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The present paper is devoted to solving a nonlinear inverse problem of identifying a Robin coefficient from boundary temperature
measurement. A numerical algorithmon the basis of the predictor-correctormethod is designed to restore the approximate solution
and the performance of the method is verified by simulating several examples.The convergence with respect to the amount of noise
in the data is also investigated.

1. Introduction

Inverse heat conduction problems have important applica-
tions in many branches of engineering and science, including
the identification of unknown source [1–3], identification
of unknown heat transfer coefficients [4, 5], determination
of boundary conditions [6], and thermal properties [7, 8].
It should be noted that the inverse problems are mostly ill
posed and hence the accurate solutions of such problems are
experimentally difficult to acquire.

In this paper, we investigate an inverse problem arising
in transient convective heat transfer. It consists of estimating
a heat transfer coefficient, also known as a Robin coefficient,
which characterizes the contribution that an interface makes
to the overall thermal resistance to the system. As the value
of the coefficient is of significant practical interest in heat
transfer engineering, various experimental techniques have
been proposed. The conventional technique in thermal engi-
neering employs the empirical correlations which represent
curve fitting through experimental data in a limited range
of flow-field parameters [9]. Some techniques based on
characteristic colour changes of liquid crystal films at a given
temperature [10], or on laser-induced fluorescence [11], rely
in their interpretation on the analytical solution for a semi-
infinite medium to determine the heat transfer coefficient
at a point once the temperature history is obtained from
the experiment. However, the impulsive change in boundary

condition is difficult to achieve in the laboratory, and tradi-
tionally transient experiments have been performed to eval-
uate the heat transfer coefficient for steady-state processes so
that suchmethods are difficult to use in truly time-dependent
process where the heat transfer coefficient depends on time.
Traditionally, partial boundary temperature and heat flux
measurements are used as input to heat conduction models
to extract the heat transfer coefficient values by solving a
Cauchy linear inverse heat conduction problem. However,
Cauchy data measurements may experience some practical
difficulties, for example, in the case of high temperature
hostile environments. Thus, in a more realistic model, we
allow for the convective Robin boundary condition to be
prescribed over the whole boundary and the linkage between
the boundary temperature and heat flux be made through
unknown heat transfer coefficient which varies with time
[12, 13].

In recent decades, most of the theoretical and numerical
results of the related problems are focused on the problem
with Laplace equation [14]. Specifically, Alessandrini et al.
[15] and Chaabane et al. [16] have obtained the stability
estimates for the Robin coefficient. Fasino and Inglese [17, 18]
have proposed some numerical algorithms for determining
the Robin coefficient in a thin domain. Jin [19] has restored a
Robin coefficient in the Laplace equation by using the conju-
gate gradient method. Some other relevant results can also be
found in [20, 21]. Later, the theoretical and numerical studies
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for restoring a Robin coefficient associated with the parabolic
equations have appeared. For example, Onyango et al. [22]
studied this problem using the boundary element method.
Yang et al. [23] identified a Robin coefficient by a conjugate
gradient method. Yan et al. [24] employed the Bayesian
inference approach to recover the Robin coefficient in one-
dimensional transient inverse heat transfer problems. Jin and
Lu [25] analyzed a regularization approach to the Robin
inverse problem as well as its finite-element discretization.
In this paper, we propose a high-efficiency iterative method
based on the characteristics of the equation itself, that is, the
predictor-corrector method, to solve the nonlinear inverse
problem of identifying a time-dependent Robin coefficient.
The traditional iterative method is a powerful tool for solving
the nonlinear problem, but there may be some deficiencies
in computation; for example, there will be a large amount
of computation if the initial value is not appropriate. The
predictor-corrector method is a combination of implicit
algorithm with stability and accuracy and explicit algorithm
with simplicity and thus is the most widely used method in
the linear multistep methods. The method does not require
either a priori information on the unknown solution or very
accurate initial guess data, and it has been successfully applied
to solve some inverse problems (see [26, 27]).

Our paper is organized as follows. In Section 2, we for-
mulate mathematically the identification problem of a Robin
coefficient. In Section 3, the predictor-corrector method
involving the finite difference method is employed to solve
this problem. In Section 4, numerical results for several
examples are presented to show the effectiveness of the
suggested method. Finally, Section 5 ends this paper with a
short conclusion.

