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This paper is devoted to the study of an SIRS computer virus propagation model with two delays andmultistate antivirus measures.
We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding
critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the
Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem
and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.

1. Introduction

With the rapid development of computer technologies and
network applications, the threat of computer viruses to
the world would become increasingly serious. It is of vital
importance to understand how computer viruses spread
over computer network and to control the computer viruses’
propagation in computer networks. To this end, many math-
ematical models have been studied to illustrate the dynamical
behavior of computer viruses spreading sinceMurray [1] sug-
gested that computer viruses share some traits of biological
viruses. In [2, 3], Kephart and White used the SIS model to
describe the propagation of computer viruses. In [4], Zou et
al. investigated how the spread of red worms is affected by the
worm characteristics based on the SIR model. In [5, 6], Yuan
et al. proposed the SEIR computer virus model and studied
the dynamics of the model, respectively. In [7], Mishra and
Pandey formulated an SEIRS model for the transmission of
worms in computer network through vertical transmission.
In addition, there are also some researchers who proposed
the computer virus models with vaccination and quarantine
strategy [8–10].

In fact, many computer viruses have different kinds of
delays when the viruses spread, such as latent period delay

[11, 12], immunity period delay [12–15], and the delay due
to the period that the anti-virus software needs to clean the
viruses [6]. In [12], Feng et al. proposed the following com-
puter virus propagation model with dual delays and multi-
state antivirus measures based on the classical SIR epidemic
model in [16]:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝𝐴 − 𝛽𝑆 (𝑡 − 𝜏

1
) 𝐼 (𝑡 − 𝜏

1
) − (𝜇 + 𝛾) 𝑆 (𝑡)

+ 𝛿𝑅 (𝑡 − 𝜏
2
) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡 − 𝜏

1
) 𝐼 (𝑡 − 𝜏

1
) − (𝜇 + 𝛼) 𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= (1 − 𝑝)𝐴 + 𝛾𝑆 (𝑡) + 𝛼𝐼 (𝑡) − 𝛿𝑅 (𝑡 − 𝜏

2
) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the numbers of suscep-
tible, infected, and recovered hosts in computer networks at
time 𝑡, respectively. 𝐴 is the number of the hosts which are
attached to the computer networks and 𝑝 is the proportion of
the new hosts which are susceptible. 𝜇 is the death rate of the
hosts. 𝛼, 𝛽, 𝛾, and 𝛿 are the state transition rates between the
classes 𝑆, 𝐼, and 𝑅. 𝜏

1
≥ 0 is the latent period of the computer
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viruses and 𝜏
2
≥ 0 is the temporary immune period of

the recovered hosts. For the convenience of analysis, Feng
et al. [12] let 𝜏

1
= 𝜏
2
; then, system (1) becomes the following

form:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝𝐴 − 𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏) − (𝜇 + 𝛾) 𝑆 (𝑡)

+ 𝛿𝑅 (𝑡 − 𝜏) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏) − (𝜇 + 𝛼) 𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= (1 − 𝑝)𝐴 + 𝛾𝑆 (𝑡) + 𝛼𝐼 (𝑡) − 𝛿𝑅 (𝑡 − 𝜏) − 𝜇𝑅 (𝑡) .

(2)

By regarding the time delay 𝜏 as the bifurcation param-
eter, Feng et al. [12] studied the existence and properties of
Hopf bifurcation of system (2). As is known, it needs some
time to clean the viruses in the infected hosts for the antivirus
software. Therefore, it is reasonable to take into account the
time delay due to the period that the antivirus software uses
to clean the viruses in the infected hosts in system (2). To this
end, we consider the following system with two delays:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝𝐴 − 𝛽𝑆 (𝑡 − 𝜏

1
) 𝐼 (𝑡 − 𝜏

1
) − (𝜇 + 𝛾) 𝑆 (𝑡)

+ 𝛿𝑅 (𝑡 − 𝜏
1
) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡 − 𝜏

1
) 𝐼 (𝑡 − 𝜏

1
) − 𝜇𝐼 (𝑡) − 𝛼𝐼 (𝑡 − 𝜏

2
) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= (1 − 𝑝)𝐴 + 𝛾𝑆 (𝑡) + 𝛼𝐼 (𝑡 − 𝜏

2
) − 𝛿𝑅 (𝑡 − 𝜏

1
)

− 𝜇𝑅 (𝑡) ,

(3)

where 𝜏
1
≥ 0 is the time delay due to the latent period of the

computer viruses and the temporary immune period of the
recovered hosts. 𝜏

2
≥ 0 is the time delay due to the period that

the antivirus software uses to clean the viruses in the infected
hosts.

The remaining materials of this paper are organized
in this fashion: local stability and existence of local Hopf
bifurcation are discussed in Section 2. Properties of the Hopf
bifurcation such as the direction and stability are investigated
in Section 3. Some numerical simulations are carried out to
verify the theoretical results in Section 4 and, finally, this
work is summarized in Section 5.

2. Local Stability and Existence of
Local Hopf Bifurcation

By direct computation, it can be concluded that if 𝑅
0
= ((𝜇 +

𝛿)𝑝𝐴𝛽+(1−𝑝)𝛽𝛿𝐴+(𝜇+𝛼)𝛿𝛾)/(𝜇+𝛼)(𝜇+𝛾)(𝜇+𝛿) > 1, then
system (3) has a unique positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
),

where

𝑆
∗
=
𝜇 + 𝛼

𝛽
,

𝐼
∗
= ((𝜇 + 𝛿) 𝑝𝐴𝛽 + (1 − 𝑝) 𝛽𝛿𝐴 + (𝜇 + 𝛼) 𝛿𝛾

− (𝜇 + 𝛼) (𝜇 + 𝛾) (𝜇 + 𝛿))

× (𝛽(𝜇 + 𝛼)(𝜇 + 𝛿) − 𝛼𝛽𝛿)
−1

,

𝑅
∗
=
(1 − 𝑝)𝐴 + 𝛼𝐼

∗
+ 𝛾𝑆
∗

𝜇 + 𝛿
.

(4)

The characteristic equation of system (3) at 𝐸
∗
is

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 − 𝑎
11
− 𝑏
11
𝑒
−𝜆𝜏1 −𝑏

12
𝑒
−𝜆𝜏1 −𝑏

13
𝑒
−𝜆𝜏1

−𝑏
21
𝑒
−𝜆𝜏1 𝜆 − 𝑎

22
− 𝑏
22
𝑒
−𝜆𝜏1 − 𝑐

22
𝑒
−𝜆𝜏2 0

−𝑎
31

−𝑐
32
𝑒
−𝜆𝜏2 𝜆 − 𝑎

33
− 𝑏
33
𝑒
−𝜆𝜏1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0,

(5)

from which one can obtain

𝜆
3
+ 𝐴
2
𝜆
2
+ 𝐴
1
𝜆 + 𝐴

0
+ (𝐵
2
𝜆
2
+ 𝐵
1
𝜆 + 𝐵
0
) 𝑒
−𝜆𝜏
1

+ (𝐶
2
𝜆
2
+ 𝐶
1
𝜆 + 𝐶

0
) 𝑒
−𝜆𝜏
2 + (𝐷

1
𝜆 + 𝐷

0
) 𝑒
−𝜆(𝜏
1
+𝜏
2
)

+ (𝐸
1
𝜆 + 𝐸
0
) 𝑒
−2𝜆𝜏
1 + 𝐹
0
𝑒
−𝜆(2𝜏

1
+𝜏
2
)
= 0,

(6)

where

𝐴
0
= −𝑎
11
𝑎
22
𝑎
33
, 𝐴

1
= 𝑎
11
𝑎
22
+ 𝑎
11
𝑎
33
+ 𝑎
22
𝑎
33
,

𝐴
2
= − (𝑎

11
+ 𝑎
22
+ 𝑎
33
) ,

𝐵
0
= 𝑎
22
𝑎
31
𝑏
13
− 𝑎
11
𝑎
22
𝑏
33
− 𝑎
11
𝑎
33
𝑏
22
− 𝑎
22
𝑎
33
𝑏
11
,

𝐵
1
= 𝑏
11
(𝑎
22
+ 𝑎
33
) + 𝑏
22
(𝑎
11
+ 𝑎
33
)

+ 𝑏
33
(𝑎
11
+ 𝑎
22
) − 𝑎
31
𝑏
13
,

𝐵
2
= − (𝑏

11
+ 𝑏
22
+ 𝑏
33
) , 𝐶

0
= −𝑎
11
𝑎
33
𝑐
22
,

𝐶
1
= 𝑐
22
(𝑎
11
+ 𝑎
33
) ,

𝐶
2
= −𝑐
22
, 𝐷

0
= 𝑐
22
(𝑎
31
𝑏
13
− 𝑎
11
𝑏
33
− 𝑎
33
𝑏
11
) ,

𝐷
1
= 𝑐
22
(𝑏
11
+ 𝑏
33
) ,

𝐸
0
= 𝑎
31
𝑏
13
𝑏
22
− 𝑏
33
(𝑎
11
𝑏
22
+ 𝑎
22
𝑏
11
) ,

𝐸
1
= 𝑏
33
(𝑏
11
+ 𝑏
22
) , 𝐹

0
= − (𝑏

11
𝑏
33
𝑐
22
+ 𝑏
13
𝑏
21
𝑐
32
) ,

(7)

with

𝑎
11
= − (𝜇 + 𝛾) , 𝑎

22
= −𝜇, 𝑎

31
= 𝛾, 𝑎

33
− 𝜇,

𝑏
11
= −𝛽𝐼

∗
, 𝑏

12
= −𝛽𝑆

∗
, 𝑏

13
= 𝛿, 𝑏

21
= 𝛽𝐼
∗
,

𝑏
22
= 𝛽𝑆
∗
, 𝑏

33
= −𝛿, 𝑐

22
= −𝛼, 𝑐

32
= 𝛼.

