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Abstract We study two exactly solvable five-dimensional
thick brane world models in pure metric f (R) gravity. Work-
ing in the Einstein frame, we show that these solutions are
stable against small linear perturbations, including the tensor,
vector, and scalar modes. For both models, the correspond-
ing gravitational zero mode is localized on the brane, which
leads to the four-dimensional Newton law; while the massive
modes are non-localized and only contribute a small correc-
tion to the Newton law at a large distance.

1 Introduction

The idea that our world might be a hyperspace (called brane
world) embedded in higher-dimensional space-time (called
the bulk) has been intensively considered in the past two
decades [1–10] (for reviews, see [11,12]). This idea has
changed our traditional knowledge toward extra dimensions.
In early theories of extra dimensions, namely, the Kaluza–
Klein type theories, the extra dimensions are compacted to
the Planck scale [13]. While in brane world scenarios, depend
on the model, the radii of extra dimensions can be as large
as a few TeV−1 [4,9,10], or several millimeters [5], or even
be infinitely large [2,8].

In one of Randall and Sundrum’s brane world scenar-
ios (the RS-II model) [8], the authors considered a 3-brane
embedded in a five-dimensional anti de Sitter (AdS) space.
Due to the nonfactorizable background geometry, the spec-
trum of four-dimensional gravitons of the RS-II model con-
sisted of a normalizable zero mode along with a continuum
of non-localized massive KK modes. The normalizable zero
mode corresponds to the four-dimensional massless gravi-
ton and leads to the Newton law. There is no mass gap
between the zero mode and massive modes. So by intuition,
the massive modes should cause a large correction to the four-
dimensional Newton law. However, after calculation Randall
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and Sundrum surprisingly found that the whole continuum
of massive modes only contributes a small correction to the
Newton law at a large distance [8]. In other words, the con-
tinuum modes are decoupled.

In the set up of the RS-II model [8], the 3-brane has no
thickness, and the geometry has a singularity at the location
of the brane. To evade this singularity, one can extend the
RS-II model by replacing the original 3-brane by a smooth
domain wall (called thick brane) generated by a background
scalar field [14–16]. Due to the configuration of the domain
wall, the bulk is not an AdS5 space now. But the geome-
try is asymptotically AdS at the infinity of the extra dimen-
sion. Thanks to this asymptotic behavior of the geometry,
the gravitational zero mode is usually normalizable [14–16].
Besides, the authors of Ref. [16] found that at least for two
mass points localized on the center of the thick brane, the
continuum modes are decoupled provided the zero mode is
normalizable.

In addition to thick branes generated by scalar fields,
there are also thick branes arising from pure geometry. For
instance, by replacing the Riemannian geometry with a Weyl-
integrable geometry, the authors of Refs. [17–20] constructed
thick branes without introducing an additional matter field.
The normalization of the gravitational zero mode as well as
the decoupling of the massive Kaluza–Klein (KK) modes are
also studied therein.

In this paper, we investigate another alternative for gener-
ating thick branes with only geometry. We assume that grav-
ity is not described by general relativity, but by the so-called
f (R) theories, where the Lagrangians are proportional to
some functions of the scalar curvature R. The f (R) theories
were created in the study of cosmology [21–23], and they
are mainly applied in cosmology nowadays (see [24–28] and
references therein). Nevertheless, there are works devoted to
embedding branes, either thin [29–34], or thick [35–43] into
various types of f (R) gravities.
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Note that all the thick f (R)-branes considered in
Refs. [35–43] are generated by a background scalar field.
For f (R)-branes of this type, the tensor perturbation equa-
tion has been derived in Ref. [44], but it is still unclear if these
models are stable against the vector and, especially, the scalar
perturbations. To obtain reliable thick f (R)-brane models,
we must either prove that the solutions found in Refs. [35–43]
are also stable against the vector and the scalar perturbations,
or to find some new solutions whose stabilities are easier to
prove. In this paper we adopt the second path.

