(z′;p)
(31)

where E(z′;p) is the dimensionless Hubble parameter and h
is the dimensionless Hubble constant. We estimate the f (T )

parameters by minimizing the corresponding χ2 defined as

χ2
QSO(z;p) =

120∑
i=1

[θth(zi ;p) − θobs(zi )]2

σθ (zi )2 (32)

where θobs(zi ) is the observed value of the angular size and
σθ (zi ) is the corresponding uncertainty for the i th data point
in the sample. In order to properly account for the intrin-
sic spread in linear sizes and systematics we have added in
quadrature 10% uncertainties to the σθ (zi ).

3.2 CMB and BAO data

In order to diminish the degeneracy between f (T ) model
parameters we also used the accurate measurements of BAO
and CMB.

The CMB experiments measure the temperature and
polarization anisotropy of the cosmic radiation in the early
epoch. In general, they are a very important tool for the infer-
ence of cosmological-model parameters. In particular, the
shift parameter R defined as

R = √
�m

∫ z∗

0

dz′

E(z′;p)
, (33)

where z∗ = 1090.43 denotes the decoupling redshift, is a
convenient quantity for a quick fitting of cosmological-model
parameters. The first-year data release of Planck reported its
value of R = 1.7499 ± 0.0088 [41]. We estimate the model
parameters by minimizing the corresponding χ2
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Table 1 Ratios of distances and the so-called dilation scale DV (zBAO) at different redshifts zBAO taken after [30–32] and [40]

zBAO 0.106 0.2 0.35 0.44 0.6 0.73

rs (zd )
DV (zBAO )

0.336 ± 0.015 0.1905 ± 0.0061 0.1097 ± 0.0036 0.0916 ± 0.0071 0.0726 ± 0.0034 0.0592 ± 0.0032
dA(z∗)

DV (zBAO )
rs (zd )
rs (z∗)

32.35 ± 1.45 18.34 ± 0.59 10.56 ± 0.35 8.82 ± 0.68 6.99 ± 0.33 5.70 ± 0.31
dA(z∗)

DV (zBAO )
30.95 ± 1.46 17.55 ± 0.60 10.11 ± 0.37 8.44 ± 0.67 6.69 ± 0.33 5.45 ± 0.31

χ2
CMB =

(
R − 1.7499

0.0088

)2

. (34)

The measurements of baryon acoustic oscillation (BAO) in
the large-scale structure power spectrum and CMB angular
power spectrum have also been widely used for cosmological
applications. In this work we consider the measurements of

dA(z∗)
DV (zBAO )

, where z∗ is the decoupling time, dA(z) = ∫ z
0

dz′
H(z′)

is the comoving angular-diameter distance, and the dilation
scale is given by

DV (z) =
(
dA(z)2 z

H(z)

)1/3

. (35)

The BAO data are shown in Table 1. Similarly, the corre-
sponding χ2 for the BAO probes is defined as

χ2
BAO =

∑
i j

XiC
−1
i j X j , (36)

where X = dthA (z∗)

Dth
V (zBAO )

− dobsA (z∗)

Dobs
V (zBAO )

and C−1
i j is the inverse

covariance matrix given by Ref. [40].

4 Observational constraints

In this section, we determine the model parameters of three
f (T ) cosmologies through the maximum likelihood method
based on χ2 introduced in previous section using the Markov
Chain Monte Carlo (MCMC) method. Our code is based on
CosmoMC [42] and we generated eight chains after setting
R − 1 = 0.001 to guarantee the accuracy of this work.

4.1 f1CDM model: f (T ) = α(−T )b

In the case of the f (T ) theory based on f (T ) = α(−T )b, dif-
ferent data sets and their combinations led to the marginalized
2D confidence contours presented in Figs. 1, 2. The corre-
sponding marginal 1σ error bars can also be seen in Table 2.