(8)
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From the expressions of 𝑏
11
, 𝑏
13
, 𝑏
21
, 𝑏
33
, 𝑐
22
, and 𝑐

32
, one

can obtain 𝐹
0
= 0. Therefore, (6) can be transformed into the

following form:

𝜆
3
+ 𝐴
2
𝜆
2
+ 𝐴
1
𝜆 + 𝐴

0
+ (𝐵
2
𝜆
2
+ 𝐵
1
𝜆 + 𝐵
0
) 𝑒
−𝜆𝜏
1

+ (𝐶
2
𝜆
2
+ 𝐶
1
𝜆 + 𝐶

0
) 𝑒
−𝜆𝜏
2 + (𝐷

1
𝜆 + 𝐷

0
) 𝑒
−𝜆(𝜏
1
+𝜏
2
)

+ (𝐸
1
𝜆 + 𝐸
0
) 𝑒
−2𝜆𝜏
1 = 0.

(9)

Case 1 (𝜏
1
= 𝜏
2
= 0). When 𝜏

1
= 𝜏
2
= 0, (9) is equivalent to

𝜆
3
+ 𝐴
12
𝜆
2
+ 𝐴
11
𝜆 + 𝐴

10
= 0, (10)

where

𝐴
10
= 𝐴
0
+ 𝐵
0
+ 𝐶
0
+ 𝐷
0
+ 𝐸
0
,

𝐴
11
= 𝐴
1
+ 𝐵
1
+ 𝐶
1
+ 𝐷
1
+ 𝐸
1
,

𝐴
12
= 𝐴
2
+ 𝐵
2
+ 𝐶
2
.

(11)

It is easy to get that𝐴
12
= 2𝜇+𝛾+𝛿+𝛽𝐼

∗
> 0. Therefore,

according to the Routh-Hurwitz criterion, we can conclude
that if𝐴

12
𝐴
11
> 𝐴
10
> 0, then the positive equilibrium 𝐸

∗
of

system (3) is locally asymptotically stable when 𝜏
1
= 𝜏
2
= 0.

Case 2 (𝜏
1
> 0, 𝜏
2
= 0). When 𝜏

1
> 0 and 𝜏

2
= 0, (9) becomes

the following:

𝜆
3
+ 𝐴
22
𝜆
2
+ 𝐴
21
𝜆 + 𝐴

20
+ (𝐵
22
𝜆
2
+ 𝐵
21
𝜆 + 𝐵
20
) 𝑒
−𝜆𝜏
1

+ (𝐸
21
𝜆 + 𝐸
20
) 𝑒
−2𝜆𝜏
1 = 0,

(12)

where

𝐴
20
= 𝐴
0
+ 𝐶
0
, 𝐴

21
= 𝐴
1
+ 𝐶
1
,

𝐴
22
= 𝐴
2
+ 𝐶
2
, 𝐵

20
= 𝐵
0
+ 𝐷
0
,

𝐵
21
= 𝐵
1
+ 𝐷
1
, 𝐵

22
= 𝐵
2
,

𝐸
20
= 𝐸
0
, 𝐸

21
= 𝐸
1
.

(13)

Multiplying 𝑒𝜆𝜏1 on both sides of (12), it is easy to get

𝐵
22
𝜆
2
+ 𝐵
21
𝜆 + 𝐵
20
+ (𝜆
3
+ 𝐴
22
𝜆
2
+ 𝐴
21
𝜆 + 𝐴

20
) 𝑒
𝜆𝜏
1

+ (𝐸
21
𝜆 + 𝐸
20
) 𝑒
−𝜆𝜏
1 = 0.

(14)

Let 𝜆 = 𝑖𝜔
1
(𝜔
1
> 0) be the root of (14). Then,

(𝐴
20
+ 𝐸
20
+ 𝐴
22
𝜔
2

1
) cos 𝜏

1
𝜔
1

− (𝐴
21
𝜔
1
− 𝐸
21
𝜔
1
− 𝜔
3

1
) sin 𝜏

1
𝜔
1
= 𝐵
22
𝜔
2

1
− 𝐵
20
,

(𝐴
20
− 𝐸
20
+ 𝐴
22
𝜔
2

1
) sin 𝜏

1
𝜔
1

+ (𝐴
21
𝜔
1
+ 𝐸
21
𝜔
1
− 𝜔
3

1
) cos 𝜏

1
𝜔
1
= −𝐵
21
𝜔
1
.

(15)

Then, one can obtain

cos 𝜏
1
𝜔
1
=

𝑝
24
𝜔
4

1
+ 𝑝
22
𝜔
2

1
+ 𝑝
20

𝜔6
1
+ 𝑞
24
𝜔4
1
+ 𝑞
22
𝜔2
1
+ 𝑞
20

,

sin 𝜏
1
𝜔
1
=

𝑝
25
𝜔
5

1
+ 𝑝
23
𝜔
3

1
+ 𝑝
21
𝜔
1

𝜔6
1
+ 𝑞
24
𝜔4
1
+ 𝑞
22
𝜔2
1
+ 𝑞
20

,

(16)

where

𝑝
20
= 𝐵
20
(𝐸
20
− 𝐴
20
) ,

𝑝
21
= 𝐵
20
(𝐴
21
+ 𝐸
21
) − 𝐵
21
(𝐴
20
+ 𝐸
20
) ,

𝑃
22
= 𝐵
22
(𝐴
20
− 𝐸
20
) − 𝐵
21
(𝐴
21
− 𝐸
21
) + 𝐴
22
𝐵
00
,

𝑝
23
= 𝐴
22
𝐵
21
− 𝐵
20
− 𝐵
22
(𝐴
21
+ 𝐸
21
) ,

𝑝
24
= 𝐵
21
− 𝐴
22
𝐵
22
, 𝑝

25
= 𝐵
22
, 𝑞

20
= 𝐴
2

20
− 𝐸
2

20
,

𝑞
22
= 𝐴
2

21
− 𝐸
2

21
− 2𝐴
20
𝐴
22
, 𝑞

24
= 𝐴
2

22
− 2𝐴
21
.

(17)

Since cos2𝜏
1
𝜔
1
+ sin2𝜏

1
𝜔
1
= 1, we have

𝜔
12

1
+ 𝑒
25
𝜔
10

1
+ 𝑒
24
𝜔
8

1
+ 𝑒
23
𝜔
6

1
+ 𝑒
22
𝜔
4

1
+ 𝑒
21
𝜔
2

1
+ 𝑒
20
= 0,

(18)

where

𝑒
20
= 𝑞
2

20
− 𝑝
2

20
, 𝑒

21
= 2𝑞
20
𝑞
22
− 2𝑝
20
𝑝
22
− 𝑝
2

21
,

𝑒
22
= 𝑞
2

22
− 𝑝
2

22
+ 2𝑞
20
𝑞
24
− 2𝑝
20
𝑝
24
− 2𝑝
21
𝑝
23
,

𝑒
23
= 2𝑞
20
+ 2𝑞
22
𝑞
24
− 2𝑝
22
𝑝
24
− 2𝑝
21
𝑝
25
− 𝑝
2

23
,

𝑒
24
= 𝑞
2

24
− 𝑝
2

24
+ 2𝑞
22
− 2𝑝
23
𝑝
25
, 𝑒

25
= 2𝑞
24
− 𝑝
2

25
.

(19)

Let 𝜔2
1
= V
1
; then, (18) becomes

V6
1
+ 𝑒
25
V5
1
+ 𝑒
24
V4
1
+ 𝑒
23
V3
1
+ 𝑒
22
V2
1
+ 𝑒
21
V
1
+ 𝑒
20
= 0. (20)

In order to give the main results in the present paper, we
make the following assumption.

(𝐻
21
) Equation (20) has at least one positive real root.

