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Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with
specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at
the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue
tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and
strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the
response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods
including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed
to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on
haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable
of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however,
more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform
by a simple equation.

1. Introduction

Fatigue cracking, due to repeated traffic load, is among
the most common mode of failures that flexible pavements
experience.The fatigue life of asphaltmixes in laboratory tests
is commonly determined by applying a dynamic load having
sinusoidal or haversine waveform with a specific frequency.
The frequency of horizontal tensile stress and strain pulses
in both longitudinal and transverse directions depends on
several factors such as vehicle speed, loading properties,
environmental conditions, and pavement structure.

Several relationships were proposed to predict the dura-
tion of vertical stress pulse at different depth of asphalt layers
[1–6]. Nevertheless, the knowledge on the frequency of stress
and strain pulses in horizontal directions at the bottom of the
asphalt layer is still poorly understood.

Brown (1973) derived an equation to calculate the loading
time as a function of vehicle speed and depth beneath
the pavement surface. The loading time was considered as

the average of the pulse times of the stresses in the three
directions as obtained from the elastic layered theory. The
relationship between the loading time 𝑡 (s), depth 𝑑 (m), and
vehicle speed V (km/h) was as follows [7]:

log (𝑡) = 0.5𝑑 + 0.2 − 0.94 log (𝑉) . (1)

When (1) is plotted for different speeds and thicknesses
between 150 and 400mm, it can be seen that the approxima-
tion 𝑡 = 1/𝑉 (𝑉 = average speed in km/h) is a reasonable fit
for the range of thicknesses studied [8].

In the development of the Mathematical Model of Pave-
ment Performance (MMOPP), Ullidtz (2005) used the load-
ing time corresponding to the middle depth of the asphalt
layer. It was calculated based on the simplified assumption
that the load at that depth is uniformly distributed over a
circular area with the radius of 𝑎+ ℎ

1
/2, where 𝑎 is the radius

of the contact area and ℎ
1
is the thickness of the asphalt layer.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 515467, 16 pages
http://dx.doi.org/10.1155/2014/515467



2 The Scientific World Journal

Based on this assumption, the time of loading is defined as
follows [5]:

𝑡 =
(2𝑎 + ℎ

1
)

𝑉
, (2)

where 𝑡 is the time of loading, a is the radius of the contact
area, ℎ

1
is the thickness of the asphalt layer, and 𝑉 is

the vehicle speed. According to Ullidtz (2005), since no
reductions are made for the influence of dual tires or for
lateral distribution of the loads, the results should be on the
conservative side [5].

Garcia and Thompson (2008) measured the durations of
longitudinal and transverse tensile strain pulses in four sec-
tions tested with the accelerated pavement testing machine
(ATLAS) [9]. They found a very strong relationship between
the longitudinal and transverse strain pulse durations. In
general, the transverse pulse durations were significantly,
about three times, higher than those in the longitudinal
direction [9].

Robbins and Timm (2009) used the instrumented sec-
tions of the National Center of Asphalt Technology (NCAT)
to validate the procedure proposed by the Mechanistic
Empirical Pavement DesignGuide (MEPDG) to calculate the
longitudinal pulse duration [10].They developed a regression
model for the duration of longitudinal strain pulse at the
bottom of asphalt layer with three variables as follows [10]:

𝑑 = 𝑗 ln (ℎ) + 𝑉
𝑘
+ 𝑇
𝑙
+ 𝑚, (3)

where 𝑑 is the strain pulse duration; ℎ is the thickness of
asphalt layer; 𝑉 is the vehicle speed, and 𝑇 is the mid-depth
temperature with 𝑗, 𝑘, 𝑙, and𝑚 as regression coefficients.

Hernandez (2010) performed an experimental testing
program at the Accelerated Pavement Load Facility (APLF)
of Ohio University on four pavement test sections [11].
He studied the influence of load, temperature, offset, and
thickness of asphalt layer on the amplitude and duration
of strain pulses at the bottom of the asphalt layer in both
longitudinal and transverse directions. These experimental
results showed that the load amplitude does not affect
the longitudinal pulse duration [11]. The influence of the
offset was furthermore dependent on the magnitude of the
applied load. According to Hernandez (2010), the procedures
recommended by MEPDG and Hu et al. (2010) [6] are not
suitable to predict the magnitude of the longitudinal pulse
duration, overestimating the desired variable by more than
2.5 times [11].

Restrepo-Velez (2011) evaluated the effect of several fac-
tors on the duration of tensile strains at the bottom of asphalt
layer [12]. The pavement responses were measured on the
perpetual section AC 664, of the WAY-30 project. Similar
to the observation by Hernandez [11], Restrepo-Velez (2011)
also concluded that the pulse durations were higher at lower
values of speed and temperature. Additionally, Restrepo-
Velez (2011) compared the observed responses with pavement
responses predicted using the MEPDG method and the
multilayer elastic analysis software, JULEA. Based on this
comparison, MEPDG procedure led to an overprediction of
the strain pulse durations of around 80% compared to those

measured in the field [12]. It is worth nothing that, some
studies have shown that the loading times calculated from the
longitudinal strain gauges fall within the method suggested
by MEPDG method [9, 13]. Based on the results of these
studies there is no agreement in applicability of MEPDG
method for prediction of loading times in longitudinal
direction.This is due to the fact that theMEPDGmethodwas
originally developed to compute the loading time resulted
from vertical stress, not horizontal responses.

According to the viscoelastic analysis of 112 flexible
pavement sections, Fakhri et al. (2013) proposed regression
equations for determining the duration of tensile stress and
strain pulses at the bottom of asphalt layer in both longi-
tudinal and transverse directions [14]. Proposed equations
were developed based on haversine waveform by means
of weighted nonlinear regression. Using this method of
regression, the fitted haversine waveform only depends on
three parameters including the speed of moving wheel, the
thickness of asphalt layer, and asphalt layer temperature [14].

