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This paper considers a two-level supply chain coordination problem for fixed lifetime products with permissible delay in payments.
Two cases are discussed; that is, the retailer is required to settle the balance before the end of the ordering cycle (Case I) and after
the ordering cycle (Case II).The coordination models are proposed and analyzed, respectively.The analytical methods as to how to
determine the optimal policy are presented. In addition, it is indicated that the supplier’s cost as well as that of the total system will
be reduced no matter how much the parameters change, and the retailer will benefit from coordination, if the supplier is willing
to share the cost saving with him/her in Case I. In Case II, the retailer’s average cost will be reduced and the supplier will benefit
from coordination only under certain conditions. Besides, the results show that, for fixed lifetime products, providing longer credit
period than the retailer’s order period is not commonly applicable.

1. Introduction

In recent years, the area of supply chain management has
become very popular.Many researchers have devoted consid-
erable attention to coordination issues between suppliers and
retailers in a supply chain. A variety of coordination mecha-
nisms are developed and utilized in the different settings.

Monahan [1] studied a single supplier-single buyer distri-
bution system and indicated that the supplier could improve
channel coordination and earn higher profits by offering
the buyer a quantity discount. Later, Lee and Rosenblatt
[2] generalized Monahan’s model by relaxing his lot-for-lot
assumption for the supplier. Shin and Benton [3] studied the
effectiveness of quantity discounts under different conditions.
They showed that the link between quantity discounts and
the performance of the chain is influenced by several other
factors including the variability of demand, the relative
inventory cost structures, and the buyer’s economic reorder
intervals. Jaber and Osman [4] proposed a centralized model
where the players in a two-level supply chain coordinated
their orders through delay in payments to minimize their
local costs and that of the chain. Chen andKang [5] developed
the integrated models with permissible delay in payment for
determining the coefficient of negotiation and the maximum

delay payment period. Sarmah et al. [6] studied a coordina-
tion mechanism through credit option such that both parties
can divide the surplus equitably after satisfying their own
profit targets. Emmons and Gilbert [7] studied the effect of
return policies on both manufacturer and retailer’s profits.
In their model, demand is uncertain and price-dependent.
Giannoccaro and Pontrandolfo [8] coordinated a three-stage
supply chain with a stochastic customer demand by using the
revenue sharing policy. Extensive reviews of the literature on
supply chain coordination are available in [9, 10].

In the supply chain coordination literatures that have
been mentioned above, the researchers all ignored the con-
straint of items’ finite lifetime in their models. In fact, many
products or goods have their own sell-by dates. Foodstuff,
such as bread, milk, and beverage, all become unusable after
a certain time. Photographic material, blood, and drugs are
further examples of items with fixed lifetime. Moreover, the
upgrade of IT products, the launch of new products, and the
change of popularity make more and more products have
a certain lifetime. In the past few decades, the inventory
optimization of the finite lifetime product has been the focus
ofmany researchers. Nahmias [11] classified the finite lifetime
problem into two subcategories: random finite lifetime and
fixed finite lifetime.The randomfinite lifetime products, such
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as fruit and vegetable, spoil over time and the value also
decreases gradually. Itemswith the fixed finite lifetime, on the
other hand, perish at the same age; that is, the value remains
the same during the lifetime period and equals to zero after
the expiration date. The relevant researches such as [12–17]
are about the random finite lifetime products. Goyal and Giri
[18] provided an excellent and detailed review of research on
inventory problem of this kind of product. The researches
about the fixed finite lifetime products can refer to [19–26]
and their related references.

However, the above researches on fixed finite lifetime
product are on single stage problem. Duan et al. [27]
considered a single-vendor, single-buyer supply chain for
fixed lifetime product and proposed models to analyze the
benefit of coordinating supply chain through a quantity
discount strategy. In addition, they proved that the quantity
discount strategy can achieve system optimization and win-
win outcome.

Delay in payment is one of the commonly used mecha-
nisms in supply chain coordination practice. In real world,
the supplier often utilizes this policy to promote his/her
products, especially when the retailer is short of capital. In
this policy, the supplier requires the retailer to increase his
order size by offering the retailer a delay period. And the
retailer is required to settle the balance before the end of
the delay period. During the delay period, the retailer can
cumulate revenues and earn interests. The policy can reduce
the retailer’s capital cost tied up in stock, because it reduces
the amount of capital invested in stock for the duration of
the delay period, so that the retailer’s holding cost of finance
is reduced. The policy can also decrease supplier’s ordering
cost, but it adds an additional dimension of default risk to the
supplier.

Duan et al. [28] dealt with a supply chain coordination
problem through delay in payments for items with fixed
lifetime, where the costs of the supplier and retailer include
the ordering cost and the storage cost. The opportunity cost
of capital cost is not considered. However, when the products
are kept in the warehouse, a large amount of capital will
be backlogged, which will incur great opportunity cost in
addition to the storage cost. Furthermore, in this paper, we
consider supply chain coordination issues for fixed lifetime
product through delay in payment. In the delay in payment
contract, the supplier will provide a credit period for the
retailer. In this case, the capital cost of the retailer is a
nonlinear and a piecewise function of time. So it is necessary
to investigate how the optimal policy is changed when capital
cost is considered. The main differences between Duan et
al. [28] and this paper are as follows. Firstly, in addition
to the ordering and storage cost, this paper considers the
opportunity cost of capital in the model formulation, which
is not considered in [28]; secondly, because the retailer’s
opportunity costs of capital backlogging are dependent on
the time when the balance are settled, we discuss two cases.
Case I: the retailer is required to settle the balance before
the end of the ordering cycle and Case II: the retailer settles
the balance after the ordering cycle. Thirdly, we find that
when the opportunity cost is not considered, the supplier will
always benefit no matter how much the parameters change,

and the cost of the retailer will not change. However, when
the opportunity cost is considered and the retailer settles the
balance after the ordering cycle, then the cost of the supplier
may increase but the cost of the retailer may decrease. So the
opportunity costs have significant influence on the optimal
coordination policy.

The rest of this paper is organized as follows. In Section 2,
the supply chain coordination model to minimize the sup-
plier’s cost is formulated, and the analytically tractable
solutions are derived. A numerical study is conducted in
Section 3 to illustrate the performance of the proposed policy
and examine the implications of the change in the value of
parameters. The concluding remarks are presented in the last
section.

2. Model Formulation

In this section, we formulate and analyze the decision-
making models of a two-level supply chain for fixed lifetime
products without and with coordination. In the absence of
coordination, both of the parties make decisions to minimize
their own costs. In the presence of coordination, the supplier
is the decision-maker of the supply chain with the objective
of minimizing his/her own cost, and the delay in payments
is adopted as a coordination policy. In addition, we obtain
the optimal policies for the different cases and find that the
lifetime of the product is an important constraint in the
optimal policies.

We adopt the same assumptions as in Duan et al.
[28] which are also commonly used in the literatures, see
Monahan [1] and Lee and Rosenblatt [2].

(i) Demand is exogenous and constant.Themain reason
of this assumption is to simplify the model formu-
lation and to derive the closed-form solution to the
model.

(ii) Replenishment is instantaneous and lead time is zero.
Obviously, if the lead time is constant and not zero,
the supplier and retailer just need to place an order a
period exactly equal to the lead time in advance [2],
and the same results can be obtained.

(iii) Shortages are not allowed. For fixed lifetime products,
due to their limited lifetime, the customers would
purchase only when they are to be used up. If stock-
out happens, most of them will buy the substitute
products. In addition, because the demand is assumed
to be constant in this paper, the shortage can be
eliminated by increasing the ordering quantity.