2. Mathematical Formulation of the Problem

In this paper, we consider the following inverse heat conduc-
tion problem:

𝑢
𝑡
− 𝑎
2
𝑢
𝑥𝑥
= 0,

(𝑥, 𝑡) ∈ 𝑄 fl (0, 𝐿) × (0, 𝑡max) ,

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ (0, 𝐿) ,

−

𝜕𝑢

𝜕𝑥

(0, 𝑡) + 𝜎 (𝑡) 𝑢 (0, 𝑡) = 𝑔
0
(𝑡) , 𝑡 ∈ (0, 𝑡max) ,

𝜕𝑢

𝜕𝑥

(𝐿, 𝑡) + 𝜎 (𝑡) 𝑢 (𝐿, 𝑡) = 𝑔
1
(𝑡) , 𝑡 ∈ (0, 𝑡max) ,

(1)

where 𝑡max > 0 is an arbitrary fixed time of interest,
𝑎 is thermal diffusivity, 𝜑 is a specified function of space

representing the initial temperature, 𝑔
0
, and 𝑔

1
are specified

functions of time representing the heat flux, and 𝜎(𝑡) is the
Robin coefficient of energy exchange to be determined. It is
well known that problem (1) is a well-posed direct problem if
𝜎(𝑡) is given, and it has been studied extensively, while if 𝜎(𝑡)
is unknown, problem (1) is underdetermined; that is, it is not
realistic to determine both a solution and a Robin coefficient
just from the initial observation 𝜑 and boundary value data
𝑔
0
, 𝑔
1
. Additional information, called “effect,” is necessary

to be measured in order to compensate for the unknown
“causes” of the inverse problems. In this paper, the additional
temperature measurement is given by

𝑢 (0, 𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [0, 𝑡max] . (2)

According to the result in [22, 28], the coefficient 𝜎(𝑡) which
satisfies (1) could be determined uniquely by condition (2).

Theorem 1 (see [22, 28]). Suppose 𝜑(𝑥) ∈ 𝐶1(0, 𝐿) ∩ 𝐶[0, 𝐿],
𝑔
0
(𝑡), 𝑔
1
(𝑡), 𝜓(𝑡) ∈ 𝐶[0, 𝑡max], and |𝜓(𝑡)| > 0 for all 𝑡 ∈

[0, 𝑡max]; then, the solution pair 𝜎(𝑡) ∈ 𝐶[0, 𝑡max] and 𝑢(𝑥, 𝑡) ∈
𝐶
2,1
(𝑄) of the inverse problem (1) and (2) is unique.

In order to solve the inverse problem by using predictor-
corrector method, we first discretize problem (1). Let𝑀 and
𝐽 be the numbers of grid on the space and time domains,
respectively, ℎ = Δ𝑥 = 𝐿/(𝑀 − 1), 𝑥

𝑖
= (𝑖 − 1)ℎ, 𝑖 =

1, 2, . . . ,𝑀, 𝜏 = Δ𝑡 = 𝑡max/(𝐽 − 1), and 𝑡
𝑘
= (𝑘 − 1)𝜏, 𝑘 =

1, 2, . . . , 𝐽. Denote 𝑢𝑘
𝑖
as the approximate value of 𝑢(𝑥

𝑖
, 𝑡
𝑘
).

Then, for 𝑘 = 1, 2, . . . , 𝐽 − 1, the discrete form of (1) is as
follows:

𝑢
𝑘+1

𝑖
− 𝑢
𝑘

𝑖
− 𝑎
2
𝑟 (𝑢
𝑘+1

𝑖+1
− 2𝑢
𝑘+1

𝑖
+ 𝑢
𝑘+1

𝑖−1
) = 0,

𝑖 = 2, 3, . . . ,𝑀 − 1,

𝑢
1

𝑖
= 𝜑
𝑖
,

𝑖 = 1, 2, . . . ,𝑀,

−[

𝑢
𝑘+1

2
− 𝑢
𝑘+1

1

ℎ

−

ℎ (𝑢
𝑘+1

1
− 𝑢
𝑘

1
)

2𝑎
2
𝜏
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𝑘+1
𝑢
𝑘+1

1
= 𝑔
𝑘+1

0
,

𝑢
𝑘+1
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− 𝑢
𝑘+1

𝑀−1

ℎ

+

ℎ (𝑢
𝑘+1

𝑀
− 𝑢
𝑘

𝑀
)