A recent study showed that several parameters such as
thickness of different layers, ratio of resilient modulus for
two succeeding layers, and contact radius of tire affect shape
and frequency of longitudinal and transverse response pulses
at the bottom of asphalt layer [15]. All of these parameters
should be therefore considered to build up a comprehensive
method for predicting loading time (i.e., frequency) of
longitudinal and transverse response pulses. To the best of
our knowledge, no general relationship or method has been
proposed for determining of frequency of tensile horizontal
stress and strain pulses at the bottom of asphalt layers.
Existing relations are basically only applicable to vertical
stress durations and limited number of equations which were
developed based on field measurement of horizontal strain
pulses cannot be used generally in other situations, where
the pavement section and loading characteristics are very
different from the desired sections.

The objective of this paper is to propose two methods
for predicting the frequency of tensile stress and strain
pulses at the bottom of asphalt layer in both longitudinal
and transverse directions based on haversine and sinusoidal
waveforms. By applying these methods, the frequency of
loading in HMA fatigue laboratory tests such as four-points
bending beam and indirect tensile (IDT) fatigue tests can be
determined more realistically based on pavement design and
loading characteristics. Results of this study can be used for
more realistic simulation of dynamic loading of asphalt mix
fatigue tests in both stress control mode and strain control
mode.

2. Establishment of Dataset

2.1. Analysis of Pavement Sections. In order to establish the
dataset related to the normalized stress and strain pulses
at the bottom of the asphalt layer, 5000 flexible pavement
sections were analyzed using layered elastic theory (LET).
The longitudinal and transverse stress and strain values were
calculated at different radial distances from the center of the
contact area. Moving load was assumed to be a single wheel
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Table 1: Ranges of analytical dataset.

Statistical parameter Radius 𝐻
1

𝐻
2

𝐻
3

𝐸
1
/𝐸
2

𝐸
2
/𝐸
3

𝐸
3
/𝐸
4

Minimum 10.00 5.00 10.00 10.00 5.00 1.00 1.00
Maximum 30.00 40.00 50.00 50.00 100.00 10.00 10.00
Mean 19.88 22.59 30.05 29.74 52.13 5.49 5.48
Mode 11.00 29.00 43.00 50.00 20.00 1.00 1.00
Median 20.00 23.00 30.00 30.00 52.00 6.00 5.00
Standard deviation 6.07 10.36 11.89 11.95 27.60 2.84 2.88
𝐻𝑖: thickness of ith layer in centimeter.
𝐸𝑖/𝐸𝑗: ratio of ith layer modulus to jth layer modulus.
Radius of contact area is in centimeter.
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Figure 1: Characteristics of the Pavement structure and tensile strains.

having the contact pressure of 700 kPa. Since the contact
pressure has no effect on the normalized shape and duration
of response pulses, only the contact radiuswas considered as a
variable. In each case, the pavement structure was considered
as a four-layered system and all layers were treated as linear
elastic. Interface of two succeeding layers was considered as
fully-bounded. Pavement structure characteristics as well as
tensile responses considered in this study are illustrated in
Figure 1.The range of thickness of layers, the ratio of resilient
modulus of each layer to the immediate succeeding layer, and
the radius of the contact area are given in Table 1.

Each pavement section was analyzed using layered elastic
analysis program, Non-PAS, which enables the analysis of
a pavement system consisting of a maximum of ten linear
or nonlinear elastic layers subjected to the maximum of
ten circular contact loads. Detailed verification of Non-PAS
program using Kenlayer program confirms that the Non-
PAS program can accurately predict the pavement responses
subjected to single and multiple loading [16]. Because of
the limitation of the available pavement analysis programs
such as Kenlayer and ELSYM 5 in respect to the number of
response points, developing such a program was necessary.
The developed code facilitates the calculation of responses
(stresses, strains, and deflections) for an unlimited number
of points in radial direction.

Stress and strain values in the longitudinal and transverse
directions were computed at different radial distances with
one centimeter interval, as long as the amount of tensile stress
or tensile strain reduces to 1% of the maximum stress or
strain, respectively.

The longitudinal and transverse stress and strain pulses
at the bottom of HMA layer according to LET analysis are
presented in Figure 2 for a typical pavement section.

As can be seen, the response pulse in longitudinal
direction generally consists of two compression zones and
one tension zone, while in case of transverse response pulse,
theHMA layer commonly experiences tensile stress or strain.
In general, the shape of strain pulses computed by NonPAS
program was very similar to those measured in full-scale
pavement tests [9–12]. In this research, with respect to
prediction of loading frequency for simulation of asphalt
fatigue damage, only the tension zone of longitudinal and
transverse pulses was considered for modeling.

2.2. Fitting of the Haversine Function to the Analytical
Response Pulse. Effect of loading waveform on the fatigue
life of asphalt mixes can be explained by the energy put
into the system per loading cycle [17]. It has been suggested
that the energy is proportional to the area occupied by
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Figure 2: Normalized horizontal response versus distance for a sample pavement section.

a load waveform in a stress (or strain) against time coordinate
system [18]. On the other hand, full-scale test results showed
that haversine function is a good representation of strain
pulses in the longitudinal and transverse directions [9].