The left panel of Fig. 1 shows the contours obtained from
the quasars only and in combination with CMB and BAO. We
remark that the quasar data only cannot tightly constrain the
model parameters. In order to clearly illustrate the constraint
comparison between different data sets, a prior b > −1 is

applied to the likelihood contours obtained from the quasar
data. Quantitatively, the value of the distortion parameter b,
which quantifies the deviation from the �CDM model varies
over the interval [-3, 0.56] within 1σ confidence level. As it
is well known, the main evidence for cosmic acceleration
came from the other type of distance indicators in cosmol-
ogy, those probing the luminosity distance, DL by observ-
ing the flux of type Ia supernovae (SN Ia). In order to com-
pare our fits with the results obtained using SN Ia, likelihood
contours obtained with the latest Union2.1 compilation [43]
consisting of 580 SN Ia data points are also plotted in the
right panel of Fig. 1. It is clear that the quasar data could
give more stringent constraints than SN Ia, and its constrain-
ing power becomes obvious when the large size difference
between the samples is taken into consideration. This may
happen due to the wider redshift range of the quasars data
(0.46 < z < 2.8) compared with SN Ia (0.015 ≤ z ≤ 1.41).
Moreover, one can clearly see from Fig. 1 that principal
axes of confidence regions obtained with SN and quasars are
inclined at higher angles, which sustains the hope that care-
ful choice of the quasar sample would eventually provide a
complementary probe breaking the degeneracy in the f (T )

model parameters. Finally, our method based on the observa-
tions of intermediate-luminosity quasars may also contribute
to testing the consistency between luminosity and angular-
diameter distances [44–46].

With the combined standard ruler data sets of quasars,
BAO and CMB, the best-fit value for the parameters are
�m = 0.321 ± 0.012 and b = 0.080 ± 0.077 within
68.3% confidence level. For comparison, fitting results from
SN+BAO+CMB are also given in Fig. 1. The best-fit value
is �m = 0.297+0.015

−0.017 and b = −0.12+0.17
−0.13, which is in good

agreement with that of the quasar+BAO+CMB data. It is
obvious that the quasar data, when combined to CMB and
BAO observations, can give more stringent constraints on this
f (T ) cosmology, which demonstrates the strong constrain-
ing power of BAO and CMB on the cosmological param-
eters. This situation has also been extensively discussed in
previous work investigating dark energy scenarios with other
astrophysical observations [46–50]. Again, the constraining
power of 120 quasar data is comparable to that of 580 SN
Ia. On the one hand, the present value of the matter den-
sity parameter �m given by quasars is much larger than that
derived from other observations. This has been noted by our
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Fig. 1 1σ and 2σ confidence regions for the f1CDM model. The red lines represent contour plot given by quasars (left panel) and SN Ia (right
panel). The black lines represent constrained result from the joint analysis of quasars+BAO+CMB (left panel) and SN Ia+BAO+CMB (right panel)

Fig. 2 The 68 and 95% confidence regions for the f1CDM model, which are constrained by the combined observational data of quasars, SN Ia,
BAO and CMB
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Table 2 Summary of the
best-fit values of parameters for
the f1CDM model with 1σ

uncertainties for different
observations (OHD is the
abbreviation of the
observational H(z) data)

Data �m b References

Quasars+BAO+CMB 0.321 ± 0.012 0.080 ± 0.077 This paper

SN Ia+BAO+CMB 0.297+0.015
−0.017 −0.12+0.17

−0.13 This paper

Quasars+SN Ia+BAO+CMB 0.317 ± 0.010 0.057+0.091
−0.065 This paper

OHD+SN Ia+BAO+CMB 0.2335+0.016
−0.019 0.05128+0.025

−0.019 [37]

SN Ia+BAO+CMB+dynamical growth data 0.272 ± 0.008 −0.017 ± 0.083 [38]

SN Ia+BAO+varying fundamental constants 0.294 ± 0.022 −0.119 ± 0.185 [51]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
z

−1.10

−1.05

−1.00

−0.95

−0.90

−0.85

−0.80

−0.75

−0.70

w
ef

f

f1CDM

ΛCDM

Fig. 3 Evolution of the EoS for �CDM (black line) and the effec-
tive EoS for the f1CDM model (blue line) from the joint analysis
quasars+BAO+CMB. 1σ and 2σ uncertainties are, respectively, denoted
by blue and gray shades

previous analysis of Cao et al. [29] and the first-year Planck
results, in the framework of �CDM cosmology. Such a result
indicates that quasar data at high redshifts may provide us
a different understanding of the parameters describing the
components of the Universe. On the other hand, the parameter
b, which captures the deviation of f (T ) cosmology from the
�CDM scenario, seems to be vanishing or slightly larger than
0 with the combined quasar+BAO+CMB data. It is interest-
ing to note that �CDM is not included at 1σ confidence level
(b = 0.08±0.077), this slight deviation from �CDM is also
consistent with a similar conclusion obtained in Ref. [37] for
this f1CDM model. This tendency can be more clearly seen
from Fig. 3, which illustrates the comparison between the
effective equation of state for f (T ) and the EoS for �CDM
model at z ∼ 4, with the best-fitted value as well as the 1σ

and 2σ uncertainties derived from the joint data of quasars,
BAO and CMB.