If the condition (𝐻
21
) holds, then there exists a positive

root V
10

of (20) which can make (14) have a pair of purely
imaginary roots ±𝑖𝜔

10
= ±𝑖√V10. For 𝜔10, the corresponding

critical value of delay is

𝜏
10
=

1

𝜔
10

arccos
𝑝
24
𝜔
4

10
+ 𝑝
22
𝜔
2

10
+ 𝑝
20

𝜔6
10
+ 𝑞
24
𝜔4
10
+ 𝑞
22
𝜔2
10
+ 𝑞
20

. (21)
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Differentiating (14) with respect to 𝜏
1
, we get

[
𝑑𝜆

𝑑𝜏
1

]

−1

= − (2𝐵
22
𝜆 + 𝐵
21
+ (3𝜆

2
+ 2𝐴
22
𝜆 + 𝐴

21
) 𝑒
𝜆𝜏
1

+ 𝐸
21
𝑒
−𝜆𝜏
1)

× ((𝐸
21
𝜆
2
+ 𝐸
20
𝜆) 𝑒
−𝜆𝜏
1

− (𝜆
4
+ 𝐴
22
𝜆
3
+ 𝐴
21
𝜆
2
+ 𝐴
20
𝜆) 𝑒
𝜆𝜏
1)
−1

−
𝜏
1

𝜆
.

(22)

Thus,

Re [ 𝑑𝜆
𝑑𝜏
1

]

−1

𝜏
1
=𝜏
10

=
𝑃
2𝑅
𝑄
2𝑅
+ 𝑃
2𝐼
𝑄
2𝐼

𝑄2
2𝑅
+ 𝑄2
2𝐼

, (23)

where

𝑃
2𝑅
= (𝐴

21
+ 𝐸
21
− 3𝜔
2

10
) cos 𝜏

10
𝜔
10
− 2𝐴
22
𝜔
10
sin 𝜏
10
𝜔
10

+ 𝐵
21
,

𝑃
2𝐼
= (𝐴

21
− 𝐸
21
− 3𝜔
2

10
) sin 𝜏

10
𝜔
10
+ 2𝐴
22
𝜔
10
cos 𝜏
10
𝜔
10

+ 2𝐵
22
𝜔
10
,

𝑄
2𝑅
= (𝐴

21
𝜔
2

10
− 𝐸
21
𝜔
2

10
− 𝜔
4

10
) cos 𝜏

10
𝜔
10

− (𝐴
22
𝜔
3

10
− 𝐴
20
𝜔
10
− 𝐸
20
𝜔
10
) sin 𝜏

10
𝜔
10
,

𝑄
2𝐼
= (𝐴

21
𝜔
2

10
+ 𝐸
21
𝜔
2

10
− 𝜔
4

10
) sin 𝜏

10
𝜔
10

+ (𝐴
22
𝜔
3

10
− 𝐴
20
𝜔
10
+ 𝐸
20
𝜔
10
) cos 𝜏

10
𝜔
10
.

(24)

It is obvious that if the condition (𝐻
21
) 𝑃
2𝑅
𝑄
2𝑅
+𝑃
2𝐼
𝑄
2𝐼

̸=

0 holds, then Re[𝑑𝜆/𝑑𝜏
1
]
−1

𝜏=𝜏
10

̸= 0. According to the Hopf
bifurcation theorem in [17], the following results hold.

Theorem 1. If the conditions (𝐻
21
)-(𝐻
22
) hold, the positive

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of system (3) is locally asymptoti-

cally stable for 𝜏
1
∈ [0, 𝜏

10
) and system (3) undergoes a Hopf

bifurcation at the positive equilibrium𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
)when 𝜏

1
=

𝜏
10
.

Case 3 (𝜏
1
= 0, 𝜏
2
> 0). When 𝜏

1
= 0 and 𝜏

2
> 0, (9) becomes

𝜆
3
+ 𝐴
32
𝜆
2
+ 𝐴
31
𝜆 + 𝐴

30
+ (𝐶
32
𝜆
2
+ 𝐶
31
𝜆 + 𝐶

30
) 𝑒
−𝜆𝜏
2 = 0,

(25)

where

𝐴
30
= 𝐴
0
+ 𝐵
0
+ 𝐸
0
, 𝐴

31
= 𝐴
1
+ 𝐵
1
+ 𝐸
1
,

𝐴
32
= 𝐴
2
+ 𝐵
2
,

𝐶
30
= 𝐶
0
+ 𝐷
0
, 𝐶

31
= 𝐶
1
+ 𝐷
1
, 𝐶

32
= 𝐶
2
.

(26)

Let 𝜆 = 𝑖𝜔
2
(𝜔
2
> 0) be the root of (25). Then,

𝐶
31
𝜔
2
sin 𝜏
2
𝜔
2
+ (𝐶
30
− 𝐶
32
𝜔
2

2
) cos 𝜏

2
𝜔
2
= 𝐴
32
𝜔
2

2
− 𝐴
30
,

𝐶
31
𝜔
2
cos 𝜏
2
𝜔
2
− (𝐶
30
− 𝐶
32
𝜔
2

2
) sin 𝜏

2
𝜔
2
= 𝜔
3

2
− 𝐴
31
𝜔
2
,

(27)

which follows that

𝜔
6

2
+ 𝑒
32
𝜔
4

2
+ 𝑒
31
𝜔
2

2
+ 𝑒
30
= 0, (28)

with
𝑒
30
= 𝐴
2

30
− 𝐶
2

30
,

𝑒
31
= 𝐴
2

31
− 𝐶
2

31
− 2𝐴
30
𝐴
32
+ 2𝐶
30
𝐶
32
,

𝑒
32
= 𝐴
2

32
− 𝐶
2

32
− 2𝐴
31
.

(29)

Let 𝜔2
2
= V
2
; then, (28) becomes

V3
2
+ 𝑒
32
V2
2
+ 𝑒
31
V
2
+ 𝑒
30
= 0. (30)

Let

𝑓
2
(V
2
) = V3
2
+ 𝑒
32
V2
2
+ 𝑒
31
V
2
+ 𝑒
30
. (31)

Discussion about the roots of (30) is similar to that in [18].

Lemma2. (i) If 𝑒
30
< 0, then (30) has at least one positive root.

(ii) If 𝑒
30
≥ 0 and 𝑒2

32
− 3𝑒
31
≤ 0, then (30) has no positive

root.
(iii) If 𝑒

30
≥ 0 and 𝑒2

32
−3𝑒
31
> 0, then (30) has positive root

if and only if V∗
2
= (−𝑒
32
+ √𝑒2
32
− 3𝑒
31
)/3 > 0 and 𝑓

2
(V∗
2
) < 0.

In what follows, we suppose that the coefficients in (30)
satisfy the following condition:

(𝐻
31
): (a) 𝑒

30
< 0 or (b) 𝑒

30
≥ 0, 𝑒2
32
− 3𝑒
31
> 0, V∗

2
= (−𝑒
32
+

√𝑒2
32
− 3𝑒
31
)/3 > 0, and 𝑓

2
(V∗
2
) < 0.

If the condition (𝐻
31
) holds, we know that there exists a

positive root V
20

of (30) such that (25) has a pair of purely
imaginary roots ±𝑖𝜔

20
= ±𝑖√V20. For 𝜔20, the corresponding

critical value of time delay is

𝜏
20

=
1

𝜔
20

arccos (((𝐶
31
− 𝐴
32
𝐶
32
) 𝜔
4

20

+ (𝐴
30
𝐶
32
− 𝐴
31
𝐶
31
+ 𝐴
32
𝐶
30
) 𝜔
2

20

− 𝐴
30
𝐶
30
)

× (𝐶
32
𝜔
4

20
+ (𝐶
2

31
− 2𝐶
30
𝐶
32
)𝜔
2

20
+ 𝐶
2

30
)
−1

) .

(32)

Differentiating two sides of (25) with respect to 𝜏
2
, we have

[
𝑑𝜆

𝑑𝜏
2

]

−1

= −
3𝜆
2
+ 2𝐴
32
𝜆 + 𝐴

31

𝜆 (𝜆3 + 𝐴
32
𝜆2 + 𝐴

31
𝜆 + 𝐴

30
)

+
2𝐶
32
𝜆 + 𝐶

31

𝜆 (𝐶
32
𝜆2 + 𝐶

31
𝜆 + 𝐶

30
)
−
𝜏
2

𝜆
.

(33)
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Thus,

Re [ 𝑑𝜆
𝑑𝜏
2

]

−1

𝜏
2
=𝜏
20

=
𝑓
󸀠

2
(V
2∗
)

(𝐵
21
𝜔
10
− 𝐵
23
𝜔3
10
)
2

+ (𝐵
24
𝜔4
20
− 𝐵
22
𝜔2
20
+ 𝐵
20
)
2
,

(34)

where 𝑓
2
(V
2
) = V3
2
+ 𝑒
32
V2
2
+ 𝑒
31
V
2
+ 𝑒
30
and V
2∗
= 𝜔
2

20
.

Obviously, if the condition (𝐻
32
) 𝑓
󸀠

2
(V
2∗
) ̸= 0 holds, then

Re[𝑑𝜆/𝑑𝜏
2
]
−1

𝜏
2
=𝜏
20

̸= 0. According to the Hopf bifurcation
theorem in [17], the following results hold.