According to these observations, for each record of
dataset (stress and stain pulses in both longitudinal and
transverse directions at the bottom of asphalt layer for
5000 pavement sections), the haversine function was fitted
to analytical response pulse such that the area under the
haversine function was equal to the area under the analytical
response pulse obtained by LET analysis. The normalized
haversine function can be expressed as follows:

𝑦 (𝑥) = sin2 (𝜋
2
+

𝜋𝑥

𝐿eff
) , (4)

where 𝐿eff is the effective length and 𝑦(𝑥) is the normalized
value of the pulse at distance of 𝑥. Since the analytical
pulses have been determined in distance domain, duration of
haversine pulse is also determined in distance domain which
is called effective length (𝐿eff). Given the speed of moving
wheel, the duration of haversine pulse as well as loading
frequency can be obtained using

𝑑 =
𝐿eff

27.78𝑉
, (5)

𝑓 =
1

𝑑
, (6)

where 𝑑 is the duration in time domain in second, 𝐿eff is
the effective length based on fitted haversine waveform to

analytical pulse in centimeter,𝑉 is the speed of moving wheel
in km/h, and 𝑓 is the frequency of haversine waveform in
Hertz.

Before fitting the haversine function to response pulse,
the response pulse was normalized by dividing all data points
to the maximum value. The area under the normalized
haversine function (𝐴) can be obtained using the following
integral:

𝐴 = ∫

+(𝐿eff/2)

−(𝐿eff/2)
sin2 (𝜋

2
+

𝜋𝑥

𝐿eff
)𝑑𝑥 =

𝐿eff
2

. (7)

Given the area under the analytical response pulse (𝐴
𝑝
),

the effective length (𝐿eff) of fitted haversine function can be
determined by 𝐿eff = 2𝐴

𝑝
.

As a criterion for goodness-of-fit, the coefficient of
determination (𝑅

2
) between fitted haversine function and

analytical response pulse was determined. The frequency
histogram of coefficients of determination (𝑅

2
) is given in

Figure 3. As evident, the maximum and minimum values of
𝑅
2 are 0.99 and 0.70, respectively. Figure 3 also indicates that

the haversine function is fitted better to stress and strain
pulses in longitudinal direction than transverse direction.
This observation is in agreement with full-scale tests results
[9].

Although the haversine waveform ismore appropriate for
representing the tensile responses at the bottom of asphalt
layer (especially in transverse direction) and has been recom-
mended by ASTM D7460, some standards such as AASHTO
T321 and EN 12697-26 recommend the sinusoidal waveform
to perform fatigue tests of asphalt mixes. In such cases, the



The Scientific World Journal 5

Longitudinal stress (𝜎x) Transverse stress (𝜎y)1200

1000

800

600

400

200

0

C
ou

nt

1200

1000

800

600

400

200

0

C
ou

nt

1200

1000

800

600

400

200

0

C
ou

nt

C
ou

nt

0.6 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

R2

0.6 0.7 0.8 0.9 1.0

R2 R2

0.7 0.8 0.9 1.0

R2

700

600

500

400

300

200

100

0

Longitudinal strain (𝜀x) Transverse strain (𝜀y)

Figure 3: Frequency histogram of coefficient of determination (𝑅
2
) resulted from fitting haversine function.

Table 2: Statistical data relating to effective length (𝐿 eff) of tensile response pulses.

Statistic Stress pulses Strain pulses
𝜎
𝑥

𝜎
𝑦

𝜀
𝑥

𝜀
𝑦

Min., cm 30.74 43.74 28.67 57.50
Max., cm 392.66 694.63 295.92 922.08
Mean, cm 156.17 282.45 121.07 375.52
Mode, cm 60.19 254.30 237.20 735.47
Median, cm 145.72 269.22 111.95 357.64
Standard deviation, cm 73.89 134.15 53.16 178.90

equivalent effective length for sinusoidal wave shape can be
computed easily by the following equation:

𝐿
𝑆

eff =
𝜋

4
𝐿
𝐻

eff, (8)

where 𝐿
𝑆

eff is the effective length of a sinusoidal waveform
which has the area equal to a haversine pulse with effective
length of 𝐿𝐻eff. In the next sections of this paper, the haversine
waveform is considered for modeling of tensile response
pulses at the bottom of asphalt layer. It is obvious that all
results can be generalized to sinusoidal waveform by using
(8).

2.3. Effective Length (𝐿
𝑒𝑓𝑓

) of Horizontal Stress and Strain
Pulse. The statistical data relating to computed effective
length (𝐿eff) for stress and strain pulses in both longitudinal
and transverse directions is given in Table 2. As can be seen,
in the case of both stress and strain pulses, the effective length
in transverse direction is larger than that in longitudinal
direction. The frequency of stress and strain pulses in both
directions at two different speeds of 10 and 80 km/h are given
in Table 3. Compared with the frequency of 5–10Hz, which
is commonly used in the asphalt mix laboratory test, the real

frequency of loadingmay range from 0.30 to 77.5Hz based on
the vehicle speed, load specifications, and pavement design.

Relations between effective length of stress and strain
pulses in longitudinal and transverse directions are illustrated
in Figure 4. As can be seen, linear relationships exist between
effective length of stress and strain pulses in both longitudinal
and transverse directions. These relations are very useful and
practical for computation of the effective length of different
response pulses, where the effective length of one response
pulse is known.

The ratio of effective length between transverse and lon-
gitudinal directions of strain pulse is about 3.14 (Figure 4(b)).
This value is in agreement with the findings of previous
researchers who observed that the duration of transverse
tensile strain was almost three times of what was measured
in longitudinal direction [9, 11].

3. Multivariate Adaptive Regression
Splines (MARS)

3.1. Theory of MARS. The theory of Multivariate Adaptive
Regression Splines (MARS) was developed by Friedman
(1991) for solving regression-type problems [19]. The MARS
technique has become particularly popular in the area of
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Table 3: Range of computed frequencies (Hz) assuming two different speeds.