(iv) All items ordered by the supplier arrive new and fresh;
that is, their age equals zero [29]. In fact, if the items’
age is 𝑙 when they arrive, we only need to replace
the product lifetime 𝐿 by 𝐿 = 𝐿 − 𝑙 in the following
analysis.

Notations used in this paper are as follows:

𝑖 denotes the subscript identifying a specific level in
a supply chain (𝑖 = 𝑠, 𝑟, where 𝑠 = supplier and 𝑟 =

retailer);
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𝐷 denotes the constant demand rate;
𝐴
𝑖
is the ordering cost of level 𝑖;

ℎ
𝑖
is the holding cost of finance per unit per unit time,

representing the cost of capital at level 𝑖 excluding the
storage cost;
𝑠
𝑖
is the storage cost per unit per unit time at level 𝑖

excluding the holding cost;
𝑐
𝑖
is the procurement cost per unit for level 𝑖;

𝑘
𝑖
is the return on investment for level 𝑖;

𝑄
0
is the retailer’s EOQ, and 𝑡

0
is the order period of

the retailer in the absence of any coordination;
𝐿 denotes the lifetime of product and 𝐿 ≥ 𝑡

0
;

𝑇𝐶
𝑠
and 𝑇𝐶

𝑟
are the average costs of the supplier and

the retailer in the absence of coordination;
𝑇𝐶
𝑠
and 𝑇𝐶

𝑟
are the average costs of the supplier and

the retailer in the presence of coordination.

Decision Variables

𝜇 denotes the supplier’s order multiple in the absence
of any coordination;
𝐾 denotes the retailer’s order multiple in the presence
of coordination and 𝐾𝑄

0
is the retailer’s new order

size;
𝑡(𝐾) denotes the credit period offered to the retailer,
if he orders 𝐾𝑄

0
every interval of 𝐾𝑡

0
(interest free

period);
𝜆 denotes the supplier’s ordermultiple in the presence
of coordination.

2.1. Model Formulation for System without Coordination. In
this subsection, the decision-making model for fixed lifetime
products without coordination is formulated.The retailer and
the supplier make decisions by minimizing their own costs.

In the absence of any coordination, the retailer’s order
quantity is simply the EOQ; that is,

𝑄
0
= √

2𝐷𝐴
𝑟

ℎ
𝑟
+ 𝑠
𝑟

. (1)

Let 𝑇𝐶
𝑟
denote the retailer’s average cost per unit time

and let 𝑡
0
denote the retailer’s optimal order period; then

𝑇𝐶
𝑟
= √2𝐷𝐴

𝑟
(ℎ
𝑟
+ 𝑠
𝑟
),

𝑡
0
= √

2𝐴
𝑟

𝐷(ℎ
𝑟
+ 𝑠
𝑟
)
.

(2)

Since the retailer’s order quantity is fixed at 𝑄
0
, the

supplier is faced with a stream of demands, each with order
size 𝑄

0
and at fixed intervals of 𝑡

0
. Given such a stream of

demands, the supplier’s economic order quantity should be
some integer multiple of𝑄

0
[2]. Let 𝜇𝑄

0
denote the supplier’s

order quantity where 𝜇 is a positive integer.

The supplier’s average inventory held up per unit time is

[(𝜇 − 1)𝑄
0
+ (𝜇 − 2)𝑄

0
+ ⋅ ⋅ ⋅ + 𝑄

0
+ 0𝑄
0
]

𝜇
=

(𝜇 − 1)𝑄
0

2
.

(3)

The supplier’s cost per unit time is

𝑇𝐶
𝑠
(𝜇) =

𝐷𝐴
𝑠

𝜇𝑄
0

+ (ℎ
𝑠
+ 𝑠
𝑠
)
(𝜇 − 1)𝑄

0

2
. (4)

Hence, the supplier’s problem in the absence of coordina-
tion can be formulated as follows:

min 𝑇𝐶
𝑠
(𝜇) =

𝐷𝐴
𝑠

𝜇𝑄
0

+ (ℎ
𝑠
+ 𝑠
𝑠
)
(𝜇 − 1)𝑄

0

2

s.t.
𝜇𝑄
0

𝐷
≤ 𝐿, 𝜇 ≥ 1 is an integer.

(5)

By substituting 𝑄
0
into (5), we get

min 𝑇𝐶
𝑠
(𝜇) =

𝐴
𝑠

𝜇
√

𝐷 (ℎ
𝑟
+ 𝑠
𝑟
)

2𝐴
𝑟

+ (ℎ
𝑠
+ 𝑠
𝑠
) (𝜇 − 1)√

𝐷𝐴
𝑟

2 (ℎ
𝑟
+ 𝑠
𝑟
)

s.t. 𝜇√
2𝐴
𝑟

𝐷(ℎ
𝑟
+ 𝑠
𝑟
)
≤ 𝐿, 𝜇 ≥ 1 is an integer.

(6)

Thefirst constraint in (6) is to ensure that the products are
not overdue before they are sold out. In this case, the supplier
will minimize his average cost by selecting the optimal order
multiple 𝜇. In the next section, we will give the analytical
solution to (6).

Lemma 1. If 𝐿 ≥ 𝑡
0

= √2𝐴
𝑟
/𝐷(ℎ
𝑟
+ 𝑠
𝑟
), then the supplier’s

optimal order multiple is as follows:

𝜇
∗
= min {𝜇

∗

1
, 𝜇
∗

2
} , (7)

where 𝜇
∗

1
= ⌈√1/4 + 𝐴

𝑠
(ℎ
𝑟
+ 𝑠
𝑟
)/𝐴
𝑟
(ℎ
𝑠
+ 𝑠
𝑠
) − 1/2⌉, 𝜇∗

2
=

[𝐿√𝐷(ℎ
𝑟
+ 𝑠
𝑟
)/2𝐴
𝑟
], ⌈𝑥⌉ denotes the least integer greater than

or equal to 𝑥; [𝑥] denotes the integer part of 𝑥.

The proof of Lemma 1 can refer to Duan et al. [28].
Lemma 1 gives the supplier’s optimal order multiple of the
retailer’s ordering quantity without coordination. Here, 𝐿 ≥

𝑡
0
is to ensure that the EOQmodel is to ensure that the items

are not expired before they are sold out.

2.2. Model Formulation for System with Coordination. In this
subsection, we will propose and discuss the supply chain
coordinationmodel for fixed lifetime products through delay
in payments policy. In this policy, the retailer orders 𝐾𝑄

0

units products every interval of 𝐾𝑡
0
from the supplier at a

unit purchasing cost 𝑐
𝑟
and the ordering cost𝐴

𝑟
.The supplier

orders 𝜆𝐾𝑄
0
units every interval of 𝜆𝐾𝑡

0
and offers the credit
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period 𝑡(𝐾) to the retailer, where 𝐾, 𝜆, and 𝑡(𝐾) are decision
variables. Meanwhile, the retailer has the opportunity to
invest the unpaid balance 𝑐

𝑟
𝐾𝑄
0
for a period 𝑡(𝐾) at a return

rate of 𝑘
𝑟
. That is, if the retailer can settle his balance at the

time 𝑡(𝐾), they will have a capital gain of 𝑐
𝑟
𝐾𝑄
0
𝑘
𝑟
𝑡(𝐾), but

the supplier’s cost will be increased by 𝑐
𝑟
𝐾𝑄
0
𝑘
𝑠
𝑡(𝐾).