According to the well-known Barrow–Cotsakis theo-
rem [23], a pure metric f (R) theory (referred to as the Jordan
frame) is conformally equivalent to general relativity mini-
mally coupled with a single canonical scalar field (called
the Einstein frame). This equivalence implies the possibility
for constructing thick branes without introducing additional
matter fields. More importantly, it is much easier to ana-
lyze the linear stability of a solution in the Einstein frame.
To the best of our knowledge, however, only Refs. [45,46]
considered thick RS-II brane world solutions in pure f (R)

gravity. In [45], the authors obtained a few numerical solu-
tions. The first analytical thick brane solution was reported
recently in [46].

In this paper, we derive two analytical thick RS-II brane
solutions in pure f (R) theories: one with a triangular f (R)

and the other a polynomial f (R). The first solution is equiv-
alent to the one of Ref. [46], despite an apparent difference.
The second one is a new solution. These solutions will be pre-
sented in the next section. In Sect. 3, we analyze the linear sta-
bility of these solutions in the Einstein frame by directly cit-
ing the results of Refs. [47,48]. Then in Sect. 4 we show that
the gravitational zero modes corresponding to our solutions
are normalizable, which implies that the four-dimensional
Newton’s law can be reproduced on the branes. In Sect. 5,
by analyzing the asymptotic behavior of our solutions, we
draw the conclusion that for two mass points localized at the
vicinity of the brane, the massive KK modes are decoupled,
and they only lead to small corrections the Newton law. In
the last section, we summarize the main results of this paper.

2 The model and the solution

We consider pure f (R) gravity in five-dimensional space-
time,

S = 1

2κ2
5

∫
d5x

√−g f (R), (1)

where κ2
5 = 8πG(5) is the five-dimensional gravitational

coupling constant, and g = det(gMN) is the determinant of
the metric. In this paper we only consider the flat and static

brane, for which the metric takes the following form:

ds2 = e2A(y)ημνdxμdxν + dy2, (2)

where e2A(y) is the warp factor, ημν is the four-dimensional
Minkowski metric, and y = x4 denotes the extra dimen-
sion. Throughout this paper, capital Latin letters M, N , . . . =
0, 1, 2, 3, 5 and Greek letters μ, ν, . . . = 0, 1, 2, 3 are used
to represent the bulk and brane indices, respectively.

The Einstein equations read

f (R) + 2 fR
(

4 Ȧ2 + Ä
)

− 6 ḟ R Ȧ − 2 f̈ R = 0 (3)

and

− 8 fR
(
Ä + Ȧ2

)
+ 8 ḟ R Ȧ − f (R) = 0, (4)

where fR ≡ d f (R)/dR, and the over dots denote the deriva-
tives with respect to y. By eliminating f (R), one immedi-
ately obtains the following equation:

f̈ R − ḟ R Ȧ + 3 fR Ä = 0. (5)

For a specified A(y), Eq. (5) is a second-order differential
equation for fR(y). In the case A(y) that takes a simple math-
ematical form, it is possible to solve fR(y) analytically. By
inserting A and fR back into Eq. (4), one can easily get the
solution of f (R) as a function of y. Note that for the metric
(2), the scalar curvature R is related to y via the following
equation:

R = −20 Ȧ2 − 8 Ä. (6)

Once we get the expression of R(y), it is not difficult to
rewrite fR and f (R) as functions of R. Instead of starting
with a simple f (R), we prefer to begin with a simple A(y).
For instance, we consider

A = −n ln(cosh(ky)), (7)

with n a dimensionless positive constant, and k another pos-
itive constant with the dimension of length inverse. It is con-
venient for us to introduce a dimensionless variable w = ky.
In terms of w, the scalar curvature takes a simple form:

R = 8nk2sech2(w) − 20n2k2 tanh2(w), (8)

from which we can express w in terms of R for an arbitrary
n:

w(R) = ±arcsech

[√
20n2 + R/k2
√

8n + 20n2

]
. (9)

The above equation makes it possible for us to get the ana-
lytical expression of f (R), at least for some special values
of n.
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2.1 Case 1: n = 1, triangular f (R)

We first consider the simplest case with n = 1, and

A = − ln(cosh(w)). (10)

Substituting Eq. (10) into Eq. (5), and only keeping the sym-
metric solution, one immediately obtains

fR = cosh (α(w)) , (11)

where the function α(w) is defined as

α(w) ≡ 2
√

3 arctan
(

tanh
(w

2

))
. (12)