Speed, km/h 10 80 10 80
Statistics 𝜎

𝑥
𝜎
𝑦

𝜎
𝑥

𝜎
𝑦

𝜀
𝑥

𝜀
𝑦

𝜀
𝑥

𝜀
𝑦

Max. 9.0 6.5 72.3 50.8 9.7 4.8 77.5 38.6
Min. 0.7 0.4 5.7 3.2 0.9 0.3 7.5 2.4
Mean 1.8 1.0 14.2 7.9 2.3 0.7 18.4 5.9
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Figure 4: Relations between effective length of stress and strain pulses in longitudinal and transverse directions.
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data mining because it is categorized into nonparametric
regression procedures that make no assumption about the
form of functional relationship (e.g., linear and logistic)
between the dependent and predictor variables. Instead, use-
ful models (i.e., models that yield accurate predictions) can
be derived even in situations where the relationship between
the predictors and the dependent variables is nonmonotone
and difficult to approximate with parametric models [20].

MARS divides the whole space of input variable into var-
ious subregions. It defines a different mathematical equation
for each subregion. The fundamental idea of MARS is to use
the combination of the linear truncated basis functions to
approximate the model.Thus, the functions of MARS consist
of single spline functions or the product of two or more of
the truncated power functions to allow for the interactions.
MARS model can be written as follows:

𝑓 (𝑋) = 𝛽
0
+

𝑁

∑

𝑛=1

𝛽
𝑛
𝐵
𝑛
(𝑋) , (9)

where 𝛽
0
is the coefficient of the constant basis function

𝐵
0
(𝑋) = 1, 𝐵

𝑛
(𝑋) is the 𝑛th basis function, which may be

a single spline function or product of two or more, 𝐵
𝑛
is

the coefficient of the basis function, and 𝑁 is the number
of basis functions in the model. Each basis function, 𝐵

𝑛
(𝑋),

takes one of the three forms of the following: (1) a constant,
(2), a hinge function (𝑥

𝑖
− 𝑡
𝑘
)
+
or (𝑥
𝑖
− 𝑡
𝑘
)
−
and (3) a product

of two or more hinge functions. A product of two or more
hinge functions can model interaction between two or more
variables. The hinge functions have the following form:

(𝑥 − 𝑡
𝑘
)
+
= max (0, 𝑥 − 𝑡

𝑘
) = {

𝑥 − 𝑡
𝑘
, if 𝑥 ≥ 𝑡

𝑘

0, else

(𝑥 − 𝑡
𝑘
)
−
= max (0, 𝑡

𝑘
− 𝑥) = {

𝑡
𝑘
− 𝑥, if 𝑡

𝑘
≥ 𝑥

0, else,

(10)

where 𝑡
𝑘
is a constant, called the knot.

3.2. Learning in MARS. Model building in MARS is com-
pleted in two stages called the forward pass and the backward
pass.

The Forward Phase. MARS begins with a model that just
includes the intercept term and then adds basis function in
pairs to the model successively. At each step it determines the
pair of basis functions that provide the maximum reduction
in sum-of-squares residual error. The two basis functions in
the pair are identical except the case that a different side of
a mirrored hinge function is used for each function. Each
new basis function composed of a term already in the model
is multiplied by a new hinge function. A hinge function
is defined by a variable and a knot. Hence, to add a new
basis function, MARS must search over all combinations of
existing terms (parent terms), all variables (to select one for
the new basis function), and all values of each variable (for
the knot of the new hinge function). The forward phase is
executed until one of the following conditions occurs: change
in residual error is smaller than threshold or the maximum

number of terms is reached.These parameters are specified by
the user beforehand.Due to the nature of hinge functions, this
search can be done more rapidly by using fast least-squares
update technique or by using a heuristic method that reduces
the number of parent terms considered at each step [19].

The Backward Pass. The forward pass usually builds an
overfitted model. So, a backward deletion phase is engaged
to build a model with better generalization ability. In this
phase the model is pruned by removing one least effective to
find the best submodel. Model subsets are compared using
the generalized cross-validation criterion (GCV) which is
defined as follows:

GCV =

(1/𝑁)∑
𝑁

𝑖=1
[𝑦
𝑖
− 𝑓 (𝑋

𝑖
)]
2

[1 − (𝑑 ⋅ 𝑀)/𝑁]
2

, (11)

where 𝑀 is the number of basis functions in the model,
𝑓 denotes the fitted values of the current MARS model, 𝑁
denotes the number of data points and 𝑑 is the penalizing
parameter. The numerator is the common residual sum
of squares, which is penalized by the denominator, which
accounts for the increasing variance in the case of increasing
model complexity.The penalizing parameter 𝑑 can be chosen
arbitrarily. A conventional value is 𝑑 = 4. A smaller 𝑑

generates a larger model with more basis functions; a larger 𝑑
creates a smaller model with less basis functions [21].

At the end of the backward phase, from those “best”
models of each size, a model with lowest GCV value is
selected as the final one. One of the backward phase’s benefits
over the forward phase is that at any step it can select any term
to delete, whereas the forward phase, at each step, can only see
the next pair of terms.The forward phase adds terms in pairs;
however, the backward pass typically discards one side of the
pair.Thus, terms are often not seen in pairs in the final model
[19].

3.3. Prediction of 𝐿
𝑒𝑓𝑓

by Means of MARS. For developing
some equations to predict the effective length (𝐿eff) of
stress and strain pulses at the bottom of asphalt layer in
both longitudinal and transverse directions, on the basis of
MARS method, STATISTICA program was employed. The
degree of interactions between predictors was assumed to
be 3, since higher values had no effect on improving the
model. Maximum number of basis function and penalizing
parameter 𝑑 were set to 25 and 4, respectively. The following
equations have been developed for prediction of effective
length of stress and strain pulses at the bottomof asphalt layer.