Theorem 3. If the conditions (𝐻
31
)-(𝐻
32
) hold, the positive

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of system (3) is locally asymptoti-

cally stable for 𝜏
2
∈ [0, 𝜏

20
) and system (3) undergoes a Hopf

bifurcation at 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) when 𝜏

2
= 𝜏
20
.

Case 4 (𝜏
1
> 0, 𝜏
2
> 0, 𝜏
2
∈ (0, 𝜏

20
)). We consider (9) with 𝜏

2

in its stable interval and choose 𝜏
1
as a bifurcation parameter.

Multiplying by 𝑒𝜆𝜏1 , (9) becomes

𝐵
2
𝜆
2
+ 𝐵
1
𝜆 + 𝐵
0
+ (𝜆
3
+ 𝐴
2
𝜆
2
+ 𝐴
1
𝜆 + 𝐴

0
) 𝑒
𝜆𝜏
1

+ (𝐸
1
𝜆 + 𝐸
0
) 𝑒
−𝜆𝜏
1 + (𝐷

1
𝜆 + 𝐷

0
) 𝑒
−𝜆𝜏
2

+ (𝐶
2
𝜆
2
+ 𝐶
1
𝜆 + 𝐶

0
) 𝑒
𝜆(𝜏
1
−𝜏
2
)
= 0.

(35)

Let 𝜆 = 𝑖𝜔
1∗
(𝜔
1∗
> 0) be the root of (35). Then,

𝑀
41
cos 𝜏
1
𝜔
1∗
−𝑀
42
sin 𝜏
1
𝜔
1∗
= 𝑀
43
,

𝑀
44
sin 𝜏
1
𝜔
1∗
+𝑀
45
cos 𝜏
1
𝜔
1∗
= 𝑀
46
,

(36)

where

𝑀
41
= 𝐴
0
+ 𝐸
0
− 𝐴
2
𝜔
2

1∗
+ (𝐶
0
− 𝐶
2
𝜔
2

1∗
) cos 𝜏

2
𝜔
1∗

+ 𝐶
1
𝜔
1∗
sin 𝜏
2
𝜔
1∗
,

𝑀
42
= 𝐴
1
𝜔
1∗
− 𝐸
1
𝜔
1∗
− 𝜔
3

1∗
− (𝐶
0
− 𝐶
2
𝜔
2

1∗
) sin 𝜏

2
𝜔
1∗

+ 𝐶
1
𝜔
1∗
cos 𝜏
2
𝜔
1∗
,

𝑀
43
= 𝐵
2
𝜔
2

1∗
− 𝐵
0
− 𝐷
1
𝜔
1∗
sin 𝜏
2
𝜔
1∗
− 𝐷
0
cos 𝜏
2
𝜔
1∗
,

𝑀
44
= 𝐴
0
− 𝐸
0
− 𝐴
2
𝜔
2

1∗
+ (𝐶
0
− 𝐶
2
𝜔
2

1∗
) cos 𝜏

2
𝜔
1∗

+ 𝐶
1
𝜔
1∗
sin 𝜏
2
𝜔
1∗
,

𝑀
45
= 𝐴
1
𝜔
1∗
+ 𝐸
1
𝜔
1∗
− 𝜔
3

1∗
− (𝐶
0
− 𝐶
2
𝜔
2

1∗
) sin 𝜏

2
𝜔
1∗

+ 𝐶
1
𝜔
1∗
cos 𝜏
2
𝜔
1∗
,

𝑀
46
= − 𝐵

1
𝜔
1∗
+ 𝐷
0
sin 𝜏
2
𝜔
1∗
− 𝐷
1
𝜔
1∗
cos 𝜏
2
𝜔
1∗
.

(37)

Then, we can obtain
cos 𝜏
1
𝜔
1∗

=
ℎ
40
(𝜔
1∗
) + ℎ
41
(𝜔
1∗
) cos 𝜏

2
𝜔
1∗
+ ℎ
42
(𝜔
1∗
) sin 𝜏

2
𝜔
1∗

𝑔
40
(𝜔
1∗
) + 𝑔
41
(𝜔
1∗
) cos 𝜏

2
𝜔
1∗
+ 𝑔
42
(𝜔
1∗
) sin 𝜏

2
𝜔
1∗

,

sin 𝜏
1
𝜔
1∗

=
ℎ
󸀠

40
(𝜔
1∗
) + ℎ
󸀠

41
(𝜔
1∗
) cos 𝜏

2
𝜔
1∗
+ ℎ
󸀠

42
(𝜔
1∗
) sin 𝜏

2
𝜔
1∗

𝑔
40
(𝜔
1∗
) + 𝑔
41
(𝜔
1∗
) cos 𝜏

2
𝜔
1∗
+ 𝑔
42
(𝜔
1∗
) sin 𝜏

2
𝜔
1∗

,

(38)

where
𝑔
40
(𝜔
1∗
) = 𝜔
6

1∗
+ (𝐴
2

2
+ 𝐶
2

2
− 2𝐴
1
) 𝜔
4

1∗

+ (𝐴
2

1
+ 𝐶
2

1
− 𝐸
2

1
− 2𝐴
0
𝐴
2
− 2𝐶
0
𝐶
2
) 𝜔
2

1∗

+ 𝐴
2

0
+ 𝐶
2

0
− 𝐶
2

0
,

𝑔
41
(𝜔
1∗
) = 2 (𝐴

2
𝐶
2
− 𝐶
1
) 𝜔
4

1∗

+ 2 (𝐴
1
𝐶
1
− 𝐴
0
𝐶
2
− 𝐴
2
𝐶
0
) 𝜔
2

1∗
+ 2𝐴
0
𝐶
0
,

𝑔
42
(𝜔
1∗
) = − 2𝐶

2
𝜔
5

1∗
+ 2 (𝐴

1
𝐶
2
− 𝐴
2
𝐶
1
− 𝐶
0
) 𝜔
3

1∗

+ 2 (𝐴
0
𝐶
1
− 𝐴
1
𝐶
0
) 𝜔
1∗
,

ℎ
40
(𝜔
1∗
) = (𝐵

1
+ 𝐴
2
𝐵
2
) 𝜔
4

1∗

+ [𝐴
2
𝐵
0
− 𝐶
1
𝐷
1
+ 𝐶
2
𝐷
0
− 𝐵
1
(𝐴
1
− 𝐸
1
)

+ 𝐵
2
(𝐴
0
− 𝐸
0
)] 𝜔
2

1∗

+ 𝐵
0
(𝐸
0
− 𝐴
0
) − 𝐶
0
𝐷
0
,

ℎ
41
(𝜔
1∗
) = (𝐷

1
− 𝐵
2
𝐶
2
) 𝜔
4

1∗

+ [𝐴
2
𝐷
0
+ 𝐵
0
𝐶
2
− 𝐵
1
𝐶
1

+ 𝐵
2
𝐶
0
+ 𝐷
1
(𝐸
1
− 𝐴
1
)] 𝜔
2

1∗

+ 𝐷
0
(𝐸
0
− 𝐴
0
) − 𝐵
0
𝐶
0
,

ℎ
42
(𝜔
1∗
) = (𝐴

2
𝐷
1
− 𝐵
1
𝐶
2
+ 𝐵
2
𝐶
1
− 𝐷
0
) 𝜔
3

1∗

+ [𝐷
0
(𝐴
1
− 𝐸
1
) − 𝐷
1
(𝐴
0
− 𝐸
0
)

+ 𝐵
1
𝐶
0
− 𝐵
0
𝐶
1
] 𝜔
1∗
,

ℎ
󸀠

40
(𝜔
1∗
) = 𝐵
2
𝜔
5

1∗

+ [𝐴
2
𝐵
1
+ 𝐶
2
𝐷
1
− 𝐵
0
− 𝐵
2
(𝐴
1
+ 𝐸
1
)] 𝜔
3

1∗

+ [𝐵
0
(𝐴
1
+ 𝐸
1
) − 𝐵
1
(𝐴
0
+ 𝐸
0
)

− 𝐶
0
𝐷
1
+ 𝐶
1
𝐷
0
] 𝜔
1∗
,

ℎ
󸀠

41
(𝜔
1∗
) = (𝐴

2
𝐷
1
+ 𝐵
1
𝐶
2
− 𝐵
2
𝐶
1
− 𝐷
0
) 𝜔
3

1∗

+ [𝐷
0
(𝐴
1
+ 𝐸
1
) − 𝐷
1
(𝐴
0
+ 𝐸
0
)

+ 𝐵
0
𝐶
1
− 𝐵
1
𝐶
0
] 𝜔
1∗
,
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ℎ
󸀠

42
(𝜔
1∗
) = − (𝐵

2
𝐶
2
+ 𝐷
1
) 𝜔
4

1∗

+ [𝐵
0
𝐶
2
− 𝐵
1
𝐶
1
− 𝐴
2
𝐷
0
+ 𝐵
2
𝐶
0

+ 𝐷
1
(𝐴
1
+ 𝐸
1
)] 𝜔
2

1∗

+ 𝐷
0
(𝐴
0
+ 𝐸
0
) − 𝐵
0
𝐶
0
.