2𝑎
2
𝜏

+ 𝜎
𝑘+1
𝑢
𝑘+1

𝑀
= 𝑔
𝑘+1

1
,

(3)

where 𝑟 = 𝜏/ℎ2. The corresponding matrix notation could be
written as

𝐴
𝑘+1
𝑈
𝑘+1

= 𝑈
𝑘
+ 𝐺
𝑘+1
, (4)

where

𝑈
𝑘
= [𝑢
𝑘

1
, 𝑢
𝑘

2
, . . . , 𝑢

𝑘

𝑀
]

𝑇

,

𝐺
𝑘
=

2𝜏

ℎ

[𝑔
𝑘

0
, 0, . . . , 0, 𝑔

𝑘

1
]

𝑇

,
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𝐴
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=

(

(

(

(

(

(

(

1+ 2𝑎
2
𝑟 +

2𝑎
2
𝜏

ℎ

𝜎
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2
𝑟

−𝑎
2
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𝑟

d d

−𝑎
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𝑟 −𝑎
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𝑟

−2𝑎
2
𝑟 1 + 2𝑎
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2𝑎
2
𝜏

ℎ

𝜎
𝑘+1

)

)

)

)

)

)

)

.

(5)

For given 𝜎(𝑡), from classical textbooks, we know that the
implicit difference scheme is convergent for any 𝑟 > 0.

3. Predictor-Corrector Method

Suppose the conditions in Theorem 1 hold. From the bound-
ary condition in (1) and measurement data (2), the Robin
coefficient could be written as

𝜎 (𝑡) =

𝑔
0
(𝑡) + 𝑢

𝑥
(0, 𝑡)

𝜓 (𝑡)

; (6)

at 𝑡 = 𝑡
𝑘
,

𝜎
𝑘
= 𝜎 (𝑡

𝑘
) =

𝑔
0
(𝑡
𝑘
) + 𝑢
𝑥
(0, 𝑡
𝑘
)

𝜓 (𝑡
𝑘
)

. (7)

Thus, for initial guess data of 𝜎𝑘, which is denoted by 𝜎𝑘(0),
we would obtain the first-order update 𝜎𝑘(1) of 𝜎𝑘 from the
iterative equation (7). Due to

𝜎
1
=

𝑔
0
(𝑡
1
) + 𝜑

(𝑥
1
)

𝜓 (𝑡
1
)

, (8)

it provides a reasonable initial value for 𝜎(𝑡) at 𝑡 = 𝑡
1
. In the

process of computing 𝜎𝑘+1, the initial guess data of 𝜎𝑘+1 are
selected to be 𝜎𝑘+1(0) = 𝜎𝑘, 𝑘 = 1, 2, . . . , 𝐽 − 1.

Assume that we have obtained the value of 𝜎1, 𝜎2, . . . , 𝜎𝑘;
the process of solving 𝜎𝑘+1 and 𝑈𝑘+1 is as follows:

(1) Choose𝜎𝑘+1(0). For simplicity, we choose𝜎𝑘+1(0) = 𝜎𝑘,
𝑘 ≤ 𝐽 − 1.

(2) By using the implicit difference scheme, we solve
problem (1) with 𝜎 = 𝜎

𝑘+1(0) to approximate
𝑢
𝑥
(𝑥
1
, 𝑡
𝑘+1
; 𝜎
𝑘+1(0)

), which is computed by formula
(𝑢
𝑘+1

2
− 𝑢
𝑘+1

1
)/ℎ − (ℎ/2𝑎

2
𝜏)(𝑢
𝑘+1

1
− 𝑢
𝑘

1
).Thus, the first-

order update could be obtained as follows:

𝜎
𝑘+1(1)

=

𝑔
0
(𝑡
𝑘+1
) + 𝑢
𝑥
(𝑥
1
, 𝑡
𝑘+1
; 𝜎
𝑘+1(0)

)

𝜓 (𝑡
𝑘+1
)

. (9)

(3) Choose an arbitrary small positive constant 𝜀 to be the
error bound. Compute |𝜎𝑘+1(1) −𝜎𝑘+1(0)| and compare
it with 𝜀.

If





𝜎
𝑘+1(1)

− 𝜎
𝑘+1(0)




< 𝜀, (10)

then the iteration stops, and we take 𝜎𝑘+1 = 𝜎𝑘+1(1). If





𝜎
𝑘+1(1)

− 𝜎
𝑘+1(0)




≥ 𝜀, (11)

then 𝜎𝑘+1(1) is selected to be new initial guess data,
and go to Step (1); repeat the above procedure until
convergence is achieved.

4. Numerical Results and Discussion

In this section, we present the numerical results obtained by
using the predictor-corrector method described in Section 3
for several examples. In our computation, we always set𝐿 = 1,
𝑡max = 1.