Stress pulse in longitudinal direction (𝜎
𝑥
):

𝐿eff = 17.84649 + 4.68246 ×max (0,𝐻
1
− 5) + 0.031017

×max (0,𝐻
1
− 5) ×max(0, 𝐸1

𝐸
2

− 39) − 0.07433

×max (0,𝐻
1
− 5) ×max(0, 39 − 𝐸

1

𝐸
2

) + 0.24011
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×max (0,𝐻
1
− 5) ×max(0, 𝐸2

𝐸
3

− 4) − 0.48707

×max (0,𝐻
1
− 5) ×max(0, 4 − 𝐸

2

𝐸
3

) + 0.35755

×max (0,𝐻
1
− 5) ×max(0,

𝐸
3

𝐸
4

− 30) − 0.69655

×max (0,𝐻
1
− 5) ×max(0, 30 −

𝐸
3

𝐸
4

) + 3.21134

×max (0, 𝑅 − 10) + 0.72980 ×max (0, 42 − 𝐻
2
)

+ 0.02613 ×max (0, 𝑅 − 10) ×max(0, 𝐸1
𝐸
2

− 26)

− 0.07210 ×max (0, 𝑅 − 10) ×max(0, 26 − 𝐸
1

𝐸
2

)

+ 0.00223 ×max (0, 𝑅 − 10) ×max(0, 𝐸1
𝐸
2

− 26)

×max(0, 𝐸2
𝐸
3

− 3) − 0.01429 ×max (0, 𝑅 − 10)

×max(0, 𝐸1
𝐸
2

− 26) ×max(0, 3 − 𝐸
2

𝐸
3

) + 0.00806

×max (0, 𝑅 − 10) ×max(0, 𝐸1
𝐸
2

− 26)

×max(0,
𝐸
3

𝐸
4

− 9) − 0.00459 ×max (0, 𝑅 − 10)

×max(0, 𝐸1
𝐸
2

− 26) ×max(0, 9 −
𝐸
3

𝐸
4

) − 0.00671

×max (0,𝐻
1
− 5) ×max(0, 𝐸2

𝐸
3

− 6)

×max(0,
𝐸
3

𝐸
4

− 30) − 0.03664 ×max (0,𝐻
1
− 5)

×max(0, 6 − 𝐸
2

𝐸
3

) ×max(0,
𝐸
3

𝐸
4

− 30) − 0.00108

×max (0,𝐻
1
− 5) ×max (0,𝐻

2
− 33)

×max(0,
𝐸
3

𝐸
4

− 30) − 0.00193 ×max (0,𝐻
1
− 5)

×max (0, 33 − 𝐻
2
) ×max(0,

𝐸
3

𝐸
4

− 30) − 0.00375

×max (0,𝐻
1
− 5) ×max (0,𝐻

3
− 26)

×max(0,
𝐸
3

𝐸
4

− 30) + 0.00186 ×max (0,𝐻
1
− 5)

×max (0, 26 − 𝐻
3
) ×max(0,

𝐸
3

𝐸
4

− 30) .

(12)

Stress pulse in transverse direction (𝜎
𝑦
):

𝐿eff = 50.82904 + 8.07127 ×max (0,𝐻
1
− 5)

+ 0.39907 ×max(0, 𝐸1
𝐸
2

− 39) − 1.90639

×max(0, 39 − 𝐸
1

𝐸
2

) + 0.45301 ×max (0,𝐻
1
− 5)

×max(0, 𝐸2
𝐸
3

− 4) − 0.90799 ×max (0,𝐻
1
− 5)

×max(0, 4 − 𝐸
2

𝐸
3

) + 0.36940 ×max (0,𝐻
1
− 5)

×max(0,
𝐸
3

𝐸
4

− 3) − 1.45047 ×max (0,𝐻
1
− 5)

×max(0, 3 −
𝐸
3

𝐸
4

) + 4.76974 ×max (0, 𝑅 − 10)

+ 0.04838 ×max (0,𝐻
1
− 5) ×max(0, 𝐸1

𝐸
2

− 28)

− 0.12620 ×max (0,𝐻
1
− 5) ×max(0, 28 − 𝐸

1

𝐸
2

)

− 1.47860 ×max (0,𝐻
2
− 36) + 0.97541

×max (0, 36 − 𝐻
2
) − 5.84342 ×max(0, 6 − 𝐸

2

𝐸
3

)

+ 0.23175 ×max(0, 39 − 𝐸
1

𝐸
2

) ×max(0, 𝐸2
𝐸
3

− 10)

+ 0.37279 ×max(0, 39 − 𝐸
1

𝐸
2

) ×max(0, 10 − 𝐸
2

𝐸
3

)

+ 0.00324 ×max (0, 𝑅 − 10) ×max(0,
𝐸
3

𝐸
4

− 3)

− 0.02905 ×max (0, 𝑅 − 10) ×max(0, 𝐸1
𝐸
2

− 28)

×max(0,
𝐸
3

𝐸
4

− 3) + 0.003381 ×max (0, 𝑅 − 10)

×max(0, 28 − 𝐸
1

𝐸
2

) ×max(0,
𝐸
3

𝐸
4

− 3) − 0.25111

×max (0, 𝑅 − 10) ×max(0, 𝐸2
𝐸
3

− 3)

×max(0,
𝐸
3

𝐸
4

− 3) + 0.03116 ×max (0, 𝑅 − 10)

×max(0, 3 − 𝐸
2

𝐸
3

) ×max(0,
𝐸
3

𝐸
4

− 3) .