The contours constrained with the total combination of
quasars+SN Ia+BAO+CMB are presented in Fig. 2, and the
best-fit value is �m = 0.317 ± 0.010 and b = 0.057+0.091

−0.065.
The combined data give no stronger constraint, which indi-
cates the constraint ability of quasars data is already very

strong, while SN Ia data do not play a leading role in the
joint constraint. From the results above, we can see that the
�CDM model which corresponds to (b = 0) is still included
within 1σ range. For comparison, in Table 2 we also list
alternative constraints obtained by the others using different
probes.

4.2 f2CDM model: f (T ) = αT0(1 − e−p
√
T/T0)

Performing a similar analysis as before, this time with the
other f (T ) model in which �CDM is also nested, namely,
f (T ) = αT0(1 − e−p

√
T/T0), we made the same compari-

son as f1CDM discussed above, i.e. quasars vs. SN Ia and
quasars+BAO+CMB vs. SN Ia+BAO+CMB. The results are
presented in Fig. 4 and the estimated cosmic parameters are
briefly summarized in Table 3. It is apparent that the quasars
data exhibit similar constraining power as in the case of
f1CDM model, which implies that the constraint ability of
120 quasar data can be comparable to that of 580 SN Ia. By
fitting the f2CDM model to quasars+BAO+CMB, we obtain
�m = 0.319 ± 0.011 and b < 0.268 (let us recall that here
we introduced b = 1/p).

With the combined data set of quasars+SN Ia+BAO+CMB,
we also get the marginalized 1σ constraints of the parameters
as �m = 0.319+0.010

−0.011 and b < 0.224. The marginalized 1σ

and 2σ contours of each parameter are presented in Fig. 6.
In Table 3, the best-fit parameters and their 1σ uncertainties
for three data sets are displayed. As previously the results
from the others using different probes are shown for com-
parison. Obviously, the present matter density parameter �m

fitted by quasars is larger than given by other observations.
The parameter b quantifying the deviation from the �CDM
scenario, tends to be zero for all of observations listed in
Table 3, which results in that the exponential gravity is prac-
tically indistinguishable from �CDM. As can be seen from
the results presented in Fig. 5, even at 2σ confidence level,
the effective EoS of f2CDM model from the joint analysis of
quasars, BAO and CMB agrees very well with that of �CDM
at z ∼ 4, which strongly indicates the consistency between
the two types of cosmological models at much higher red-
shifts.
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Fig. 4 1σ and 2σ confidence regions for the f2CDM model. The red lines represent contour plot given by quasars (left panel) and SN Ia (right
panel). The black lines represent constrained result from the joint analysis quasars+BAO+CMB (left panel) and SN Ia+BAO+CMB (right panel)

Table 3 Summary of the
best-fit values of parameters for
the f2CDM model with 1σ

uncertainties for different
observations

Data �m b References

Quasars+BAO+CMB 0.319 ± 0.011 b < 0.268 This paper

SN Ia+BAO+CMB 0.307 ± 0.013 b < 0.186 This paper

Quasars+SN Ia+BAO+CMB 0.319+0.010
−0.011 b < 0.224 This paper

OHD+SN Ia+BAO+CMB 0.2784+0.0097
−0.019 0.1325+0.043

−0.13 [37]

SN Ia+BAO+CMB+dynamical growth data 0.272 ± 0.004 0.121 ± 0.184 [38]

SN Ia+BAO+varying fundamental constants 0.283 ± 0.018 0.024 ± 0.08 [51]
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Fig. 5 Evolution of the EoS for �CDM and the effective EoS for the
f2CDM model from the joint analysis quasars+BAO+CMB

4.3 f3CDM model: f (T ) = α(−T )n tanh
(
T0
T

)

Now we will discuss the third version of f (T ) cosmology
which is truly an alternative to the �CDM since the concor-
dance cosmological model cannot be recovered as a limiting
case of f3CDM model. Consequently, the parameter n does
not characterize the deviation from �CDM.