Note that, in practical situations, the data 𝜓 is measured
and inevitably contaminated by noise.Thus, in our examples,
we will replace the exact data 𝜓 by

Ψ
𝛿
= Ψ (1 + 𝛿 rand (size (Ψ))) , (12)

where Ψ is the discrete form of 𝜓 and rand(⋅) generates
arrays of uniform random numbers. To test the accuracy of
the computed approximations, we use the relative root mean
square error 𝑒

𝑟
which is defined as

𝑒
𝑟
=

√∑
𝐽

𝑘=1
(𝜎 (𝑡
𝑘
) − 𝜎
𝑘
)
2

√∑
𝐽

𝑘=1
𝜎
2
(𝑡
𝑘
)

. (13)

We consider the following four examples.

Example 1 (𝑎 = 1, 𝜑(𝑥) = 𝑥
2
+ 1, 𝑔

0
(𝑡) = (𝑡 + 1)(2𝑡 + 1),

𝑔
1
(𝑡) = 2 + 2(𝑡 + 1)

2). The Robin coefficient 𝜎(𝑡) is a smooth
function:

𝜎 (𝑡) = 1 + 𝑡, 0 ≤ 𝑡 ≤ 1. (14)

For this example, the direct problem (1) has the analytical
solution

𝑢 (𝑥, 𝑡) = 𝑥
2
+ 2𝑡 + 1. (15)
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Figure 1: The exact solution 𝜎(𝑡) and its approximations 𝜎𝑘 with (a) 𝛿 = 0% and (b) 𝛿 = 1%, 3%, and 5% for Example 1.

Example 2 (𝑎 = 1, 𝜑(𝑥) = 𝑥
2
+ 1, 𝑔

0
(𝑡) = (1.5 +

sin(2𝜋𝑡))(2𝑡 + 1), 𝑔
1
(𝑡) = 2 + 2(𝑡 + 1)(1.5 + sin(2𝜋𝑡))). The

Robin coefficient 𝜎(𝑡) is a smooth function:

𝜎 (𝑡) = 1.5 + sin (2𝜋𝑡) , 0 ≤ 𝑡 ≤ 1. (16)

For this example, the analytical solution of direct problem
(1) is the same as Example 1. For these two examples, the
numbers of grid on the space-time domain are taken to be
𝑀 = 41, 𝐽 = 41. Some similar examples also have been
investigated previously by Onyango et al. [22] and Yang et al.
[23] by using the boundary element method and a conjugate
gradient method, respectively.

In the following, we consider two examples where there
are no analytical solutions in amore realistic context. Assume
that 𝑎 = √10, 𝜑(𝑥) = 1, 𝑔

0
(𝑡) = 2000, and 𝑔

1
(𝑡) = 0. For these

cases, both𝑀 and 𝐽 are taken to be 81.

Example 3. The Robin coefficient 𝜎(𝑡) is a nonsmooth but
continuous function:

𝜎 (𝑡) =

{

{

{

1 + 2𝑡, 0 ≤ 𝑡 ≤ 0.5,

3 − 2𝑡, 0.5 < 𝑡 ≤ 1.

(17)

Example 4. The Robin coefficient 𝜎(𝑡) is a discontinuous
function:

𝜎 (𝑡) =

{

{

{

2, 0.25 < 𝑡 < 0.75,

1, otherwise.
(18)

As the direct problem (1) does not have an analytical solution
for Examples 3 and 4, the boundary temperature 𝜓 should be
obtained by solving the direct problem. In order to avoid the
notorious “inverse crime,” we will solve the direct problem
on a finer mesh.

Table 1: Number of iterations on every discrete point for Example 1
with 𝛿 = 3%.

𝑡 𝑡
2

𝑡
3

𝑡
4

𝑡
5

𝑡
6

𝑡
7

𝑡
8

𝑡
9

𝑡
10

𝑡
11

𝑡
12

𝑡
13

𝑡
14

𝑘 6 18 17 3 21 9 10 20 8 15 9 19 14
𝑡
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𝑡
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𝑡
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𝑡
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𝑡
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𝑡
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𝑡
21

𝑡
22

𝑡
23

𝑡
24

𝑡
25

𝑡
26

𝑡
27

𝑡
28

15 10 1 13 4 12 14 13 13 13 3 4 12 13
𝑡
29
𝑡
30

𝑡
31

𝑡
32

𝑡
33

𝑡
34

𝑡
35

𝑡
36

𝑡
37

𝑡
38

𝑡
39

𝑡
40

𝑡
41

9 12 13 5 7 7 14 7 10 12 8 10 12

Table 2: The relative errors for four examples with various noise in
the data.