(13)
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Strain pulse in longitudinal direction (𝜀
𝑥
):

𝐿eff = 12.99845 + 3.31521 ×max (0,𝐻
1
− 5)

+ 0.02133 ×max (0,𝐻
1
− 5) ×max(0, 𝐸1

𝐸
2

− 41)

− 0.05544 ×max (0,𝐻
1
− 5) ×max(0, 41 − 𝐸

1

𝐸
2

)

+ 2.91609 ×max (0, 𝑅 − 10) + 0.13670

×max (0,𝐻
1
− 5) ×max(0, 𝐸2

𝐸
3

− 4) − 0.41009

×max (0,𝐻
1
− 5) ×max(0, 4 − 𝐸

2

𝐸
3

) + 0.25174

×max (0,𝐻
1
− 5) ×max(0,

𝐸
3

𝐸
4

− 3) − 0.45133

×max (0,𝐻
1
− 5) ×max(0, 3 −

𝐸
3

𝐸
4

) − 1.28586

×max (0,𝐻
2
− 47) + 0.71949 ×max (0, 47 − 𝐻

2
)

− 0.00315 ×max (0,𝐻
1
− 5) ×max(0, 41 − 𝐸

1

𝐸
2

)

×max(0, 𝐸2
𝐸
3

− 7) + 0.00739 ×max (0,𝐻
1
− 5)

×max(0, 41 − 𝐸
1

𝐸
2

) ×max(0, 7 − 𝐸
2

𝐸
3

) − 0.00993

×max (0,𝐻
1
− 5) ×max(0, 𝐸2

𝐸
3

− 8)

×max(0,
𝐸
3

𝐸
4

− 3) − 0.02422 ×max (0,𝐻
1
− 5)

×max(0, 8 − 𝐸
2

𝐸
3

) ×max(0,
𝐸
3

𝐸
4

− 3) + 0.00139

×max (0,𝐻
1
− 5) ×max(0, 𝐸1

𝐸
2

− 26)

×max(0,
𝐸
3

𝐸
4

− 3) − 0.00618 ×max (0,𝐻
1
− 5)

×max(0, 26 − 𝐸
1

𝐸
2

) ×max(0,
𝐸
3

𝐸
4

− 3) + 0.07548

×max (0, 47 − 𝐻
2
) ×max(0, 𝐸2

𝐸
3

− 7) − 0.06523

×max (0, 47 − 𝐻
2
) ×max(0, 7 − 𝐸

2

𝐸
3

) − 0.00235

×max (0,𝐻
1
− 5) ×max (0,𝐻

3
− 25)

×max(0,
𝐸
3

𝐸
4

− 3) + 0.00384 ×max (0,𝐻
1
− 5)

×max (0, 25 − 𝐻
3
) ×max(0,

𝐸
3

𝐸
4

− 3) + 0.07573

×max(0, 𝐸1
𝐸
2

− 26) − 0.48934 ×max(0, 26 − 𝐸
1

𝐸
2

) .

(14)

Strain pulse in longitudinal direction (𝜀
𝑦
):

𝐿eff = 52.60950 + 10.55170 ×max (0,𝐻
1
− 5)

+ 0.47535 ×max(0, 𝐸1
𝐸
2

− 39) − 1.12822

×max(0, 39 − 𝐸
1

𝐸
2

) + 0.72181 ×max (0,𝐻
1
− 5)

×max(0, 𝐸2
𝐸
3

− 4) − 1.07866 ×max (0,𝐻
1
− 5)

×max(0, 4 − 𝐸
2

𝐸
3

) + 0.72353 ×max (0,𝐻
1
− 5)

×max(0,
𝐸
3

𝐸
4

− 3) − 1.82082 ×max (0,𝐻
1
− 5)

×max(0, 3 −
𝐸
3

𝐸
4

) + 7.40323 ×max (0, 𝑅 − 10)

+ 0.05451 ×max (0,𝐻
1
− 5) ×max(0, 𝐸1

𝐸
2

− 28)

− 0.13696 ×max (0,𝐻
1
− 5) ×max(0, 28 − 𝐸

1

𝐸
2

)

− 1.81207 ×max (0,𝐻
2
− 36) + 1.49244

×max (0, 36 − 𝐻
2
) + 0.86372 ×max (0, 𝑅 − 10)

×max(0, 𝐸2
𝐸
3

− 3) − 1.44292 ×max (0, 𝑅 − 10)

×max(0, 3 − 𝐸
2

𝐸
3

) − 0.02151 ×max (0, 𝑅 − 10)

×max(0, 53 − 𝐸
1

𝐸
2

) ×max(0, 𝐸2
𝐸
3

− 3) + 0.25010

×max (0, 𝑅 − 10) ×max(0, 𝐸2
𝐸
3

− 3)

×max(0,
𝐸
3

𝐸
4

− 9) − 0.10420 ×max (0, 𝑅 − 10)

×max(0, 𝐸2
𝐸
3

− 3) ×max(0, 9 −
𝐸
3

𝐸
4

) + 0.00364

×max (0,𝐻
1
− 5) ×max(0, 𝐸1

𝐸
2

− 2.7)

×max(0,
𝐸
3

𝐸
4

− 3) − 0.01644 ×max (0,𝐻
1
− 5)
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Table 4: MARS regression statistics.

Response Mean (observed) SD (observed) Mean (predicted) SD (predicted) Mean (residual) SD (residual) 𝑅
2 GCV

𝜎
𝑥

156.4103 73.7415 156.4103 73.3139 0.0000 7.9300 0.988 64.52
𝜎
𝑦

283.1745 133.5965 283.1745 132.9735 0.0000 12.8876 0.991 169.24
𝜀
𝑥

121.1816 53.1068 121.1816 52.8136 0.0000 5.5725 0.989 31.90
𝜀
𝑦

376.5493 178.0933 376.5493 177.1838 0.0000 17.9760 0.989 331.57
SD: standard deviation.