Therefore, the supplier’s cost per unit time 𝑇𝐶
𝑠
(𝐾, 𝜆) is

composed of the following:

(i) the supplier’s ordering cost per unit time which is
equal to 𝐷𝐴

𝑠
/𝜆𝐾𝑄

0
,

(ii) the supplier’s holding cost of finance per unit time
which is equal to ℎ

𝑠
𝐾𝑄
0
(𝜆 − 1)/2 + ℎ

𝑠
𝐷𝑡(𝐾),

(iii) the supplier’s storage cost per unit time which is equal
to 𝑠
𝑠
𝐾𝑄
0
(𝜆 − 1)/2,

(iv) the supplier’s opportunity cost per unit time which is
equal to 𝑐

𝑟
𝐷𝑘
𝑠
𝑡(𝐾).

Hence,

𝑇𝐶
𝑠 (𝐾, 𝜆) =

𝐷𝐴
𝑠

𝜆𝐾𝑄
0

+
(ℎ
𝑠
+ 𝑠
𝑠
)𝐾𝑄
0 (𝜆 − 1)

2

+ ℎ
𝑠
𝐷𝑡 (𝐾)+𝑐

𝑟
𝐷𝑘
𝑠
𝑡 (𝐾) .

(8)

The retailer’s cost consists of the following:

(i) the retailer’s ordering cost per cycle which is equal to
𝐴
𝑟
,

(ii) the retailer’s holding cost of finance per cycle which is
equal to

𝐻
𝑟 (𝐾) =

{{

{{

{

ℎ
𝑟

(𝐾𝑄
0
− 𝐷𝑡 (𝐾))

2

2𝐷
, 0 ≤ 𝑡 (𝐾) ≤ 𝐾𝑡

0

0, 𝑡 (𝐾) ≥ 𝐾𝑡
0
,

(9)

(iii) the retailer’s storage cost per cycle which is equal to
𝑠
𝑟
𝐾
2
𝑄
0
𝑡
0
/2,

(iv) the retailer’s revenue during the credit period which
is equal to 𝑐

𝑟
𝐾𝑄
0
𝑘
𝑟
𝑡(𝐾).

Therefore, the retailer’s cost per unit time is

𝑇𝐶
𝑟 (𝐾) =

𝐴
𝑟
+ 𝐻
𝑟 (𝐾) + 𝑠

𝑟
𝐾
2
𝑄
0
𝑡
0
/2 − 𝑐

𝑟
𝐾𝑄
0
𝑘
𝑟
𝑡 (𝐾)

𝐾𝑡
0

=
𝐷𝐴
𝑟

𝐾𝑄
0

+
𝐷𝐻
𝑟 (𝐾)

𝐾𝑄
0

+
𝑠
𝑟
𝐾𝑄
0

2
− 𝑐
𝑟
𝐷𝑘
𝑟
𝑡 (𝐾) .

(10)

To entice the retailer to accept this policy, the supplier
should ensure that the retailer’s average cost per unit time
with coordination is not greater than that without any
coordination. The coordination problem can be formulated
as the following mathematical programming:

min 𝑇𝐶
𝑠 (𝐾, 𝜆)

s.t. 𝜆𝐾𝑡
0
≤ 𝐿

𝑇𝐶
𝑟 (𝐾) ≤ 𝑇𝐶

𝑟

𝜆 ≥ 1 is an integer.

(11)

The first constraint of (11) is to guarantee that the
supplier’s products are not overdue before they are sold out.
The second constraint is to ensure that the policy proposed
by the supplier is acceptable to the retailer.

Based on the value of 𝐻
𝑟
(𝐾), two cases are discussed,

respectively, in the following, namely, Case I: 0 ≤ 𝑡(𝐾) ≤ 𝐾𝑡
0

and Case II: 𝑡 ≥ 𝐾𝑡
0
.

Case I. When 0 ≤ 𝑡(𝐾) ≤ 𝐾𝑡
0
, 𝐻
𝑟
(𝐾) = ℎ

𝑟
(𝐾𝑄
0
− 𝐷𝑡(𝐾))

2
/

2𝐷.
In this case, (11) is reduced to the following problem:

min 𝑇𝐶
𝑠 (𝐾, 𝜆) =

𝐷𝐴
𝑠

𝜆𝐾𝑄
0

+
(ℎ
𝑠
+ 𝑠
𝑠
)𝐾𝑄
0 (𝜆 − 1)

2

+ ℎ
𝑠
𝐷𝑡 (𝐾) + 𝑐

𝑟
𝐷𝑘
𝑠
𝑡 (𝐾)

s.t. 𝜆𝐾
𝑄
0

𝐷
≤ 𝐿

𝐷𝐴
𝑟

𝐾𝑄
0

+
ℎ
𝑟
(𝐾𝑄
0
− 𝐷𝑡 (𝐾))

2

2𝐾𝑄
0

+
𝑠
𝑟
𝐾𝑄
0

2

− 𝑐
𝑟
𝐷𝑘
𝑟
𝑡 (𝐾) ≤ √2𝐷𝐴

𝑟
(ℎ
𝑟
+ 𝑠
𝑟
)

𝜆 ≥ 1.

(12)

Theorem 2. Let 𝜇
∗ and 𝜆

∗ be the supplier’s optimal order
multiple without and with coordination, and let 𝐾

∗ be the
retailer’s optimal order multiple with coordination; then

𝑇𝐶
𝑠
(𝐾
∗
, 𝜆
∗
) ≤ 𝑇𝐶

𝑠
(𝜇
∗
) . (13)

Proof. It is easy to verify that 𝑇𝐶
𝑠
(𝐾, 𝜆) is increasing in 𝑡(𝐾).

𝑇𝐶
𝑟
(𝐾) is convex and decreasing in 𝑡(𝐾), for 0 ≤ 𝑡(𝐾) ≤ 𝐾𝑡

0
.

As a result, the objective function of (12) is minimized when
the second constraint is an equation; that is,

𝐷𝐴
𝑟

𝐾𝑄
0

+
𝐷ℎ
𝑟

𝐾𝑄
0

(𝐾𝑄
0
− 𝐷𝑡 (𝐾))

2

2𝐷
+

𝑠
𝑟
𝐾𝑄
0

2

− 𝑐
𝑟
𝐷𝑘
𝑟
𝑡 (𝐾) = √2𝐷𝐴

𝑟
(ℎ
𝑟
+ 𝑠
𝑟
).

(14)

By rearranging the terms, we have

ℎ
𝑟

2
(𝐷𝑡 (𝐾))

2
− (ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)𝐾𝑄
0
𝐷𝑡 (𝐾) + 𝐴

𝑟
𝐷(𝐾 − 1)

2
= 0.

(15)

Let 𝑡
1
≤ 𝑡
2
be the two roots of (15); then, if (ℎ

𝑟
+𝑐
𝑟
𝑘
𝑟
)
2
𝑄
2

0
𝐾
2
−

2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾 − 1)

2
≥ 0,

𝑡
1
=

(ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)𝐾𝑄
0
− √(ℎ

𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
𝐾2𝑄2
0
− 2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾− 1)

2

ℎ
𝑟
𝐷

,

𝑡
2
=

(ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)𝐾𝑄
0
+ √(ℎ

𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
𝐾2𝑄2
0
− 2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾− 1)

2

ℎ
𝑟
𝐷

.