(39)

Then, we can get a function with respect to 𝜔
1∗
:

cos2𝜏
1
𝜔
1∗
+ sin2𝜏

1
𝜔
1∗
= 1. (40)

Next, we suppose that (𝐻
41
): (40) has at least one positive

real root.
If the condition (𝐻

41
) holds, then there exists a 𝜔∗

10
such

that (35) has a pair of purely imaginary roots ±𝑖𝜔∗
10
. For 𝜔∗

10
,

the corresponding critical value of time delay is

𝜏
∗

10
=

1

𝜔∗
10

arccos ((ℎ
40
(𝜔
∗

10
) + ℎ
41
(𝜔
∗

10
) cos 𝜏

2
𝜔
∗

10

+ ℎ
42
(𝜔
∗

10
) sin 𝜏

2
𝜔
∗

10
)

× (𝑔
40
(𝜔
∗

10
) + 𝑔
41
(𝜔
∗

10
) cos 𝜏

2
𝜔
∗

10

+ 𝑔
42
(𝜔
∗

10
) sin 𝜏

2
𝜔
∗

10
)
−1

) .

(41)

Taking the derivative with respect to 𝜏
1
in (35), we get

[
𝑑𝜆

𝑑𝜏
1

]

−1

=
𝑔
41
(𝜆)

𝑔
42
(𝜆)

−
𝜏
1

𝜆
, (42)

where

𝑔
41
(𝜆) = 2𝐵

2
𝜆 + 𝐵
1
+ 𝐸
1
𝑒
−𝜆𝜏
1 + (3𝜆

2
+ 2𝐴
2
𝜆 + 𝐴

1
) 𝑒
𝜆𝜏
1

− (𝜏
2
𝐷
1
𝜆 − 𝐷

1
+ 𝜏
2
𝐷
0
) 𝑒
−𝜆𝜏
2

− [𝜏
2
𝐶
2
𝜆
2
− (2𝐶

2
− 𝜏
2
𝐶
1
) 𝜆 + 𝐶

1
− 𝜏
2
𝐶
0
] 𝑒
𝜆(𝜏
1
−𝜏
2
)
,

𝑔
42
(𝜆) = (𝐸

1
𝜆
2
+ 𝐸
0
𝜆) 𝑒
−𝜆𝜏
1

− (𝜆
4
+ 𝐴
2
𝜆
3
+ 𝐴
1
𝜆
2
+ 𝐴
0
𝜆) 𝑒
𝜆𝜏
1

− (𝐶
2
𝜆
3
+ 𝐶
1
𝜆
2
+ 𝐶
0
𝜆) 𝑒
𝜆(𝜏
1
−𝜏
2
)
.

(43)

Thus,

Re [ 𝑑𝜆
𝑑𝜏
1

]

−1

𝜏
1
=𝜏
∗

10

=
𝑃
4𝑅
𝑄
4𝑅
+ 𝑃
4𝐼
𝑄
4𝐼

𝑄2
4𝑅
+ 𝑄2
4𝐼

, (44)

where

𝑃
4𝑅
= 𝐵
1
+ (𝐷
1
− 𝜏
2
𝐷
0
) cos 𝜏

2
𝜔
∗

10
− 𝜏
2
𝐷
1
𝜔
∗

10
sin 𝜏
2
𝜔
∗

10

+ [𝐴
1
+ 𝐸
1
− 3 (𝜔

∗

10
)
2

+ (𝜏
2
𝐶
2
(𝜔
∗

10
)
2

+ 𝜏
2
𝐶
0
− 𝐶
1
) cos 𝜏

2
𝜔
∗

10

+ (2𝐶
2
− 𝜏
2
𝐶
1
) sin 𝜏

2
𝜔
∗

10
] cos 𝜏∗

10
𝜔
∗

10

+ [(𝜏
2
𝐶
2
(𝜔
∗

10
)
2

+ 𝜏
2
𝐶
0
− 𝐶
1
) sin 𝜏

2
𝜔
∗

10

− (2𝐶
2
− 𝜏
2
𝐶
1
) − 2𝐴

2
𝜔
∗

10
] sin 𝜏∗

10
𝜔
∗

10
,

𝑃
4𝐼
= 2𝐵
2
𝜔
∗

10
− (𝐷
1
− 𝜏
2
𝐷
0
) sin 𝜏

2
𝜔
∗

10
− 𝜏
1
𝐷
1
𝜔
∗

10
cos 𝜏
2
𝜔
∗

10

+ [𝐴
1
− 𝐸
1
− 3 (𝜔

∗

10
)
2

+ (𝜏
2
𝐶
2
(𝜔
∗

10
)
2

+ 𝜏
2
𝐶
0
− 𝐶
1
) cos 𝜏

2
𝜔
∗

10

+ (2𝐶
2
− 𝜏
2
𝐶
1
) sin 𝜏

2
𝜔
∗

10
] sin 𝜏∗

10
𝜔
∗

10

+ [2𝐴
2
𝜔
∗

10
− (𝜏
2
𝐶
2
(𝜔
∗

10
)
2

+ 𝜏
2
𝐶
0
− 𝐶
1
) cos 𝜏

2
𝜔
∗

10

+ (2𝐶
2
− 𝜏
2
𝐶
1
) sin 𝜏

2
𝜔
∗

10
] cos 𝜏∗

10
𝜔
∗

10
,

𝑄
4𝑅
= [𝐴

0
𝜔
∗

10
+ 𝐸
0
𝜔
∗

10
− 𝐴
2
(𝜔
∗

10
)
3

+ 𝐶
1
(𝜔
∗

10
)
2 sin 𝜏

2
𝜔
∗

10

− (𝐶
2
(𝜔
∗

10
)
3

− 𝐶
0
𝜔
∗

10
) cos 𝜏

2
𝜔
∗

10
] sin 𝜏∗

10
𝜔
∗

10

+ [𝐴
1
(𝜔
∗

10
)
2

− 𝐸
1
(𝜔
∗

10
)
2

− (𝜔
∗

10
)
4

+ 𝐶
1
(𝜔
∗

10
)
2 cos 𝜏

2
𝜔
∗

10

+ (𝐶
2
(𝜔
∗

10
)
3

− 𝐶
0
𝜔
∗

10
) sin 𝜏

2
𝜔
∗

10
] cos 𝜏∗

10
𝜔
∗

10
,

𝑄
4𝐼
= [𝐴

2
(𝜔
∗

10
)
3

− 𝐴
0
𝜔
∗

10
+ 𝐸
0
𝜔
∗

10
− 𝐶
1
(𝜔
∗

10
)
2 sin 𝜏

2
𝜔
∗

10

+ (𝐶
2
(𝜔
∗

10
)
3

− 𝐶
0
𝜔
∗

10
) cos 𝜏

2
𝜔
∗

10
] cos 𝜏∗

10
𝜔
∗

10

+ [𝐴
1
(𝜔
∗

10
)
2

+ 𝐸
1
(𝜔
∗

10
)
2

− (𝜔
∗

10
)
4

+ 𝐶
1
(𝜔
∗

10
)
2 cos 𝜏

2
𝜔
∗

10

+ (𝐶
2
(𝜔
∗

10
)
3

− 𝐶
0
𝜔
∗

10
) sin 𝜏

2
𝜔
∗

10
] sin 𝜏∗

10
𝜔
∗

10
.

(45)

Thus, if the condition (𝐻
42
) 𝑃
4𝑅
𝑄
4𝑅
+ 𝑃
4𝐼
𝑄
4𝐼

̸= 0 holds,
then Re[𝑑𝜆/𝑑𝜏]−1

𝜏
1
=𝜏
∗

10

̸= 0, which implies that the transversal-
ity condition is satisfied. According to the Hopf bifurcation
theorem in [17], we can conclude the discussions above as
follows.

Theorem 4. If the conditions (𝐻
41
)-(𝐻
42
) hold and 𝜏

2
∈

(0, 𝜏
20
), the positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of system (3) is

locally asymptotically stable for 𝜏
1
∈ [0, 𝜏

∗

10
) and system (3)

undergoes a Hopf bifurcation at 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) when 𝜏

1
= 𝜏
∗

10
.
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Figure 1: 𝐸
∗
is locally asymptotically stable for 𝜏

1
= 2.3750 < 𝜏

10
= 2.8957.