In Fig. 7 we present contour plots of f3CDM model
parameters fitted to four different probes, namely quasars,
SN Ia, quasars+BAO+CMB, and SN Ia+BAO+CMB. As we
can see, the quasar data provide more stringent constraints
than SN Ia, which indicates that the constraining ability of
quasar data can be comparable to or better than that of SN Ia
at least in this particular model. In Fig. 8 we show the con-
tour plots for the combination of all data sets quasars+SN
Ia+BAO+CMB. Additionally, in Table 4 we summarize the
best-fit values for the three combined data sets, respectively.
Table 4 also includes the best-fit values and their 68% con-
fidence levels for the previous results from the literature.
Similar to the cases of f1CDM model and f2CDM model,
the present matter density parameter �m implied by quasars
is larger than that given by other observations. Concerning
the value of the parameter n, its value constrained by all
of the current observations satisfies the condition n > 3/2,
which is necessary to achieve the cosmic acceleration in the
framework of f3CDM.

In Fig. 9 we show the evolution of the effective equation of
state for f3CDM model as a function of redshift, concerning
the best-fitted value with the 1σ and 2σ uncertainties from
the joint data of quasars, BAO and CMB. In particular, we
find that the value of n obtained with quasars suggests that
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Fig. 6 The 68 and 95% confidence regions for the f2CDM model, which are constrained by the combined observational data of quasars, SN Ia,
BAO and CMB

the effective equation of state crosses the phantom divide line
at lower redshifts [17].

4.4 Model selection

In order to make a good comparison between different models
or decide which model is preferred by the observational data,
we will use two standard information criteria, namely the
Akaike Information Criterion (AIC) [53] and the Bayesian
Information Criterion (BIC) [54] to study competing models.
The above two information criteria are, respectively, defined
as

AIC = −2 lnL + 2k (37)

and

BIC = −2 lnL + k ln N , (38)

where L = exp(−χ2
min/2), k represents the number of free

parameters in the model and N is the sample size used in
the statistical analysis. In addition, we introduce the ratio of
χ2

min to the degrees of freedom (d.o.f.), χ2
min/d.o. f., to judge

the quality of observational data set.
In Table 5, we list the values of AIC, BIC and χ2

min/d.o.f.
for different models from the joint analysis quasar+BAO
+CMB and SN Ia+BAO+CMB. It is obvious that both the
AIC and the BIC criteria support �CDM to be the best
cosmological model consistent with the available observa-
tions, since the IC value it yields is the smallest. Concerning
the ranking of the three f (T ) models, AIC and BIC cri-
teria tend to provide the same conclusions as follows. The
f2CDM model performs the best in explaining the current
data, which can be clearly seen from the similarity between
f2CDM and �CDM shown in Fig. 5. Then next after f2CDM
is the f1CDM model, which can also reduce to the �CDM
model and its best-fit parameters indeed do so. The worst
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Fig. 7 1σ and 2σ confidence regions for the f3CDM model. The red lines represent contour plot given by quasars (left panel) and SN Ia (right
panel). The black lines represent constrained result from the joint analysis quasars+BAO+CMB (left panel) and SN Ia+BAO+CMB (right panel)

Fig. 8 The 68 and 95% confidence regions for the f3CDM model, which are constrained by the combined observational data of quasars, SN Ia,
BAO and CMB
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Table 4 Summary of the
best-fit values of parameters for
the f3CDM model with 1σ

uncertainties for different
observations

Data �m n References

Quasars+BAO+CMB 0.329 ± 0.011 1.649 ± 0.021 This paper

SN Ia+BAO+CMB 0.303 ± 0.017 1.607 ± 0.031 This paper

Quasars+SN Ia+BAO+CMB 0.326 ± 0.012 1.645+0.020
−0.018 This paper

GRB+OHD+SN Ia+BAO+CMB 0.286+0.013
−0.012 1.616+0.02

−0.035 [52]
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Fig. 9 Evolution of the EoS for �CDM and the effective EoS for the
f3CDM model from the joint analysis quasars+BAO+CMB

model according to the AIC and BIC criteria is f3CDM,
which is unable to provide a good fit to the data and cannot
nest �CDM.

5 Conclusions and discussions

As an interesting approach to modifying gravity, f (T ) the-
ory based on the concept of teleparallel gravity, was pro-
posed to explain the accelerated expansion of the Universe
without the need of dark energy. In this paper, we have used
the recently released sample of VLBI observations of the
compact structure in 120 intermediate-luminosity quasars
(0.46 < z < 2.80) to get the constraints on the viable
and most popular f (T ) gravity models. The statistical lin-
ear sizes of these quasars observed at 2.29 GHz show negli-

gible dependence on redshifts and intrinsic luminosity, and
thus represent a fixed comoving length of the standard ruler.
Therefore, the other motivation of this work was to investi-
gate the constraining ability of quasar data in the context of
f (T ) models. In particular, we have considered three f (T )

models with two parameters, out of which two could nest
the concordance �CDM model and we quantified their devi-
ation from �CDM cosmology through a single parameter
b. For the third f (T ) cosmology which cannot be directly
reduced to �CDM, we discussed the possibility for the effec-
tive equation of state to cross the phantom divide line.