(16)
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Since (ℎ
𝑟
+𝑐
𝑟
𝑘
𝑟
)𝐾𝑄
0
> 0 and𝐴

𝑟
𝐷(𝐾−1)

2
> 0, for𝐾 > 1, then

𝑡
1
> 0 and 𝑡

2
> 0. In addition, by noting that 𝑡∗(𝐾) ≤ 𝐾𝑄

0
/𝐷,

we have

𝑡
∗
(𝐾)

=
(ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)𝐾𝑄
0
− √(ℎ

𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
𝐾2𝑄2
0
− 2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾 − 1)

2

ℎ
𝑟
𝐷

.

(17)

It can be seen from (17) that, if 𝐾 = 1, then 𝑡
∗
(𝐾) = 0. (12) is

reduced to (6), if𝐾 = 1, so (13) holds.The proof ofTheorem 2
is complete.

Theorem 2 indicates that the supplier’s cost as well as
that of the system can be reduced in the proposed delay
in payment policy, and the retailer’s cost is not changed. In
practice, the supplier will usually share the saving cost with
the retailer, and the sharing rate is determined by their power
of balance between them.

Theorem 3. The retailer’s order size with coordination is
greater than that without coordination; that is, 𝐾 ≥ 1.

Proof. Since

𝑑
2
𝑡
∗
(𝐾)

𝑑𝐾2
= 2[(ℎ

𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
𝐾
2
𝑄
2

0
− 2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾 − 1)

2
]
−3/2

× (ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
ℎ
𝑟
𝐴
𝑟
𝐷𝑄
2

0
> 0,

(18)

𝑡
∗
(𝐾) is convex in 𝐾. In addition, it is easy to verify that

𝑑𝑡
∗
(𝐾)/𝑑𝐾|

𝐾=1
= 0; so 𝑡

∗
(𝐾) is minimized, when 𝐾 = 1.

In practice, the more the retailer orders, the longer the delay
period should be; so 𝑡

∗
(𝐾) should increase in𝐾. It is straight

forward that only if 𝐾 ≥ 1, 𝑡∗(𝐾) is increasing in 𝐾. As a
result, 𝐾 ≥ 1 holds. The proof of Theorem 3 is complete.

Theorem 3 demonstrates that delay in payments policy
can indeed induce the retailer to increase his/her order
quantity.

Then, we will prove 𝑡
∗
(𝐾) ≤ 𝐾𝑡

0
.

Proposition 4. If 𝑠
𝑟
> 2𝑐
𝑟
𝑘
𝑟
, then 0 ≤ 𝑡

∗
(𝐾) ≤ 𝐾𝑡

0
holds for

1 ≤ 𝐾 ≤ 𝐾
1
, where 𝐾

1
= 1/(1 − √(ℎ

𝑟
+ 2𝑐
𝑟
𝑘
𝑟
)/(ℎ
𝑟
+ 𝑠
𝑟
)).

Proof. The condition for the existence of 𝑡∗(𝐾) is

(ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
𝑄
2

0
𝐾
2
− 2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾 − 1)

2
≥ 0; (19)

that is

(ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2

ℎ
𝑟
(ℎ
𝑟
+ 𝑠
𝑟
)

≥
(𝐾 − 1)

2

𝐾2
. (20)

In addition, to prove that 𝑡∗(𝐾) ≤ 𝐾𝑄
0
/𝐷 holds, that is,

(ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)𝐾𝑄
0
− √(ℎ

𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
𝐾2𝑄2
0
− 2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾 − 1)

2

ℎ
𝑟
𝐷

≤
𝐾𝑄
0

𝐷
,

(21)

we only need to prove that the following inequality holds:

ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟

ℎ
𝑟
+ 𝑠
𝑟

≥
(𝐾 − 1)

2

𝐾2
. (22)

By (ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
/ℎ
𝑟
(ℎ
𝑟
+ 𝑠
𝑟
) ≥ (ℎ

𝑟
+ 2𝑐
𝑟
𝑘
𝑟
)/(ℎ
𝑟
+ 𝑠
𝑟
), we

know whether (ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
)/(ℎ
𝑟
+ 𝑠
𝑟
) ≥ (𝐾 − 1)

2
/𝐾
2; then

(ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
/ℎ
𝑟
(ℎ
𝑟
+ 𝑠
𝑟
) ≥ (𝐾 − 1)

2
/𝐾
2 holds. Therefore,

1 ≤ 𝐾 ≤
1

1 − √(ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)

. (23)

Set 𝐾
1
= 1/(1 − √(ℎ

𝑟
+ 2𝑐
𝑟
𝑘
𝑟
)/(ℎ
𝑟
+ 𝑠
𝑟
)). By 𝐾 ≥ 1, we have

𝐾
1
≥ 1; that is, 𝑠

𝑟
> 2𝑐
𝑟
𝑘
𝑟
. If 𝑠
𝑟
> 2𝑐
𝑟
𝑘
𝑟
and (23) holds, it is

easy to verify that 𝑡∗(𝐾) exists and 𝑡
∗
(𝐾) ≤ 𝐾𝑡

0
. The proof of

Proposition 4 is complete.

Proposition 4 shows that when the retailer’s storage cost
is large, to reduce the storage cost, the retailer will not order
too much items in the beginning of every ordering cycle.
Accordingly, the trade credit period offered by the supplier
will be less than the ordering cycle of the retailer.

Next, we will determine the supplier and the retailer’s
optimal ordering quantities𝐾∗ and 𝜆

∗.
By substituting (17) into (12), we have

min 𝑇𝐶
𝑠 (𝐾, 𝜆) =

𝐴
𝑠
𝐷

𝜆𝐾𝑄
0

+ [
(ℎ
𝑠
+ 𝑠
𝑠
) (𝜆 − 1)

2

+
(𝑐
𝑟
𝑘
𝑠
+ℎ
𝑠
) (ℎ
𝑟
+𝑐
𝑟
𝑘
𝑟
)

ℎ
𝑟

]𝐾𝑄
0

−
(𝑐
𝑟
𝑘
𝑠
+ℎ
𝑠
)

ℎ
𝑟

×((ℎ
𝑟
+𝑐
𝑟
𝑘
𝑟
)
2
𝐾
2
𝑄
2

0

−2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾 − 1)

2
)
1/2

s.t. 𝜆𝐾
𝑄
0

𝐷
≤ 𝐿, 𝜆 ≥ 1.

(24)

Since

𝜕
2
𝑇𝐶
𝑠 (𝐾, 𝜆)

𝜕𝐾2

=
2𝐴
𝑠
𝐷

𝜆𝑄
0
𝐾3

+2 (𝑐
𝑟
𝑘
𝑠
+ ℎ
𝑠
) (ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)
2
𝐴
𝑟
𝐷𝑄
2

0

× [(ℎ
𝑟
+𝑐
𝑟
𝑘
𝑟
)
2
𝑄
2

0
𝐾
2
− 2ℎ
𝑟
𝐴
𝑟
𝐷(𝐾 − 1)

2
]
−3/2

> 0,

(25)
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then 𝑇𝐶
𝑠
(𝐾, 𝜆) is convex in 𝐾, for 1 ≤ 𝐾 ≤ 𝐾

1
. Let 𝐾∗

1
and

𝜆
∗

1
be the solutions ofmin𝑇𝐶

𝑠
(𝐾, 𝜆), then, for given 𝜆,𝐾∗

1
(𝜆)

satisfies 𝜕𝑇𝐶
𝑠
(𝐾, 𝜆)/𝜕𝐾 = 0.

Since 𝜆 is an integer and 𝜆 ≤ 𝐿/𝑡
0
, we can get 𝐾∗

1
and 𝜆

∗

1

by the enumeration method.
Therefore, we have the following results:

(a) if 1 ≤ 𝐾
∗

1
< 𝐾
1
, then 𝐾

∗
= 𝐾
∗

1
and 𝜆

∗
= 𝜆
∗

1
;

(b) if 𝐾∗
1
≥ 𝐾
1
, then 𝐾

∗
= 𝐾
1
.