Case 5 (𝜏
1
> 0, 𝜏
2
> 0 and 𝜏

1
∈ (0, 𝜏

10
)). We consider (9) with

𝜏
1
in its stable interval and 𝜏

2
is considered as a bifurcation

parameter.
Let 𝜆 = 𝑖𝜔

2∗
(𝜔
2∗
> 0) be the root of (9). Then,

𝑀
51
sin 𝜏
2
𝜔
2∗
+𝑀
52
cos 𝜏
2
𝜔
2∗
= 𝑀
53
,

𝑀
51
cos 𝜏
2
𝜔
2∗
−𝑀
52
sin 𝜏
2
𝜔
2∗
= 𝑀
54
,

(46)

where

𝑀
51
= 𝐶
1
𝜔
2∗
− 𝐷
0
sin 𝜏
1
𝜔
2∗
+ 𝐷
1
𝜔
2∗
cos 𝜏
1
𝜔
2∗
,

𝑀
52
= 𝐶
0
− 𝐶
2
𝜔
2

2∗
+ 𝐷
0
cos 𝜏
1
𝜔
2∗
+ 𝐷
1
𝜔
2∗
sin 𝜏
1
𝜔
2∗
,

𝑀
53
= 𝐴
2
𝜔
2

2∗
− 𝐴
0
− 𝐵
1
𝜔
2∗
sin 𝜏
1
𝜔
2∗

− (𝐵
0
− 𝐵
2
𝜔
2

2∗
) cos 𝜏

1
𝜔
2∗

− 𝐸
1
𝜔
2∗
sin 2𝜏

1
𝜔
2∗
− 𝐸
0
cos 2𝜏

1
𝜔
2∗
,

𝑀
54
= 𝜔
3

2∗
− 𝐴
1
𝜔
2∗
− 𝐵
1
𝜔
2∗
cos 𝜏
1
𝜔
2∗

+ (𝐵
0
− 𝐵
2
𝜔
2

2∗
) sin 𝜏

1
𝜔
2∗

− 𝐸
1
𝜔
2∗
cos 2𝜏

1
𝜔
2∗
+ 𝐸
0
sin 2𝜏

1
𝜔
2∗
.

(47)

Then, we have

𝑔
50
(𝜔
2∗
) + 𝑔
51
(𝜔
2∗
) cos 𝜏

1
𝜔
2∗
+ 𝑔
52
(𝜔
2∗
) sin 𝜏

1
𝜔
2∗

+ 𝑔
53
(𝜔
2∗
) cos 2𝜏

1
𝜔
2∗
+ 𝑔
54
(𝜔
2∗
) sin 2𝜏

1
𝜔
2∗
= 0,

(48)

where

𝑔
50
(𝜔
2∗
) = 𝜔
6

2∗
+ (𝐴
2

2
+ 𝐵
2

2
− 𝐶
2

2
− 2𝐴
1
) 𝜔
4

2∗

+ (𝐴
2

1
+ 𝐵
2

1
− 𝐶
2

1
− 𝐷
2

1
− 𝐸
2

1
− 2𝐴
0
𝐴
2

− 2𝐵
0
𝐵
2
+ 2𝐶
0
𝐶
2
) 𝜔
2

2∗

+ 𝐴
2

0
− 𝐶
2

0
− 𝐷
2

0
+ 𝐸
2

0
,

𝑔
51
(𝜔
2∗
) = 2 (𝐴

2
𝐵
2
− 𝐵
1
) 𝜔
4

2∗

+ 2 (𝐴
1
𝐵
1
− 𝐴
0
𝐵
2
− 𝐴
2
𝐵
0
− 𝐶
1
𝐷
1
+ 𝐶
2
𝐷
0
) 𝜔
2

2∗

+ 2 (𝐴
0
𝐵
0
− 𝐶
0
𝐷
0
) ,

𝑔
52
(𝜔
2∗
) = − 2𝐵

2
𝜔
5

2∗
+ 2 (𝐴

1
𝐵
2
− 𝐴
2
𝐵
1
+ 𝐶
2
𝐷
1
+ 𝐵
0
) 𝜔
3

2∗

+ 2 (𝐴
0
𝐵
1
− 𝐴
1
𝐵
0
− 𝐶
0
𝐷
1
+ 𝐶
1
𝐷
0
) 𝜔
2∗
,
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Figure 2: 𝐸
∗
is unstable for 𝜏

1
= 3.2950 > 𝜏

10
= 2.8957.

𝑔
53
(𝜔
2∗
) = − 2𝐸

1
𝜔
4

2∗
+ 2 (𝐴

1
𝐸
1
− 𝐴
2
𝐸
0
) 𝜔
2

2∗
+ 2𝐴
0
𝐸
0
,

𝑔
54
(𝜔
2∗
) = 2 (𝐸

0
− 𝐴
2
𝐸
1
) 𝜔
3

2∗
+ 2 (𝐴

0
𝐸
1
− 𝐴
1
𝐸
0
) 𝜔
2∗
.

(49)

Similar to Case 4, we suppose that (𝐻
51
): (48) has at least

one positive real root. If the condition (𝐻
51
) holds, then there

exists a 𝜔∗
20
such that (9) has a pair of purely imaginary roots

±𝑖𝜔
∗

20
. For 𝜔∗

20
, the corresponding critical value of time delay

is

𝜏
∗

20
=

1

𝜔∗
20

arccos
𝑀
51
×𝑀
54
+𝑀
52
×𝑀
53

𝑀2
51
+𝑀2
52

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏
2
=𝜏
∗

20

. (50)

Differentiating (9) with respect to 𝜏
2
, we have

[
𝑑𝜆

𝑑𝜏
2

]

−1

=
𝑔
51
(𝜆)

𝑔
52
(𝜆)

−
𝜏
2

𝜆
, (51)

where
𝑔
51
(𝜆) = 3𝜆

2
+ 2𝐴
2
𝜆 + 𝐴

1

+ [(2𝐵
2
− 𝜏
1
𝐵
1
) 𝜆 − 𝜏

1
𝐵
2
𝜆
2
+ 𝐵
1
− 𝜏
1
𝐵
0
] 𝑒
−𝜆𝜏
1

+ (2𝐶
2
𝜆 + 𝐶

1
) 𝑒
−𝜆𝜏
2

+ (𝐷
1
− 𝜏
1
𝐷
0
− 𝜏
1
𝐷
1
𝜆) 𝑒
−𝜆(𝜏
1
+𝜏
2
)

+ (𝐸
1
− 2𝜏
1
𝐸
0
− 2𝜏
1
𝐸
1
𝜆) 𝑒
−2𝜆𝜏
1 ,

𝑔
52
(𝜆) = (𝐶

2
𝜆
3
+ 𝐶
1
𝜆
2
+ 𝐶
0
𝜆) 𝑒
−𝜆𝜏
2

+ (𝐷
1
𝜆
2
+ 𝐷
0
𝜆) 𝑒
−𝜆(𝜏
1
+𝜏
2
)
.

(52)

Define

Re [ 𝑑𝜆
𝑑𝜏
2

]

−1

𝜏
2
=𝜏
∗

20

=
𝑃
5𝑅
𝑄
5𝑅
+ 𝑃
5𝐼
𝑄
5𝐼

𝑄2
5𝑅
+ 𝑄2
5𝐼

. (53)

If the condition (𝐻
52
) 𝑃
5𝑅
𝑄
5𝑅
+ 𝑃
5𝐼
𝑄
5𝐼

̸= 0 holds, then
Re[𝑑𝜆/𝑑𝜏

1
]
−1

𝜏
2
=𝜏
∗

20

̸= 0. Therefore, according to the Hopf bifur-
cation theorem in [17], we can conclude the discussions above
as follows.
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Figure 3: 𝐸
∗
is locally asymptotically stable for 𝜏

2
= 7.2500 < 𝜏

20
= 8.4669.

Theorem 5. If the conditions (𝐻
51
)-(𝐻
52
) hold and 𝜏

1
∈

(0, 𝜏
10
), the positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of system (3)

is locally asymptotically stable for 𝜏
2
∈ [0, 𝜏

∗

20
) and system

(3) undergoes a Hopf bifurcation at 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) when 𝜏

2
=

𝜏
∗

20
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we determine the properties of the Hopf
bifurcation of system (3) with respect to 𝜏

2
for 𝜏
1
∈ (0, 𝜏

10
).

Throughout this section, we assume that 𝜏
1∗
< 𝜏
∗

20
, where 𝜏

1
∈

(0, 𝜏
10
).

Let 𝜏
2
= 𝜏
∗

20
+𝜇, 𝜇 ∈ 𝑅; then, 𝜇 = 0 is the Hopf bifurcation

value of system (3). Rescale the time delay 𝑡 → (𝑡/𝜏
2
). Let

𝑢
1
(𝑡) = 𝑆(𝑡) − 𝑆

∗
, let 𝑢
2
(𝑡) = 𝐼(𝑡) − 𝐼

∗
, and let 𝑢

3
(𝑡) = 𝑅(𝑡) −

𝑅
∗
; then, system (3) can be transformed into an FDE in 𝐶 =

𝐶([−1, 0], 𝑅
3
):

𝑢̇ (𝑡) = 𝐿
𝜇
𝑢
𝑡
+ 𝐹 (𝜇, 𝑢

𝑡
) , (54)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), 𝑢
3
(𝑡))
𝑇 and 𝐿

𝜇
: 𝐶 → 𝑅

3 and 𝐹 :
𝑅 × 𝐶 → 𝑅

3 are given, respectively, by

𝐿
𝜇
𝜙 = (𝜏

∗

20
+ 𝜇)(𝐴

󸀠
𝜙 (0) + 𝐵

󸀠
𝜙(−

𝜏
1∗

𝜏∗
20

) + 𝐶
󸀠
𝜙 (−1)) ,

𝐹 (𝜇, 𝜙) = (𝜏
∗

20
+ 𝜇)(

−𝛽𝜙
1
(−

𝜏
1∗

𝜏∗
20

)𝜙
2
(−

𝜏
1∗

𝜏∗
20

)

𝛽𝜙
1
(−

𝜏
1∗

𝜏∗
20

)𝜙
2
(−

𝜏
1∗

𝜏∗
20

)

0

),

(55)

with

𝐴
󸀠
= (

𝑎
11

0 0

0 𝑎
22

0

𝑎
31

0 𝑎
33

) , 𝐵
󸀠
= (

𝑏
11

𝑏
12

𝑏
13

𝑏
21

𝑏
22

0

0 0 𝑏
33

) ,

𝐶
󸀠
= (

0 0 0

0 𝑐
22

0

0 𝑐
32

0

) .