From Eq. (4), one can easily obtain the solution of f (R(w)):

f (R(w)) = 4k2(3 − cosh(2w))sech2(w) cosh (α(w))

−8
√

3k2sech(w) tanh(w) sinh (α(w)) . (13)

Using Eq. (9), we get

f (R) = 4

7

(
6k2 + R

)
cosh(α(w(R)))

−2

7
k2

√
480 − 36R

k2 − 3R2

k4 sinh(α(w(R))). (14)

Note that f (R(w)) is an even function of w, so it makes no
difference in choosing between the plus sign solution or the
other in Eq. (9). Therefore, Eqs. (10) and (14) constitute the
first analytically solvable f (R) brane model.

Note that in Ref. [46], the authors also investigated a
thick RS-II brane solution in pure metric f (R) gravity with
the same warp factor (10). They also obtained an analyti-
cal expression of f (R). Despite the difference in the mathe-
matical expressions, it can be shown that both solutions are
equivalent. The authors of [46] have shown that this solution
is stable under a tensor perturbation. In the next section, we
will prove that this solution is also stable under scalar and
vector perturbations.

2.2 Case 2: n = 20, polynomial f (R)

The second analytically solvable model appears when n =
20:

A = −20 ln(cosh(w)). (15)

In this case, the symmetric solution of fR takes the form

fR = 1 + 30 tanh2(w) + 65 tanh4(w). (16)

Using the same procedure as the last subsection, we obtain a
simple polynomial solution

f (R) = � + c1R − c2

k2 R
2 + c3

k4 R
3, (17)

where � = − 377600k2

7803 is the cosmological constant, while
c1 = 4196

2601 , c2 = − 83
41616 , c3 = 13

39951360 are dimensionless
constants.

3 Linear perturbations and stability of the solutions

In this section, we consider small metric perturbations around
the solutions we obtained in the previous section. Our aim
is to show that both of the solutions are stable against the
metric perturbations to the linear order.

It is well known that a pure f (R) gravity is conformally
equivalent to a theory with a minimally coupled scalar in
Einstein’s gravity [23]. The linear perturbations of the latter
case has been extensively investigated in the literature [47–
49]. Thus, it is more convenient to discuss the stability of our
solution in the Einstein frame.

3.1 The Einstein frame

First of all, we define a new variable z, such that dz = e−Ady.
In terms of z, the metric can be written as

gMN = e2A(z)ηMN. (18)

Then we introduce a conformal transformation,

g̃MN = �(z)2gMN, (19)

where �(z) is a function of z. From now on, we will always
use a tilde to denote a quantity in the Einstein frame. Obvi-
ously, g̃MN is conformally flat:

g̃MN = ã(z)2ηMN. (20)

Here ã(z) ≡ eA(z)�, which will be used in the next subsec-
tion.

Under the conformal transformation, the Ricci scalar
transforms as [50]

R = �2 R̃ + 8g̃MN�(∇̃M ∇̃N�) − 20X̃ , (21)

where ∇̃M is the covariant derivative defined by the confor-
mal metric g̃MN, and X̃ ≡ g̃MN ∇̃M�∇̃N�. To continue, let
us first rewrite the original gravitational action (1) as

S =
∫

d5x
√−g̃

(
fR

2κ2
5

�−5R − �−5σ

)
, (22)

where

σ ≡ fR R − f (R)

2κ2
5

. (23)
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At this step, we only used the relation
√−g = �−5

√−g̃.
Next, we substitute Eq. (21) into Eq. (22) and take fR = �3,
such that

S =
∫

d5x
√−g̃

{
1

2κ2
5

[R̃ − 12�−2 X̃ ] − σ

�5

}
. (24)

By defining

φ = 2

√
3

κ2
5

ln �, V (φ) = �−5σ, (25)

one can finally simplify the action as

S =
∫

d5x
√−g̃

{
1

2κ2
5

R̃ − 1

2
X̃ − V (φ)

}
. (26)

This action describes a minimally coupled scalar field in
Einstein’s gravity. The linearization of thick brane system
with action (26) and metric (20) has been thoroughly studied
in [47,49], where the metric perturbations are classified into
tensor, vector, and scalar modes. Each type of these modes
evolves independently, and none of the perturbation equa-
tions relies on the explicit form of V (φ).