If 𝐾∗
1

≥ 𝐾
1
, then 𝐾

∗
= 𝐾
1
. By substituting 𝐾

∗
= 𝐾
1
into

(24), we get

min 𝑇𝐶
𝑠 (𝜆)

=
𝐴
𝑠
𝐷

𝜆𝑄
0

(1 − √
ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟

ℎ
𝑟
+ 𝑠
𝑟

)

+ [
ℎ
𝑠
+ 𝑠
𝑠

2
(𝜆 − 1) +

[𝑐
𝑟
𝑘
𝑠
+ ℎ
𝑠
] (ℎ
𝑟
+ 𝑐
𝑟
𝑘
𝑟
)

ℎ
𝑟

]

×
𝑄
0

1 − √(ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)

−
𝑐
𝑟
𝑘
𝑠
+ℎ
𝑠

ℎ
𝑟

(
[
[

[

(ℎ
𝑟
+𝑐
𝑟
𝑘
𝑟
) 𝑄
0

1−√(ℎ
𝑟
+2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+𝑠
𝑟
)

]
]

]

2

−
2ℎ
𝑟
𝐴
𝑟
𝐷(ℎ
𝑟
+2𝑐
𝑟
𝑘
𝑟
)

(√ℎ
𝑟
+𝑠
𝑟
−√ℎ
𝑟
+2𝑐
𝑟
𝑘
𝑟
)
2
)

1/2

s.t. 𝜆

1 − √(ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)

𝑄
0

𝐷
≤ 𝐿, 𝜆 ≥ 1.

(26)

It is easy to verify that 𝑇𝐶
𝑠
(𝜆) is convex in 𝜆. Simi-

lar to the Proof of Lemma 1, we can get that if 𝐿 ≥

√2𝐴
𝑟
/√𝐷(√ℎ

𝑟
+ 𝑠
𝑟

− √ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
), 𝜆
∗

= min{𝜆∗
2
, 𝜆
∗

3
},

where

𝜆
∗

2
=

[
[
[
[
[

√
1

4
+

𝐴
𝑠

𝐴
𝑟

(1 − √
ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟

ℎ
𝑟
+ 𝑠
𝑟

)

2

−
1

2

]
]
]
]
]

,

𝜆
∗

3
= [

𝐿√𝐷(√ℎ
𝑟
+ 𝑠
𝑟
− √ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
)

√2𝐴
𝑟

] ,

(27)

⌈𝑥⌉ is the least integer greater than or equal to 𝑥; [𝑥] denotes
the integer part of 𝑥.

Case II. When 𝑡(𝐾) ≥ 𝐾𝑡
0
, 𝐻
𝑟
(𝐾) = 0.

In this case, (11) is reduced to the following problem:

min 𝑇𝐶
𝑠 (𝐾, 𝜆) =

𝐷𝐴
𝑠

𝜆𝐾𝑄
0

+
(ℎ
𝑠
+ 𝑠
𝑠
)𝐾𝑄
0 (𝜆 − 1)

2

+ ℎ
𝑠
𝐷𝑡 (𝐾) + 𝑐

𝑟
𝑘
𝑠
𝐷𝑡 (𝐾)

s.t. 𝜆𝐾
𝑄
0

𝐷
≤ 𝐿

𝐷𝐴
𝑟

𝐾𝑄
0

+
𝑠
𝑟
𝐾𝑄
0

2
− 𝑐
𝑟
𝑘
𝑟
𝐷𝑡 (𝐾) ≤ √2𝐷𝐴

𝑟
(ℎ
𝑟
+ 𝑠
𝑟
)

𝜆 ≥ 1.

(28)

By the second constraint of (28), we have

𝑡 (𝐾) ≥
𝐴
𝑟

𝐾𝑄
0
𝑐
𝑟
𝑘
𝑟

+
𝑠
𝑟
𝐾𝑄
0

2𝐷𝑐
𝑟
𝑘
𝑟

−
𝑄
0
(ℎ
𝑟
+ 𝑠
𝑟
)

𝐷𝑐
𝑟
𝑘
𝑟

. (29)

Set 𝑡
3
= 𝐴
𝑟
/𝐾𝑄
0
𝑐
𝑟
𝑘
𝑟
+ 𝑠
𝑟
𝐾𝑄
0
/2𝐷𝑐
𝑟
𝑘
𝑟
−𝑄
0
(ℎ
𝑟
+ 𝑠
𝑟
)/𝐷𝑐
𝑟
𝑘
𝑟
. In

this case, 𝑡(𝐾) ≥ 𝐾𝑡
0
holds. So,

𝑡 (𝐾) ≥ max {𝐾𝑡
0
, 𝑡
3
} . (30)

Let 𝐹(𝐾) = 𝑡
3
− 𝐾𝑡
0
; that is

𝐹 (𝐾) =
𝐴
𝑟

𝐾𝑄
0
𝑐
𝑟
𝑘
𝑟

+
𝑠
𝑟
𝑡
0
𝐾

2𝑐
𝑟
𝑘
𝑟

−
𝑡
0
(ℎ
𝑟
+ 𝑠
𝑟
)

𝑐
𝑟
𝑘
𝑟

− 𝐾
𝑄
0

𝐷
. (31)

It is easy to verify that 𝐹(𝐾) is convex in𝐾 and 𝐹(𝐾 = 1) < 0.
Let 𝐾
2
and 𝐾

3
(𝐾
2
> 𝐾
3
) be the solutions of 𝐹(𝐾) = 0; then

𝐾
2
=

√2𝐷𝐴
𝑟

1 − √(ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)

> 1,

𝐾
3
=

√2𝐷𝐴
𝑟

1 + √(ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)

< 1.

(32)

Therefore, if 1 ≤ 𝐾 ≤ 𝐾
2
, then 𝑡

3
≤ 𝐾𝑡
0
, 𝑡∗(𝐾) = 𝐾𝑡

0
; if

𝐾 > 𝐾
2
, then 𝑡

3
> 𝐾𝑡
0
, 𝑡∗(𝐾) = 𝑡

3
.

The following analysis is conducted based on the follow-
ing two situations.

(i) If 1 ≤ 𝐾 ≤ 𝐾
2
, 𝑡∗(𝐾) = 𝐾𝑡

0
.

It is straight forward that, in this case, the retailer’s cost
will reduce no matter how much the parameters change. By
substituting 𝑡

∗
(𝐾) into (28), we get the following problem:

min 𝑇𝐶
𝑠 (𝐾, 𝜆)=

𝐷𝐴
𝑠

𝜆𝐾𝑄
0

+[
ℎ
𝑠
+ 𝑠
𝑠

2
(𝜆−1)+ℎ

𝑠
+𝑐
𝑟
𝑘
𝑠
]𝐾𝑄
0

s.t. 𝜆𝐾
𝑄
0

𝐷
≤ 𝐿, 𝜆 ≥ 1.