(56)
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Figure 4: 𝐸
∗
is unstable for 𝜏

2
= 10.7500 > 𝜏

20
= 8.4669.

By the Riesz representation theorem, there exists a func-
tion 𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1, 0] such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅
3
) . (57)

In fact, we can choose

𝜂 (𝜃, 𝜇) =

{{{{{{{{

{{{{{{{{

{

(𝜏
∗

20
+ 𝜇) (𝐴

󸀠
+ 𝐵
󸀠
+ 𝐶
󸀠
) , 𝜃 = 0,

(𝜏
∗

20
+ 𝜇) (𝐵

󸀠
+ 𝐶
󸀠
) , 𝜃 ∈ [−

𝜏
1∗

𝜏∗
20

, 0) ,

(𝜏
∗

20
+ 𝜇)𝐶

󸀠
, 𝜃 ∈ (−1, −

𝜏
1∗

𝜏∗
20

) ,

0, 𝜃 = −1.

(58)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅3), we define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, −1 ≤ 𝜃 < 0,

∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, −1 ≤ 𝜃 < 0,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(59)

Then, system (54) is equivalent to

𝑢̇ (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (60)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜑 ∈ 𝐶([−1, 0], (𝑅3)∗), define

𝐴
∗
(𝜑) =

{{

{{

{

−
𝑑𝜑 (𝑠)

𝑑𝑠
, 0 < 𝑠 ≤ 1,

∫

0

−1

𝑑𝜂
𝑇
(𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0,

(61)

and the bilinear form

⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩

= 𝜑 (0) 𝜙 (0) − ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(62)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Let 𝑞(𝜃) = (1, 𝑞

2
, 𝑞
3
)
𝑇
𝑒
𝑖𝜔
∗

20
𝜏
∗

20
𝜃 and 𝑞

∗
(𝑠) = 𝑉(1, 𝑞

∗

2
,

𝑞
∗

3
)𝑒
𝑖𝜔
∗

20
𝜏
∗

20
𝑠 be the eigenvectors of 𝐴 and 𝐴∗ corresponding to
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Figure 5: 𝐸
∗
is locally asymptotically stable for 𝜏

1
= 2.0300 < 𝜏

∗

10
= 2.5386 and 𝜏

2
= 1.05.

+𝑖𝜔
∗

20
𝜏
∗

20
and −𝑖𝜔∗

20
𝜏
∗

20
, respectively. By a direction computa-

tion, we get

𝑞
2
=

𝑏
21
𝑒
−𝑖𝜔
∗

20
𝜏
1∗

𝑖𝜔∗
20
− 𝑎
22
− 𝑏
22
𝑒−𝑖𝜔
∗

20
𝜏
1∗ − 𝑐
22
𝑒−𝑖𝜔
∗

20
𝜏
∗

20

,

𝑞
3
=
𝑖𝜔
∗

20
− 𝑎
11
− 𝑏
11
𝑒
−𝑖𝜔
∗

20
𝜏
1∗ − 𝑏
12
𝑒
−𝑖𝜔
∗

20
𝜏
1∗𝑞
2

𝑏
13
𝑒−𝑖𝜔
∗

20
𝜏
1∗

,

𝑞
∗

2
= −

𝑏
12
𝑒
−𝑖𝜔
∗

20
𝜏
1∗ + 𝑐
32
𝑒
−𝑖𝜔
∗

20
𝜏
∗

20𝑞
∗

3

𝑖𝜔∗
20
+ 𝑎
22
+ 𝑏
22
𝑒−𝑖𝜔
∗

20
𝜏
1∗ + 𝑐
22
𝑒−𝑖𝜔
∗

20
𝜏
∗

20

,

𝑞
∗

3
= −

𝑏
13
𝑒
−𝑖𝜔
∗

20
𝜏
1∗

𝑖𝜔∗
20
+ 𝑎
33
+ 𝑏
33
𝑒−𝑖𝜔
∗

20
𝜏
1∗

.

(63)

From (62), we obtain

𝑉 = [1 + 𝑞
2
𝑞
∗

2
+ 𝑞
3
𝑞
∗

3
+ 𝜏
∗

20
𝑒
−𝑖𝜔
∗

20
𝜏
∗

20𝑞
2
(𝑐
22
𝑞
∗

2
+ 𝑐
32
𝑞
∗

3
)

+ 𝜏
1∗
𝑒
−𝑖𝜔
∗

20
𝜏
1∗ (𝑏
11
+ 𝑏
12
𝑞
2
+ 𝑏
13
𝑞
3

+ 𝑞
∗

2
(𝑏
21
+ 𝑏
22
𝑞
2
) + 𝑏
33
𝑞
3
𝑞
∗

3
) ]
−1

.

(64)

Then, one can see that ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞∗, 𝑞⟩ = 0.

Next, we can obtain the coefficients determining the
properties of the Hopf bifurcation by the algorithms intro-
duced in [17] and using a computation process similar to that
in [19, 20]:

𝑔
20
= 2𝛽𝜏

∗

20
𝑉 (𝑞
∗

2
− 1) 𝑞

(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

) ,

𝑔
11
= 𝛽𝜏
∗

20
𝑉 (𝑞
∗

2
− 1) [𝑞

(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)

+ 𝑞
(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)] ,

𝑔
02
= 2𝛽𝜏

∗

20
𝑉 (𝑞
∗

2
− 1) 𝑞

(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

) ,

𝑔
21
= 2𝛽𝜏

∗

20
𝑉 (𝑞
∗

2
− 1) [𝑊

(1)

11
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)

+
1

2
𝑊
(1)

20
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)



12 Mathematical Problems in Engineering

0 100 200 300
0.5

1

1.5

0 100 200 300
1

1.5

2

2.5

0 100 200 300
0.5

0.6

0.7

0.8

0.9

0.5
1

1.5

1
1.5

2
2.5

0.5

1

S(t)

I(t)

R
(
t
)

Time t
Time t

Time t

S
(
t
)

I
(
t)

R
(
t
)

Figure 6: 𝐸
∗
is unstable for 𝜏

1
= 2.9732 > 𝜏

∗

10
= 2.5386 and 𝜏

2
= 1.05.

+𝑊
(2)

11
(−

𝜏
1∗

𝜏∗
20

)𝑞
(1)
(−

𝜏
1∗

𝜏∗
20

)

+
1

2
𝑊
(2)

20
(−

𝜏
1∗

𝜏∗
20

)𝑞
(1)
(−

𝜏
1∗

𝜏∗
20

)] ,

(65)
with

𝑊
20
(𝜃) =

𝑖𝑔
20
𝑞 (0)

𝜔∗
20
𝜏∗
20

𝑒
𝑖𝜔
∗

20
𝜏
∗

20
𝜃
+
𝑖𝑔
02
𝑞 (0)

3𝜔∗
20
𝜏∗
20

𝑒
−𝑖𝜔
∗

20
𝜏
∗

20
𝜃

+ 𝐸
20
𝑒
2𝑖𝜔
∗

20
𝜏
∗

20
𝜃
,

𝑊
11
(𝜃) = −

𝑖𝑔
11
𝑞 (0)

𝜔∗
20
𝜏∗
20

𝑒
𝑖𝜔
∗

20
𝜏
∗

20
𝜃
+
𝑖𝑔
11
𝑞 (0)

𝜔∗
20
𝜏∗
20

𝑒
−𝑖𝜔
∗

20
𝜏
∗

20
𝜃
+ 𝐸
11
,

(66)
where 𝐸

20
and 𝐸

11
can be calculated by the following two

equations:

(

𝑎
󸀠

11
−𝑏
12
𝑒
−2𝑖𝜔
∗

20
𝜏
1∗ −𝑏
13
𝑒
−2𝑖𝜔
∗

20
𝜏
1∗

−𝑏
21
𝑒
−2𝑖𝜔
∗

20
𝜏
1∗ 𝑎

󸀠

22
0

−𝑎
31

−𝑐
32
𝑒
−2𝑖𝜔
∗

20
𝜏
∗

20 𝑎
󸀠

33

)𝐸
20

= 2(

𝐸
(1)