3.2 Quadratical actions and stability

Now we consider the linearization of a system defined by the
action (26) along with the metric (20). We need to consider
perturbations coming from both the scalar field φ and the
metric g̃MN, denoted by δφ and δg̃MN ≡ ã2(z)hMN, respec-
tively. To obtain the equations for linear perturbations, one
can expand the action (26) to the second order of δφ and
hMN. The result can be found in Refs. [47–49], but here we
use the one of Ref. [51]:

S(2) = 1

2

∫
d5xã3

{
∂MhN P∂ PhMN − ∂Mh∂NhMN

+ 2κ2
5

[
ã2 ∂2V

∂φ2 (δφ)2 + 2hMzφ′∂Mδφ + φ′h′δφ

− ∂Mδφ∂Mδφ

]
− 1

2
∂PhMN∂ PhMN + 1

2
∂ Ph∂Ph

+ 3
ã′

ã

(
h∂μhμz − hzzh

′) }
, (27)

where ∂M = ηMN ∂N , ∂μ = ημν∂ν , h = ηMNhMN, and the
primes represent the derivatives with respect to z. Note that
in this subsection, all the upper indices μ, ν (or M, N ) are
raised by the Minkowski metric ημν (or ηMN ). Note that for
pure gravity around a Minkowski background (ã = 1), S(2)

reduces to the well-known Fierz–Pauli action [52].

Following the procedures in Ref. [51], we introduce the
scalar–tensor–vector (STV) decompositions for the metric
perturbation:1

hμz = ∂μF + Gμ, (28a)

hμν = ημνϕ + ∂μ∂νB + ∂μCν + ∂νCμ + Dμν, (28b)

where Cμ,Gμ are transverse vector perturbations:

∂μCμ = 0 = ∂μGμ, (29)

and Dμν denotes the tensor perturbation, which is transverse
and traceless (TT):

∂νDμν = 0 = Dμ
μ. (30)

The STV decomposition enables one to decompose S(2) into
three independent parts:

S(2) = S(2)
v + S(2)

t + S(2)
s . (31)

Each type of perturbation evolves independently and, there-
fore, can be analyzed separately. The vector and tensor sec-
tions are

S(2)
v = 1

2

∫
d5x v̂μ�(4)v̂μ, (32)

S(2)
t =

∫
d5x

D̂μν

4

{
�(4) D̂μν + D̂′′

μν − (ã
3
2 )′′

ã
3
2

D̂μν

}
, (33)

respectively, where �(4) = ημν∂μ∂ν . The normal modes of
the vector and the tensor perturbations are

v̂μ = ã
3
2 (Gμ − C ′

μ), D̂μν = ã
3
2 Dμν, (34)

respectively. The second-order action of scalar perturbations
is more involved, it is composed of two parts [51]: S(2)

s =
S(2)

s-1 + S(2)
s-2 , where

S(2)
s-1 =

∫
d5xã3

{
3
ã′

ã
hzz − 3ϕ′ − 2κ2

5 φ′δφ
}
�(4)ψ, (35)

with ψ ≡ F − 1
2 B

′, and

S(2)
s-2 = 1

2

∫
d5xã3

{
− 3ϕ�(4)ϕ − 3hzz�(4)ϕ + 6ϕ′ϕ′

− 3
ã′

ã
hzz(h

′
zz + 4ϕ′)

+2κ2
5

[
δφ�(4)δφ + ã2 ∂2V

∂φ2 (δφ)2

+ 2hzzφ
′δφ′ + φ′(h′

zz + 4ϕ′)δφ − (δφ′)2
]}

. (36)

1 The STV decomposition method was first introduced in cosmology
by Bardeen [53], and now it is a widely accepted method in dealing with
cosmological perturbations [54–56]. This method can also be extended
in the study of brane world perturbations [47–49,51].
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The variation δS(2)
s-1 /δψ = 0 leads to the following constraint

equation:

3
ã′

ã
hzz − 3ϕ′ − 2κ2

5 φ′δφ = 0. (37)

Using this equation, one can eliminate hzz in the action (36).
After a simplification, one finally obtains [51]