(33)
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Theorem 5. If ℎ
𝑠
+ 𝑐
𝑟
𝑘
𝑠
− (ℎ
𝑠
+ 𝑠
𝑠
)/2 < 0 and

𝐾
∗
≥ −

ℎ
𝑠
+ 𝑠
𝑠

ℎ
𝑠
− 𝑠
𝑠
+ 2𝑐
𝑟
𝑘
𝑠

, (34)

then

𝑇𝐶
𝑠
(𝐾
∗
, 𝜆
∗
) ≤ 𝑇𝐶

𝑠
(𝜇
∗
) . (35)

Proof. Let 𝜌 = 𝜆𝐾; (33) is equivalent to the following
problem:

min 𝑇𝐶
𝑠
(𝜌) =

𝐷𝐴
𝑠

𝜌𝑄
0

+
ℎ
𝑠
+ 𝑠
𝑠

2
(𝜌 − 1)𝑄

0

+ [ℎ
𝑠
+ 𝑐
𝑟
𝑘
𝑠
−

ℎ
𝑠
+ 𝑠
𝑠

2
]𝐾𝑄
0
+

ℎ
𝑠
+ 𝑠
𝑠

2
𝑄
0

s.t. 𝜌𝑡
0
≤ 𝐿, 𝜌 ≥ 1.

(36)

It is easy to verify that if ℎ
𝑠
+ 𝑐
𝑟
𝑘
𝑠
− (ℎ
𝑠
+ 𝑠
𝑠
)/2 < 0 and 𝐾

∗
≥

−(ℎ
𝑠
+ 𝑠
𝑠
)/(ℎ
𝑠
− 𝑠
𝑠
+ 2𝑐
𝑟
𝑘
𝑠
), then 𝑇𝐶

𝑠
(𝐾
∗
, 𝜆
∗
) ≤ 𝑇𝐶

𝑠
(𝜇
∗
). The

proof of Theorem 5 is complete.

Theorem 5 indicates that when the retailer is required
to settle the balance after the ordering cycle, the retailer’s
average cost will be reduced, but the supplier will benefit from
coordination only under certain conditions.

Next, we will determine the supplier and the retailer’s
optimal ordering quantities.

It is easy to verify that 𝑇𝐶
𝑠
(𝐾, 𝜆) is convex in 𝐾 for 1 ≤

𝐾 ≤ 𝐾
2
. Let 𝐾∗

2
be the solution of 𝜕𝑇𝐶

𝑠
(𝐾, 𝜆)/𝜕𝐾 = 0.

(a) If 𝐾∗
2
≥ 𝐾
2
, then 𝐾

∗
= 𝐾
2
.

By substituting𝐾
∗
= 𝐾
2
into (33), we have

min 𝑇𝐶
𝑠 (𝜆) =

𝐷𝐴
𝑠
[1 − √(ℎ

𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)]

𝜆𝑄
0
√2𝐷𝐴

𝑟

+ [
ℎ
𝑠
+ 𝑠
𝑠

2
(𝜆 − 1) + ℎ

𝑠
+ 𝑐
𝑟
𝑘
𝑠
]

×
𝑄
0
√2𝐷𝐴

𝑟

1 − √(ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)

s.t.
𝜆√2𝐷𝐴

𝑟

1 − √(ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
) / (ℎ
𝑟
+ 𝑠
𝑟
)

𝑄
0

𝐷
≤ 𝐿, 𝜆 ≥ 1.

(37)

We can easily verify that 𝑇𝐶
𝑠
(𝜆) is convex in 𝜆. Similar to

the Proof of Lemma 1, we can get the following result: if 𝐿 ≥

2𝐴
𝑟
/(√ℎ
𝑟
+ 𝑠
𝑟
− √ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
), 𝜆∗ = min{𝜆∗

4
, 𝜆
∗

5
}, where

𝜆
∗

4
=

[
[
[
[
[

√
1

4
+

𝐴
𝑠

2𝐷𝐴2
𝑟

(1 − √
ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟

ℎ
𝑟
+ 𝑠
𝑟

)

2

−
1

2

]
]
]
]
]

,

𝜆
∗

5
= [

𝐿 (√ℎ
𝑟
+ 𝑠
𝑟
− √ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟
)

2𝐴
𝑟

] ,

(38)

⌈𝑥⌉ is the least integer greater than or equal to 𝑥; [𝑥] denotes
the integer part of 𝑥.

(b) If 1 ≤ 𝐾
∗

2
< 𝐾
2
, then 𝐾

∗
= 𝐾
∗

2
.

By 𝜕𝑇𝐶
𝑠
(𝐾, 𝜆)/𝜕𝐾 = 0, we have

𝐾
∗

2
= √

(ℎ
𝑟
+ 𝑠
𝑟
) 𝐴
𝑠

2𝐴
𝑟
𝜆 [((ℎ

𝑠
+ 𝑠
𝑠
) /2) (𝜆 − 1) + ℎ

𝑠
+ 𝑐
𝑟
𝑘
𝑠
]
. (39)

Substituting (39) into (33), we have

min 𝑇𝐶
𝑠 (𝜆) = 2√

𝐴
𝑠
𝐷[((ℎ

𝑠
+ 𝑠
𝑠
) /2) (𝜆 − 1) + ℎ

𝑠
+ 𝑐
𝑟
𝑘
𝑠
]

𝜆

s.t.
𝐴
𝑠
𝜆

𝐷 [((ℎ
𝑠
+ 𝑠
𝑠
) /2) (𝜆 − 1) + ℎ

𝑠
+ 𝑐
𝑟
𝑘
𝑠
]
≤ 𝐿
2
, 𝜆 ≥ 1.

(40)

Since√𝑥 is strictly increasing in 𝑥, so (40) is equivalent to the
following problem:

min 𝑇𝐶
𝑠 (𝜆) =

𝐴
𝑠
𝐷[((ℎ

𝑠
+ 𝑠
𝑠
) /2) (𝜆 − 1) + ℎ

𝑠
+ 𝑐
𝑟
𝑘
𝑠
]

𝜆

s.t. [
𝐿
2
𝐷(ℎ
𝑠
+ 𝑠
𝑠
)

2
− 𝐴
𝑠
]𝜆+𝐿

2
𝐷[ℎ
𝑠
+𝑐
𝑟
𝑘
𝑠
−
ℎ
𝑠
+ 𝑠
𝑠

2
]≥0

𝜆 ≥ 1.

(41)

Since ℎ
𝑠
+𝑐
𝑟
𝑘
𝑠
−(ℎ
𝑠
+𝑠
𝑠
)/2 < 0, then𝑇𝐶

𝑠
(𝜆) is increasing in𝜆. If

ℎ
𝑠
+𝑐
𝑟
𝑘
𝑠
< (ℎ
𝑠
+𝑠
𝑠
)/2 and 𝐿

2
𝐷(ℎ
𝑠
+𝑠
𝑠
)/2−𝐴

𝑠
> 0, then the first

constraint of (41) holds for 𝜆 ≥ ⌈−[ℎ
𝑠
+𝑐
𝑟
𝑘
𝑠
−(ℎ
𝑠
+𝑠
𝑠
)/2]/((ℎ

𝑠
+

𝑠
𝑠
)/2 −𝐴

𝑠
/𝐿
2
𝐷)⌉. Due to the fact that 𝑇𝐶

𝑠
(𝜆) is increasing in

𝜆 and ⌈−[ℎ
𝑠
+𝑐
𝑟
𝑘
𝑠
−(ℎ
𝑠
+𝑠
𝑠
)/2]/((ℎ

𝑠
+𝑠
𝑠
)/2−𝐴

𝑠
/𝐿
2
𝐷)⌉ ≥ 1, it

is straight forward that 𝜆∗ = ⌈−[ℎ
𝑠
+ 𝑐
𝑟
𝑘
𝑠
− (ℎ
𝑠
+ 𝑠
𝑠
)/2]/((ℎ

𝑠
+

𝑠
𝑠
)/2 − 𝐴

𝑠
/𝐿
2
𝐷)⌉.