×max(0, 2.7 − 𝐸
1

𝐸
2

) ×max(0,
𝐸
3

𝐸
4

− 3) − 0.11419

×max (0,𝐻
1
− 5) ×max(0, 𝐸2

𝐸
3

− 6)

×max(0,
𝐸
3

𝐸
4

− 3) − 0.06901 ×max (0,𝐻
1
− 5)

×max(0, 6 − 𝐸
2

𝐸
3

) ×max(0,
𝐸
3

𝐸
4

− 3) ,

(15)

where 𝐻
1
is thickness of asphalt layer (cm), 𝐻

2
is thickness

of base layer (cm), 𝐻
3
is thickness of subbase layer (cm),

𝐸
1
/𝐸
2
is the ratio of asphalt resilientmodulus to base resilient

modulus, 𝐸
2
/𝐸
3
is the ratio of base resilient modulus to

subbase resilient modulus, 𝐸
3
/𝐸
4
is the ratio of subbase

resilient modulus to subgrade resilient modulus.
Regression statistics for (12) to (15) are given in Table 4.
Capability of (12) to (15) to predict the effective length of

tensile stress and strain pulses in both longitudinal and trans-
verse directions at the bottom of asphalt layer is illustrated in
Figure 5. As evident, these equations give good accuracy to
predict effective length. For all pulses, the error percentage
decreases with increasing the effective length. It can be
therefore concluded that for high values of effective length the
proposed equations have sufficient accuracy; however, for low
values of effective length (pavementswith thick asphalt layer),
proposed equations are of limited accuracy.

4. Artificial Neural Network (ANN)

4.1. Theory of ANN. In order to predict the effective length
accurately, the Artificial Neural Network (ANN)method was
employed. The ANN approach is a computer methodology
which attempts to simulate some important features of the
human nervous system; in other words, the ability to solve
problems by applying the information gained from the past
experiences to new problems or case scenarios. Analogous
to a human brain, an ANN uses many simple computational
elements, named artificial neurons, connected by variable
weights [22]. A typical artificial neuron is illustrated in
Figure 6. A neural network can be trained to perform a
particular function by adjusting the values of the connections
(weights) between the elements. Neural networks are trained
so that a particular input leads to a specific target output.
The network is adjusted based on a comparison of the output
and the target until the network output matches the target.

Typically many such input/target output pairs are used to
train a network.

A feed-forward backpropagation neural network
(Figure 7) is a kind of ANN which is useful in addressing
problems requiring recognition of complex patterns and
performing nontrivial mapping function [23].

The training of a feed forward neural network using a
backpropagation algorithm involves the following two phases
[24, 25].

(i) Forward Phase. During this phase, the free parame-
ters of the network are fixed, and the input signal is
propagated through the network layer by layer. The
forward phase ends with the computation of an error
signal using the following:

𝑒
𝑖
= 𝑑
𝑖
− 𝑦
𝑖
, (16)

where 𝑑
𝑖
is the desired response and 𝑦

𝑖
is the actual

output produced by the network in response to the
input 𝑥

𝑖
.

(ii) Backward Phase. During this second phase, the error
signal 𝑒 is propagated through the network in the
backward direction, hence, the nameof the algorithm.
It is during this phase that adjustments are applied to
the free parameters of the network so as to minimize
the error 𝑒 in a statistical sense.

4.2. Prediction of 𝐿
𝑒𝑓𝑓

by Means of ANN. Several imple-
mentations of the backpropagation algorithm are possible.
In the present study, the Levenberg-Marquardt algorithm
was adopted due to its efficiency in training networks. This
implementation is readily available inMatlab software within
its neural network toolbox.The testing (30%), cross validating
(10%), and training (60%) sets for ANN training procedure
were selected randomly from the established dataset. Several
networks with one hidden layer and different numbers of
neurons in each hidden layer (5 to 20) were explored to
determine the optimal architecture of BPN. The optimal
architecture of ANN with the minimum possible size and
acceptable accuracy was found to be 7-15-3 (15 hidden
neurons) architecture. Hyperbolic tangent sigmoid and linear
transfer functions were used for the hidden layer and output
layer, respectively. More details to implement the proposed
ANN for prediction of the effective length of different
tensile responses at the bottom of asphalt layer are given in
Appendix.

The performance of ANN modeling to predict the effec-
tive length (𝐿eff) of longitudinal and transverse stress and
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Figure 5: Capability of MARS method for predicting effective length (𝐿 eff).

strain pulses related to training and testing sets is demon-
strated in Figure 8. The frequency histogram of ANN output
residuals is presented in Figure 9 and is compared to normal
distribution.

For prediction of frequency of different responses at
the bottom of asphalt layer based on ANN, a program was
developed using the macrocapability of Microsoft Excel. This
program enables user to determine the frequency of stress
and strain pulses at the bottom of asphalt layer with respect
to input parameters (moving speed, thickness of layers,
resilient modulus of different layers, and contact radius of
moving load). User interface of this program is represented
in Figure 10.

4.3. Parametric Analysis. A standard pavement section com-
posed of a HMA layer, an aggregate base, an aggregate
subbase, and subgrade soil was assumed to investigate the
effect of various parameters on the effective length of the
tensile response pulses.These controlling parameters include
the radius of contact area, thickness of different layers, and
ratio between the modules of each layer and the immediate
succeeding layer below.The thickness and the resilientmodu-
lus of different layers are represented in Table 5.The standard
contact radius for parametric analysis was considered to be
10 cm.