S(2)
s-2 =

∫
d5xĜ

{
�(4)Ĝ + Ĝ′′ − θ ′′

θ
Ĝ
}

. (38)

Here, Ĝ is a gauge invariant variable defined by

Ĝ = κ5

2
ã3/2

(
2δφ − φ′ã

ã′ ϕ
)
, (39)

and θ is a function defined as

θ = ã3/2 φ′ã
ã′ . (40)

From the quadratic actions (32), (33), and (38), one can
easily obtain the linear perturbation equations via the Hamil-
tonian variation principle,

δS(2)
v /δv̂μ = 0, (41)

δS(2)
t /δ D̂μν = 0, (42)

δS(2)
s-2 /δĜ = 0, (43)

and the final results are [51] (see also [47]):

vector: �(4)v̂μ = 0, (44)

tensor: �(4) D̂μν + D̂′′
μν − (ã

3
2 )′′

ã
3
2

D̂μν = 0, (45)

scalar: �(4)Ĝ + Ĝ′′ − θ ′′

θ
Ĝ = 0. (46)

Note that the tensor perturbation Eq. (45) has also been
derived directly without using conformal transformation by
the present authors [44]. Obviously, the normal mode of the
vector perturbations has only the zero mode. Therefore, our
solutions are stable against the vector perturbations. For the
tensor and scalar modes, we introduce the following decom-
positions:

D̂μν(x
λ, z) = εμνei pλxλ

ρp(z),

Ĝ(xλ, z) = eiqλxλ

�q(z), (47)

where εμν is the TT polarization tensor.
It is not difficult to show that ρp(z) and �q(z) satisfy the

following equations:

AtA†
t ρp = m2

pρp, (48)

AsA†
s�q = M2

q�q , (49)

where m2
p = −pμ pμ, M2

q = −qμqμ, and

At = d

dz
+ (ã

3
2 )′

ã
3
2

, (50)

As = d

dz
+ θ ′

θ
. (51)

In the theory of supersymmetric quantum mechanics, the
common structure of Eqs. (48) and (49) ensures that both
m2

p and M2
q are semi-positive definite, namely, m2

p, M
2
q ≥ 0

for all p andq. Therefore, our solutions are also stable against
the tensor and scalar perturbations.

Note that in order to make the variables ã, φ, and z
well defined, our solutions must satisfy fR(y) > 0 for
y ∈ (−∞,+∞). One can easily show that our solutions
(11) and (16) satisfy this requirement.

4 The normalization of the tensor zero mode

Equation (48) is in fact a Schrödinger-like equation,

− ρ′′
p + W (z)ρp = m2

pρp, (52)

where the effective potential W (z) reads

W (z) = (ã
3
2 )′′

ã
3
2

= (e
3
2 A f

1
2
R )′′

e
3
2 A f

1
2
R

= 3

4

a′2

a2 + 3

2

a′′

a
+ 3

2

a′ f ′
R

a fR
− 1

4

f ′2
R

f 2
R

+ 1

2

f ′′
R

fR
. (53)

This expression is consistent with the result derived in
Ref. [44].

The spectrum of the tensor KK modes ρp determines
the effective four-dimensional gravity. Let us start with the
zero mode ρ0 with m0 = 0. A normalizable ρ0 leads to
the four-dimensional Newton law [8,47]. Besides, the four-
dimensional Planck constant is finite only when ρ0 is nor-
malizable [47].

From Eq. (48) we know that the zero mode of the tensor
perturbation takes the form

ρ0(z) = NT ã
3/2 = NT e

3
2 A f

1
2
R , (54)

where NT is the normalization constant. The tensor zero
mode ρ0 is normalizable provided

1 =
∫ +∞

−∞
dz|ρ0(z)|2 = N 2

T

∫ +∞

−∞
dz fR(z)e3A(z)

= N 2
T

k

∫ +∞

−∞
dw fR(w)e2A(w). (55)

Here we have used the relation dz = e−A dw
k . For both of our

solutions, the above integration can be done analytically.
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For the triangular model (14), the integration gives

N 2
T

2k
cosh

(√
3π

2

)
= 1, (56)

or

NT ≈ 1.953
√
k. (57)

Similarly, for the polynomial model (17) we get

NT ≈ 0.857
√
k. (58)

Thus, for both of our solutions, the gravitational zero mode is
normalizable and can be localized on the brane, which results
in the familiar Newton law on the brane.