(ii) If 𝐾 > 𝐾
2
,

𝑡
∗
(𝐾) = 𝑡

3
=

𝐴
𝑟

𝐾𝑄
0
𝑐
𝑟
𝑘
𝑟

+
𝑠
𝑟
𝑡
0
𝐾

2𝑐
𝑟
𝑘
𝑟

−
𝑡
0
(ℎ
𝑟
+ 𝑠
𝑟
)

𝑐
𝑟
𝑘
𝑟

. (42)

By substituting (42) into (28), the problem is reduced to

min 𝑇𝐶
𝑠 (𝐾, 𝜆) = [

ℎ
𝑠
+ 𝑠
𝑠

2
(𝜆 − 1) +

(ℎ
𝑠
+ 𝑐
𝑟
𝑘
𝑠
) 𝑠
𝑟

2𝑐
𝑟
𝑘
𝑟

]𝐾𝑄
0

+ [
𝐴
𝑠
𝐷

𝜆
+

(ℎ
𝑠
+ 𝑐
𝑟
𝑘
𝑠
) 𝐴
𝑟
𝐷

𝑐
𝑟
𝑘
𝑟

]
1

𝐾𝑄
0

−

(ℎ
𝑠
+ 𝑐
𝑟
𝑘
𝑠
)√2𝐷𝐴

𝑟
(ℎ
𝑟
+ 𝑠
𝑟
)

𝑐
𝑟
𝑘
𝑟

s.t. 𝜆𝐾
𝑄
0

𝐷
≤ 𝐿, 𝜆 ≥ 1.

(43)
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Table 1: Sample computing results for different values of 𝐴
𝑠
.

𝐴
𝑠

𝜇
∗

𝑇𝐶
𝑠
(𝜇
∗
) 𝐾

∗
𝜆
∗

𝑡
∗ (day) 𝑇𝐶

𝑠
(𝜆
∗
) SSP

0
(%) RSP

0.5
(%) 𝑆𝑆P

0.5
(%) TSP (%)

30 1 6037.38 1.43 1 0.35 4942.59 18.13 2.72 9.07 4.18
50 1 10062.31 1.62 1 0.66 7582.70 24.64 6.16 12.32 8.21
70 2 13006.46 1.77 1 0.98 9955.52 23.46 7.58 11.73 9.21
90 2 15018.92 1.90 1 1.28 12145.70 19.13 7.14 9.57 8.18
120 2 18037.62 2.06 1 1.70 15187.63 15.80 7.08 7.90 7.47
150 2 21056.31 2.20 1 2.09 18016.92 14.43 7.55 7.22 7.38

Table 2: Sample computing results for different values of ℎ
𝑠
.

ℎ
𝑠

𝜇
∗

𝑇𝐶
𝑠
(𝜇
∗
) 𝐾

∗
𝜆
∗

𝑡
∗ (day) 𝑇𝐶

𝑠
(𝜆
∗
) SSP0 (%) RSP0.5 (%) SSP0.5 (%) TSP (%)

1 2 11888.43 2.30 1 2.40 8101.07 31.86 9.41 15.93 11.83
2 2 12261.11 2.05 1 1.65 8916.85 27.28 8.31 13.64 10.33
3 2 12633.78 1.89 1 1.24 9504.06 24.77 7.78 12.39 9.55
4 2 13006.46 1.77 1 0.98 9955.52 23.46 7.58 11.73 9.21
10 1 14087.23 1.45 1 0.38 11433.89 18.84 6.59 9.42 7.76
15 1 14087.23 1.33 1 0.22 12027.18 14.62 5.12 7.31 6.02
20 1 14087.23 1.27 1 0.15 12400.63 11.97 4.19 5.99 4.93
25 1 14087.23 1.22 1 0.11 12658.55 10.14 3.55 5.07 4.18
30 1 14087.23 1.19 1 0.08 12847.74 8.80 3.08 4.40 3.62

According to the constraints in (43), we get 1 ≤ 𝜆 ≤ 𝐿𝐷/𝐾𝑄
0
.

In order to guarantee that there exits the feasible solution for
the problem (43), the lifetime needs to satisfy 𝐿 ≥ 𝐾

2
(𝑄
0
/𝐷);

that is

𝐿 ≥
2𝐷𝐴
𝑟

√ℎ
𝑟
+ 𝑠
𝑟
− √ℎ
𝑟
+ 2𝑐
𝑟
𝑘
𝑟

. (44)

It is easy to verify that the right side of (44) is usually very
large, so (44) is not easy to be satisfied for fixed lifetime
products. Hence, for fixed lifetime products, providing longer
credit period than the retailer’s order period is not commonly
applicable.

Remark 6. By (12) and (28), it is straightforward that for
items with infinite lifetime, it is possible that 𝑇𝐶

𝑠
(𝐾, 𝜆) is

minimized when both 𝑡(𝐾) and 𝐾 are very large, which is
meaningless in practice. So, an upper bound 𝑡 is necessary to
be set on delay period 𝑡(𝐾) to avoid very large delay period.
But for items with finite lifetime, the first constraints of (12)
and (28) ensure that 𝐾 will not be very large. Particularly, in
Case I (0 ≤ 𝑡(𝐾) ≤ 𝐾𝑡

0
), by (17), 𝑡∗(𝐾) will not be very large.

In Case II (𝑡(𝐾) ≥ 𝐾𝑡
0
), we have 𝑡

∗
(𝐾) = 𝐾𝑡

0
, for 1 ≤ 𝐾 ≤

𝐾
2
. And we have proved that 𝐾 > 𝐾

2
is not applicable for

fixed lifetime products. Hence, the upper bound on 𝑡 is not
necessary any more for fixed lifetime products.

3. Numerical Example

In this section, numerical examples are presented to evaluate
the benefit of the proposed policy in Section 2. Moreover, we
will examine the implications of the change in the value of
parameters.

Let 𝐿 = 0.2 year and 𝐷 = 150000 units per year. SSP
𝛼
(%)

and RSP
𝛼
(%) denote the savings in percentage of the supplier

and the retailer when the supplier shares 𝛼 percentage of
his/her cost saving with the retailer and let 𝛼 = 0.5. TSP(%)

denotes the saving in percentage of the supply chain.

Case I (example). In Case I, we prove that the retailer’s cost
with coordination is the same as that without coordination,
but the supplier’s cost is reduced. If the supplier would like to
share the saving cost (𝑇𝐶

𝑠
−𝑇𝐶
𝑠
)with the retailer, the retailer’s

cost can also be reduced.
Let 𝐴

𝑠
= $70 per order, 𝐴

𝑟
= $50 per order, 𝑐

𝑟
= $10

per unit, ℎ
𝑠
= $4 per unit per year, ℎ

𝑟
= $7 per unit per year,

𝑠
𝑠
= $12 per unit per year, 𝑠

𝑟
= $20 per unit per year, 𝑘

𝑠
= $0.1

per dollar per year, and 𝑘
𝑟
= $0.1 per dollar per year.

When the values of𝐴
𝑠
, ℎ
𝑠
, and 𝑘

𝑠
change, the correspond-

ing computing results are as specified in Tables 1–3.
As illustrated in Table 1, as 𝐴

𝑠
increases, 𝐾∗, 𝑡∗, and the

supplier’s cost without and with coordination all increase.
In fact, when the supplier’s ordering cost 𝐴

𝑠
is high, the

supplier will reduce his/her ordering cost by increasing the
order quantity per cycle, that is, increasing 𝜇

∗ in the absence
of coordination or 𝐾

∗ in the presence of coordination. In
order to entice the retailer to order more, the supplier will
provide a longer credit period 𝑡

∗. Moreover, as 𝐴
𝑠
increases,

the supplier and the retailer’s savings in percentage decrease
or increase, but they are both positive.The total cost saving of
the supply chain is also positive; that is, the proposed policy
is effective to the system.