In our investigation we have used (i) the very recently
released “angular size–redshift” data sets of 120 intermediate-
luminosity quasars in the redshift range 0.46 < z < 2.76,
(ii) the cosmic microwave background and baryon acous-
tic oscillation data points. Meanwhile, in order to compare
our fits obtained with 120 quasars (standard rulers), to the
similar constraints obtained with the Union2.1 compilation
consisting of 580 SN Ia data points (standard candles) we
also carried out respective analysis based on SNIa data. Here
we summarize our main conclusions in more detail:

• For all of the three the f (T ) models, all of the fitting
results show that the quasar data (N = 120) could pro-
vide more stringent constraints than the Union2.1 SN
Ia data (N = 580). This may be associated with the
wider redshift range covered by the quasar data (0.46 <

z < 2.8) compared with SN Ia (0.015 ≤ z ≤ 1.41).
The constraining power of the former becomes obvious
when the large size difference between the samples is
taken into consideration. Moreover, one can clearly see
that principal axes of confidence regions obtained with
SN and quasars are inclined at higher angles, which sus-
tains the hope that a careful choice of the quasar sam-

Table 5 Summary of the AIC and BIC values for different models obtained from the combined quasar+BAO+CMB data and the combined SN Ia
+BAO+CMB data

Model Quasar+BAO+CMB SN Ia+BAO+CMB

AIC �AIC BIC �BIC χ2
min/d.o.f. AIC �AIC BIC �BIC χ2

min/d.o.f.

�CDM 613.78 0 616.62 0 4.80 550.87 0 555.24 0 0.95

f1CDM 615.46 1.68 621.15 4.53 4.81 552.94 2.07 561.69 6.45 0.95

f2CDM 615.32 1.54 621.01 4.39 4.81 552.83 1.96 561.58 6.34 0.95

f3CDM 616.91 3.13 622.60 5.98 4.83 553.01 2.14 561.76 6.52 0.95
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ple would eventually provide a complementary probe
breaking the degeneracy in the f (T ) model parameters.
Our method based on the observations of intermediate-
luminosity quasars may also contribute to testing the con-
sistency between luminosity and angular-diameter dis-
tances.

• The present value of the matter density parameter �m

implied by quasars is much larger than that derived from
other observations, which has been noted by our previous
analysis and the first-year Planck results, in the frame-
work of �CDM cosmology. Such a result indicates that
quasar data at high redshifts may provide us with a dif-
ferent understanding of the components in the Universe.

• For f1CDM and f2CDM models, deviation from �CDM
cosmology is also allowed in the obtained confidence
level, although the best-fit value is very close to its
�CDM one. It is interesting in the present work to note
that �CDM is not included at 1σ confidence level for
the power-law model f1CDM model, this slight devia-
tion from �CDM is also consistent with a similar con-
clusion obtained in the previous observational studies on
f (T ) gravity. In the framework of f3CDM, the value of
n constrained by all of the current observations satisfies
the limit of n > 3/2, which is necessary to achieve the
cosmic acceleration. Moreover, we find that the value of
n obtained with quasars suggests that the effective equa-
tion of state can cross the phantom divide line at lower
redshifts.

• The information criteria (AIC and BIC) demonstrate that,
compared with other three f (T ) scenarios considered
in this paper, the cosmological constant model is still
the best cosmological model consistent with the avail-
able observations. Concerning the ranking of the f (T )

cosmologies, the f2 CDM model performs the best in
explaining the current data, while the f3 CDM model
gets the smallest support and cannot nest the concordance
�CDM model.

• In summary, using for the recently released quasar data
acting as a new source of standard rulers, we were able
to set more stringent limits on the viable and most used
f (T ) gravity models. Our results highlight the impor-
tance of quasar measurements to provide additional infor-
mation of various candidates for modified gravity, espe-
cially the possible deviation from �CDM cosmology.
More importantly, given the usefulness of this angular
size data in pinning down parameter values, we also
anticipate that near-future quasar observations will pro-
vide significantly more restrictive constraints on other
torsional modified gravity theories [11,55,56].
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