5 Correction to the Newton law

To obtain an acceptable version of four-dimensional grav-
ity, we have to require the massive modes ρp with p > 0
not to lead to unacceptably large corrections to the four-
dimensional Newton law (in this case, we also say that the
massive modes are decoupled). For simplicity, we follow the
study of Ref. [16] and only consider two massive points μ1

and μ2 located at z = 0. We denote the distance between μ1

and μ2 by r .
As has been addressed in Ref. [16], the asymptotic behav-

ior of the effective potential W (z) at |z| → ∞ determines
not only the localization of the zero mode, but also the decou-
pling of the massive modes. The localization of the zero mode
requires that W (|z| → ∞) ≥ 0. If W (|z| → ∞) > 0,
namely, there is a gap between the zero mode and the excited
states; then we will obtain exponentially suppressed cor-
rections to the Newton law. The most interesting case is
W (|z| → ∞) → 0. In this case, the scattering states start at
m = 0, and the decoupling of the massive modes becomes
a delicate issue. An important result of Ref. [16] states that
if the potential W (z) → β(β + 1)/z2 as |z| → ∞, the mas-
sive modes will contribute a correction �U ∝ 1/r2β to the
Newton law at large distance (see also [57]).

As depicted in Fig. 1, the effective potentials correspond-
ing to both of our solutions approach zero as |y| → ∞. They
have the same asymptotic behavior in the z coordinate too,
as the coordinate transformation is simply a redefinition of
y, and the shape of W will not change. Thus, our residual
task is to prove that z2W (z) = β(β + 1) is a constant as
|z| � 1, and to find the exact values of β corresponding to
our solutions.

In fact, if z2W (z) approaches a constant in the z coordi-
nate, it should have the same asymptotic behavior in the w

coordinate, in which all the quantities have analytical forms.

1.0 0.5 0.5 1.0
y

10

5

5

W z y

Triangular model, k 4

Polynomial model, k 1

Fig. 1 Plots of the effective potential W (z(y))

W z2
15

4

4 2 2 4
z

1

2

3

4

W z2

Triangular model, k 7
Polynomial model, k 5.6

Fig. 2 Plots of z2W (z) as a function of z. As |z| → ∞, z2W (z) → 15
4

For instance, in the w coordinate, the effective potential is
expressed as

W (z(w)) = k2
eA(w)∂w

(
eA(w)∂w

(
e

3
2 A f

1
2
R

))

e
3
2 A f

1
2
R

, (59)

and the variable z reads

z(w) =
∫ w

0
dw̄

e−A(w̄)

k
. (60)

For both of our solutions, z2W (z) can be analytically
obtained. Instead of writing down the explicit expres-
sions, we show in Fig. 2 that for both of our solutions
lim|z|→∞ z2W (z) = 15

4 , namely β = 3/2. Thus, the correc-
tions to the Newtonian potential �U ∝ 1/r3 are suppressed
at large r for both of our models.

6 Conclusions

In this paper, we studied two analytically solvable thick RS-
II brane world models in pure metric f (R) gravity theories.
Instead of starting with simple forms of f (R), we began
with two simple types of metric solutions and derived the
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analytical forms of f (R). We obtained two types of f (R)

gravities: a triangular one and a polynomial one.
Then we studied the stability of our solutions against small

linear perturbations, including tensor, vector, and scalar per-
turbations. We found that the solutions are stable against all
types of perturbations.

In the end, we considered the reproduction of the four-
dimensional Newtonian gravity. We first demonstrated that
the tensor zero modes are normalizable and localized on the
brane for both of our models; so the well-known Newton
gravitational law can be reproduced. Then we showed that
for two static mass points localized at z = 0, all the massive
tensor modes contribute a suppressed correction �U ∝ 1/r3

to the Newton law. Therefore, the massive tensor modes are
decoupled.

This work complements the studies of Ref. [46] by adding
a new analytical solution and offering a complete discussion
on the stability of the solutions. Our procedures for finding
analytical solutions might also be useful for cosmologists.
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