By Table 2, as ℎ
𝑠
increases, 𝐾

∗ and 𝑡
∗ both decrease,

but the supplier’s cost without and with coordination both
increase. Actually, if the supplier’s capital cost is high, then
he/she will provide a shorter delay period to reduce his/her
capital cost. The shorter credit period offered by the supplier
will cause the less order multiple of the retailer. In addition,
as ℎ
𝑠
increases, the supplier and the retailer’s savings in
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Table 3: Sample computing results for different values of 𝑘
𝑠
.

𝑘
𝑠

𝜇
∗

𝐾
∗

𝜆
∗

𝑡
∗ (day) 𝑇𝐶

𝑠
(𝜆
∗
) SSP0 (%) RSP0.5 (%) SSP0.5 (%) TSP (%)

0.05 2 1.82 1 1.09 9743.23 25.09 8.11 12.54 9.85
0.1 2 1.77 1 0.98 9955.52 23.46 7.58 11.73 9.21
0.15 2 1.73 1 0.88 10145.69 22.00 7.11 11.00 8.63
0.2 2 1.69 1 0.80 10317.34 20.68 6.68 10.34 8.12
0.3 2 1.62 1 0.66 10615.78 18.38 5.94 9.19 7.22

Table 4: Sample computing results for different values of 𝐴
𝑟
.

𝐴
𝑟

𝜆
∗

𝐾
∗

𝐾
∗
𝑄
0

𝑡
∗ (day) 𝐾

∗
𝑄
0
/𝐷 (day) R of (34) RSP0 (%) SSP0 (%) TSP (%)

80 1 2.32048 2148.34 0.01432 0.01432 2.57143 12.15 −1.68 5.03
100 1 2.0755 2148.34 0.01432 0.01432 2.57143 16.61 −17.31 1.31
120 1 1.89466 2148.34 0.01432 0.01432 2.57143 19.48 −19.18 3.06
140 1 1.75412 2148.34 0.01432 0.01432 2.57143 21.38 −20.02 4.64
160 1 1.64083 2148.34 0.01432 0.01432 2.57143 22.65 −20.17 6.03

Table 5: Sample computing results for different values of ℎ
𝑟
.

ℎ
𝑟

𝜆
∗

𝐾
∗

𝐾
∗
𝑄
0

𝑡
∗ (day) 𝐾

∗
𝑄
0
/𝐷 (day) R of (34) RSP0 (%) SSP0 (%) TSP (%)

5 1 2.5 2449.49 0.01633 0.01633 1.6 5.26 5.36 5.19
6 1 2.54951 2449.49 0.01633 0.01633 1.6 7.35 4.99 5.90
7 1 2.598076 2449.49 0.01633 0.01633 1.6 9.39 4.66 6.61
8 1 2.645751 2449.49 0.01633 0.01633 1.6 11.40 4.37 7.32
9 1 2.692582 2449.49 0.01633 0.01633 1.6 13.37 4.12 8.02

percentage both decrease.Hence, if the supplier’s holding cost
is high, the supplier and the retailer cannot gain much from
coordination.

From Table 3, as 𝑘
𝑠
increases, the supplier’s cost with

coordination increases, but 𝐾
∗, 𝑡
∗, and the supplier and

the retailer’s savings in percentage decrease. If 𝑘
𝑠
is large, it

is profitable for the supplier to invest, and accordingly the
credit period offered to the retailer will be shortened. In this
case, the supplier and the retailer cannot gain much from
coordination.

Case II (example). In Case II, we prove that if 1 ≤ 𝐾 ≤ 𝐾
2
,

the retailer’s cost with coordination is less than that without
coordination no matter how much the parameters change,
but the supplier will benefit only if (34) holds. In Tables 4 and
5, “R of (34)” denotes the right hand side of (34).

(1) Let 𝐴
𝑠
= $200 per order, 𝑐

𝑟
= $5 per unit, ℎ

𝑠
= $6

per unit per year, ℎ
𝑟
= $8 per unit per year, 𝑠

𝑠
= $12

per unit per year, 𝑠
𝑟
= $20 per unit per year, 𝑘

𝑠
= $0.1

per dollar per year, and 𝑘
𝑟
= $0.1 per dollar per year.

The different values of 𝐴
𝑟
and the computing results

are as specified in Table 4.
As shown in Table 4, when 𝐾

∗ is less than “R of (34),”
the supplier’s cost saving in percentage is negative, but the
retailer’s is positive. It is consistent with Theorem 5; that is,
if (34) does not hold, the supplier will not benefit from
coordination.

(2) Let 𝐴
𝑠
= $200 per order, 𝐴

𝑟
= $80 per order, 𝑐

𝑟
=

$10 per unit, 𝑠
𝑠
= $12 per unit per year, 𝑠

𝑟
= $20 per

unit per year, ℎ
𝑠
= $4 per unit per year, 𝑘

𝑠
= $0.1 per

dollar per year, and 𝑘
𝑟
= $0.1 per dollar per year. The

different values of ℎ
𝑟
and the computing results are as

specified in Table 5.

In Table 5, 𝐾∗ is greater than “R of (34).” That is, (34)
holds. In this case, we observe that the supplier and the
retailer’s cost savings in percentage are both positive and
increase as ℎ

𝑟
increases. Hence, if the retailer’s holding cost

is high, both parties can gain much from coordination.
In Case II, the retailer’s cost decreases, but the supplier’s

cost possibly decreases or increases, which depends on the
value of the parameters and 𝐾

∗. As proved in Theorem 5,
if (34) holds, then the supplier’s cost can be reduced by
coordination as shown inTable 5, else as illustrated inTable 4,
the supplier’s average cost increases.

4. Conclusions

In this paper, supply chain coordination for fixed lifetime
products through delay in payments is considered and mod-
eled. The analytical method as to how to determine the opti-
mal strategy is proposed, and analytically tractable solutions
are obtained. It is indicated that if the retailer is required
to settle the balance with the supplier before the end of the
ordering cycle, then the supplier can gain with coordination.
The supplier’s total cost as well as that of the total system
can be reduced no matter how much the parameters change.
Thus, the supplier can not only compensate the retailer for
his increased inventory cost by offering the retailer an order
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size dependent delay period, but also provide the retailer with
an additional saving of 𝛼(𝑇𝐶

𝑠
(𝜇
∗
) − 𝑇𝐶

𝑠
(𝐾
∗
, 𝜆
∗
)). Here, 𝛼

is determined through negotiations between the supplier and
the retailer and is generally dependent on the existing balance
of power between them. Furthermore, it is indicated that,
in this case, the retailer’s order size is larger at cooperation
against noncooperation (𝐾 > 1). As proved in Theorem 5, if
the retailer is permitted to settle the balance after the ordering
cycle, the supplier can gain only under certain conditions. In
this case, the credit period is equal to the ordering cycle.

In the proposed model, demand is assumed to be a
deterministic constant. In fact, the demand is influenced
by many factors, such as price [30], inventory level [31],
advertising strategy [32], and other uncertainties or noises
from market; so the varying or uncertain demand functions
are more practical. However, the analysis of the models in
these cases would be more complicated and we need to
analyze the characteristics of noises first [33, 34]. Perhaps it is
difficult to obtain the analytical solutions, but one could try
to obtain the optimal numerical solutions. Anyway, further
works could extend the models in these ways.
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