20

𝐸
(2)

20

0

) ,

(

𝑎
11
+ 𝑏
11

𝑏
12

𝑏
13

𝑏
21

𝑎
22
+ 𝑏
22
+ 𝑐
22

0

𝑎
31

𝑐
32

𝑎
33
+ 𝑏
33

)𝐸
11

= −(

𝐸
(1)

11

𝐸
(2)

11

0

)

(67)
with

𝑎
󸀠

11
= 2𝑖𝜔

∗

20
− 𝑎
11
− 𝑏
11
𝑒
−2𝑖𝜔
∗

20
𝜏
1∗ ,

𝑎
󸀠

22
= 2𝑖𝜔

∗

20
− 𝑎
22
− 𝑏
22
𝑒
−2𝑖𝜔
∗

20
𝜏
1∗ − 𝑐
22
𝑒
−2𝑖𝜔
∗

20
𝜏
∗

20 ,

𝑎
󸀠

33
= 2𝑖𝜔

∗

20
− 𝑎
33
− 𝑏
33
𝑒
−2𝑖𝜔
∗

20
𝜏
1∗ ,

𝐸
(1)

20
= − 𝛽𝑞

(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

) ,

𝐸
(2)

20
= 𝛽𝑞
(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

) ,

𝐸
(1)

11
= − 𝛽[𝑞

(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)

+ 𝑞
(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)] ,
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Figure 7: 𝐸
∗
is locally asymptotically stable for 𝜏

2
= 2.3700 < 𝜏

∗

20
= 2.9170 and 𝜏

1
= 1.65.

𝐸
(2)

11
= 𝛽[𝑞

(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)

+ 𝑞
(1)
(−

𝜏
1∗

𝜏∗
20

)𝑞
(2)
(−

𝜏
1∗

𝜏∗
20

)] .

(68)

Then, we can get the following coefficients:

𝐶
1
(0) =

𝑖

2𝜔∗
20
𝜏∗
20

(𝑔
11
𝑔
20
− 2

󵄨󵄨󵄨󵄨𝑔11
󵄨󵄨󵄨󵄨
2

−

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨
2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆󸀠 (𝜏∗
20
)}
,

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im {𝜆

󸀠
(𝜏
∗

20
)}

𝜔∗
20
𝜏∗
20

.

(69)

By the discussion above, we have the following results
about the properties of the Hopf bifurcation.

Theorem 6. For system (3), the direction of the Hopf bifurca-
tion is determined by the sign of 𝜇

2
: if 𝜇
2
> 0 (𝜇

2
< 0), the

Hopf bifurcation is supercritical (subcritical); the stability of

bifurcating periodic solutions is determined by the sign of 𝛽
2
:

if 𝛽
2
< 0 (𝛽

2
> 0), the bifurcating periodic solutions are stable

(unstable); the period of the bifurcating periodic solutions is
determined by the sign of 𝑇

2
: if 𝑇
2
> 0 (𝑇

2
< 0), the period

of the bifurcating periodic solutions increases (decreases).

4. Numerical Simulations and Discussion

In this section, in order to support our theoretical results, we
will show the interesting dynamical behaviors of system (3)
by a special case of system (3). Let 𝑝 = 0.9, 𝐴 = 1, let 𝛼 = 0.3,
𝛽 = 0.6, 𝛾 = 0.2, 𝛿 = 0.7, and 𝜇 = 0.3 and we consider the
following system:

𝑑𝑆 (𝑡)

𝑑𝑡
= 0.9 − 0.6𝑆 (𝑡 − 𝜏

1
) 𝐼 (𝑡 − 𝜏

1
) − 0.5𝑆 (𝑡)

+ 0.7𝑅 (𝑡 − 𝜏
1
) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 0.6𝑆 (𝑡 − 𝜏

1
) 𝐼 (𝑡 − 𝜏

1
) − 0.3𝐼 (𝑡) − 0.3𝐼 (𝑡 − 𝜏

2
) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 0.1 + 0.2𝑆 (𝑡) + 0.3𝐼 (𝑡 − 𝜏

2
) − 0.7𝑅 (𝑡 − 𝜏

1
)

− 0.3𝑅 (𝑡) ,

(70)
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Figure 8: 𝐸
∗
is unstable for 𝜏

2
= 4.3500 > 𝜏

∗

20
= 2.9170 and 𝜏

1
= 1.65.

from which one can get 𝑅
0
= 2.2200 and the unique positive

equilibrium 𝐸
∗
(1.0000, 1.5641, 0.7692). By computing, we

obtain 𝐴
10
= 0.3661, 𝐴

11
= 1.8616, and 𝐴

12
= 2.4385. Obvi-

ously, 𝐴
12
𝐴
11
> 𝐴
10
> 0.

For 𝜏
1
> 0, 𝜏

2
= 0. Equation (18) has a unique positive

root 𝜔
10
= 0.5833 and one can obtain 𝜏

10
= 2.8957 from (21).

Further, the characteristic equation (14) has a pair of purely
imaginary roots ±𝑖𝜔

10
.The computer simulations in Figures 1

and 2 show that 𝐸
∗
(1.0000, 1.5641, 0.7692) is asymptotically

stablewhen 𝜏
1
< 𝜏
10
= 2.8957 andwhen 𝜏

1
passes through the

critical value 𝜏
10
= 2.8957, 𝐸

∗
(1.0000, 1.5641, 0.7692) loses

its stability and a Hopf bifurcation occurs; that is, a family of
periodic solutions bifurcate from 𝐸

∗
(1.0000, 1.5641, 0.7692).

Similarly, we obtain 𝜔
20
= 3.2514 and 𝜏

20
= 8.4669. The cor-

responding trajectories graphs and phase graphs are shown in
Figures 3 and 4.

Let 𝜏
2
= 1.05 ∈ (0, 𝜏

20
) and choose 𝜏

1
as a bifurcation

parameter.Then, we have 𝜔∗
10
= 1.0514 and 𝜏∗

10
= 2.5386. The

computer simulations in Figures 5 and 6 show that
𝐸
∗
(1.0000, 1.5641, 0.7692) is asymptotically stable when 𝜏

1
<

𝜏
∗

10
= 2.5386 and 𝐸

∗
(1.0000, 1.5641, 0.7692) loses its stability

and a Hopf bifurcation occurs; that is, a family of periodic
solutions bifurcate from 𝐸

∗
(1.0000, 1.5641, 0.7692). Simi-

larly, by some complex computations, we have 𝜔∗
20
= 0.8545

and 𝜏∗
20
= 2.9170 when 𝜏

1
= 1.65 ∈ (0, 𝜏

10
) and choose 𝜏

2
as a

bifurcation parameter.The corresponding trajectories graphs
and phase graphs are shown in Figures 7 and 8. Furthermore,
we can compute and obtain 𝜆

󸀠
(𝜏
∗

20
) = 2.3606 + 1.7054𝑖

and 𝐶
1
(0) = −17.9318 + 26.0921𝑖. It follows from (69) that

𝜇
2
= 7.5963 > 0, 𝛽

2
= −35.8636 < 0, and 𝑇

2
= −15.3981 < 0.

According to Theorem 6, we can conclude that the Hopf
bifurcation of system (70) is supercritical, the bifurcating
periodic solutions are stable, and the period of the periodic
solutions decreases.

In addition, it can be seen from the expression of the
positive equilibrium of system (3) that the more the hosts
are attached to the computer networks, the more the hosts
in networks will be infected. Therefore, the managers of the
real networks should properly control the number of the new
hosts attached to networks. According to the numerical sim-
ulations, we also find that the onset of the Hopf bifurcation
can be delayed by the values of the parameters 𝐴 and 𝑝 in
system (3), which can be controlled by the managers of the
real networks. Therefore, the managers of the real networks
should properly control the number of the hosts attached to
the networks and properly strengthen the immunization of
the new hosts in order to control the onset of the Hopf bifur-
cation, so as to make the propagation of computer viruses
predicted and controlled easily.
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5. Conclusion

In this paper, an SIRS computer virus propagationmodelwith
two delays and multistate antivirus measures is investigated.
By choosing the possible combination of the two delays as
the bifurcation parameter and analyzing the distribution of
the roots of the associated characteristic equation, sufficient
conditions for the local stability of the positive equilibrium
and existence of local Hopf bifurcation are obtained. Further-
more, the properties of the Hopf bifurcation are determined
by using the method in [17].

Compared to the model considered in [12], we consider
not only the delay due to the latent period of computer virus
and the delay due to the temporary immune period of the
recovered hosts, but also the delay due to the period that the
antivirus software uses to clean the viruses in the infected
hosts. All the possible delays are incorporated into the model
and the model considered in this paper is more general. Our
analysis shows that the new delay we incorporate into the
model can also change the stability of the positive equilibrium
of themodel and numerical simulations show that our results
obtained in the present paper improve some of the existing
results on this system that are obtained in [12].
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