𝛿

𝑒
𝑟

(Example 1)
𝑒
𝑟

(Example 2)
𝑒
𝑟

(Example 3)
𝑒
𝑟

(Example 4)
𝛿 = 0% 0.0007 0.0022 0.0194 0.0248
𝛿 = 1% 0.0152 0.0146 0.0230 0.0273
𝛿 = 3% 0.0456 0.0438 0.0372 0.0395
𝛿 = 5% 0.0757 0.0721 0.0541 0.0554

For Example 1, the numerical solution for 𝜎(𝑡) with exact
data is given in Figure 1(a), and Figure 1(b) is the comparison
of exact solution and its approximations with different noise
in the measurement data. From Figures 1(a) and 1(b), it is
observed that the numerical effect is acceptable, and the
smaller the noise 𝛿, the more accurate the approximations.
The accuracies of the approximations with various noise are
presented in Table 2.

Table 1 lists the number of iterations on every discrete
point 𝑡

𝑘
(𝑘 = 2, 3, . . . , 𝐽) when solving 𝜎𝑘 for Example 1

with 𝛿 = 3% in the data. It is worth noting that we
would achieve the accuracy requirement after several, at most
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Figure 2: The exact solution 𝜎(𝑡) and its approximations 𝜎𝑘 with (a) 𝛿 = 0% and (b) 𝛿 = 1%, 3%, and 5% for Example 2.
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Figure 3: Exact 𝜎(𝑡) and its approximations for (a) 𝜎1 = 2 and (b) 𝜎1 = 10 with 𝛿 = 0.1% for Example 3.

a dozen of, iterations. This table shows the high efficiency of
the predictor-corrector method.

Figures 2(a) and 2(b) give the comparison of exact Robin
coefficient with its approximations with various amount of
noise in the data. From Figure 2(b), we see that, with up to
𝛿 = 5%, the approximate solution of𝜎(𝑡) is in good agreement
with the exact solution.The accuracies of the approximations
with various noise are also presented in Table 2.

As the initial guess data of 𝜎 at 𝑡 = 𝑡
1
is usually difficult

to be obtained in practical application, we test the impact
of initial guess data on the numerical result for Examples 3

and 4, respectively. 𝜎1 is taken to be 2 in Figures 3(a) and
4(a), and 𝜎1 is taken to be 10 in Figures 3(b) and 4(b). From
these figures, it is observed that the approximations converge
quickly to exact solutions for discrete points 𝑡

𝑘
(𝑘 > 2),

and this shows that the predictor-corrector method is not
sensitive to the initial guess.

Figures 5 and 6 show the numerical results for non-
smooth and discontinuous Robin coefficient, respectively.
From these figures, we see that the approximations of Robin
coefficient are in good agreement with the exact one. Gen-
erally speaking, problems with nonsmooth solutions present



6 Mathematical Problems in Engineering

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

t

Exact

Ex
ac

t𝜎
an

d 
its

 ap
pr

ox
im

at
io

n

𝛿 = 0.1%

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

t

Ex
ac

t𝜎
an

d 
its

 ap
pr

ox
im

at
io

n

Exact
𝛿 = 0.1%

(b)

Figure 4: Exact 𝜎(𝑡) and its approximations for (a) 𝜎1 = 2 and (b) 𝜎1 = 10 with 𝛿 = 0.1% for Example 4.
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Figure 5: The exact solution 𝜎(𝑡) and its approximations 𝜎𝑘 with
𝛿 = 1% and 3% for Example 3.

major challenges in numerical computation aspect, and it is
often difficult to obtain accurate approximations, while the
predictor-corrector method works well for this case. From
Table 2, the relative errors for Examples 3 and 4 are as small
as the ones for Examples 1 and 2.This shows the effectiveness
of the algorithm for nonsmooth and discontinuous Robin
coefficient.

5. Conclusion

The inverse problem of restoring an unknown Robin
coefficient in heat conduction problem is investigated by
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Figure 6: The exact solution 𝜎(𝑡) and its approximations 𝜎𝑘 with
𝛿 = 1% and 3% for Example 4.

employing the predictor-corrector method. The method is a
combination of implicit algorithm with stability and explicit
algorithm with simplicity. The numerical results for several
examples show that the approximations can be restored very
well by the suggested method.
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