In order to study the effect of different parameters on the
effective length of tensile stress and strain pulses, the ANN
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methodwas employed. UsingANN, the effective length of the
pulse was computed by changing the desired parameter. The
results of the parametric analysis are illustrated in Figure 11.
The effect of subbase thickness (𝐻

3
) is not shown, because,

similar to𝐻
2
, it has a very slight effect on effective length.

As can be seen in Figure 11, some parameters including
the ratio of resilient modulus of subbase to subgrade (𝐸

3
/𝐸
4
)

and the thickness of base and subbase layers have a slight
effect on the effective length of response pulses, especially in
longitudinal direction.Themost prominent factors that affect
the effective length of tensile response pulses are as follows:

(i) contact radius of wheel,

(ii) thickness of asphalt layer,

(iii) the ratio of resilient modulus of asphalt layer to base
layer,

(iv) the ratio of resilient modulus of base to subbase layer.

All of these factors have a direct effect on the effective
length of tensile response pulses at the bottom of asphalt
layer. The effective length of stress and strain pulses in
both longitudinal and transverse directions increase with the
increase of these parameters.

It is worth nothing that the effect of temperatures is
similar to the reciprocal of 𝐸

1
/𝐸
2
ratio. In fact when the

temperature increases, the 𝐸
1
/𝐸
2
ratio decreases and vice

versa. Full-scale tests results show that the duration of tensile
response pulses increases with decreasing the asphalt layer
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Figure 8: Performance of ANN for predicting effective length (𝐿 eff).
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temperature which is in agreement with the effect of 𝐸
1
/𝐸
2

ratio on effective length [10–12].

5. Conclusions

The following conclusions can be drawn from this study.

(1) Haversine function was fitted to stress and strain
pulses in longitudinal direction better than transverse
direction.

(2) Response pulse in longitudinal direction generally
consists of two compression zones and one tension
zone, while in case of transverse response pulse, the
HMA layer commonly experiences tensile stress or

Figure 10: User interface of program for predicting loading fre-
quency.

Table 5: The standard pavement section for parametric analysis.

𝐻
1
(cm) 𝐻

2
(cm) 𝐻

3
(cm) 𝐸

1
/𝐸
2

𝐸
2
/𝐸
3

𝐸
3
/𝐸
4

10 15 20 15 2 3

strain. The strain pulses computed by LET are very
similar to those observed in full-scale pavement tests.

(3) There are strong correlations between the effective
length of stress and strain pulses in both longitudinal
and transverse directions. Using these relations and
measuring/computing the effective length for one of
the stress or strain pulses, the effective length for other
responses can be obtained easily.

(4) MARS approach predicts the effective length with
a good accuracy when the effective length is large
(e.g., wide-base tires or pavement sections with thick
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Figure 11: Effect of different parameters on effective length of tensile response pulses.
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Table 6: Weight matrix of hidden layer (𝑊ℎ)
𝑡

15×7
.

0.24056638 0.52180021 −0.08192893 0.02059694 0.27453521 −2.15797251 0.16841500
0.14152848 −0.83464978 0.12392608 0.02935285 0.16551902 0.22003344 0.18289943
0.29412997 0.37355134 −0.13930790 −0.06150401 0.29807662 0.11364017 −2.01880910
−0.10907694 0.45073205 −0.07290811 −0.11726552 −0.04816373 0.52349298 −0.12122008
−0.56102272 0.25020881 0.18042916 0.08662090 0.03791313 0.00963579 −0.04494278
−1.20391196 2.49023600 −1.18313570 −0.53611691 2.05716497 −2.01891789 1.58568172
0.04309756 0.45406603 −0.22674448 −0.07681359 0.03332427 0.20049821 0.29780929
0.28555679 −0.55316048 0.28744294 0.11453127 −0.50806732 −0.29575540 −0.10511421
−0.00467866 −0.46119549 0.16664234 0.06328881 −0.17277587 −0.22346863 −0.12622049
−0.04098276 −1.22152659 0.63119917 0.10577187 −0.59785759 −0.14715576 0.27344356
−0.72460658 0.98059866 −0.00946927 −0.00763101 0.56841275 0.47432854 0.42334442
0.00739616 0.19834485 −0.00695040 −0.00229041 0.17336683 0.09259456 0.08924832
0.16358940 −0.33227832 0.24788596 0.11224513 −0.58502546 −0.28035227 −0.10703562
0.12400955 0.20304430 0.09051104 −0.01267492 −2.21543491 0.11016067 0.16626881
0.05108061 1.09864936 −0.56182159 −0.10324686 0.53970892 0.18221514 −0.22157991

Table 7: Weight matrix of output layer (𝑊𝑜)
15×4

.

−0.30111544 −0.31546319 −0.24939048 −0.30986842
−0.64704052 −0.73747399 −0.61956350 −0.74215198
−0.46625917 −0.55965630 −0.41951552 −0.55530329
0.61036557 0.55902914 0.61154085 0.56048484
−0.37299472 −0.29700295 −0.48360558 −0.29897197
0.01711208 0.01797442 0.01231933 0.01817974
1.20349568 1.12822954 1.09308434 1.12441006
−0.88776052 −0.76191322 −1.03085965 −0.77482237
3.46074792 3.18511221 3.32861330 3.17908780
0.31898041 0.90058623 −0.18541501 0.86128651
−0.28043854 −0.32078608 −0.26632566 −0.33308883
4.35600143 4.33534570 4.28254176 4.34864238
1.08157418 0.98638475 1.19385865 0.98936233
−3.01939611 −2.79134501 −2.69827499 −3.00674084
0.76785271 1.36287794 0.18770446 1.31743751

asphalt layer). A more accurate method is therefore
needed when the effective length is small.

(5) A feed-forward backpropagation neural networkwith
architecture of 7-15-4 accurately predicts the effective
length (𝐿eff) of tensile stress and strain pulses in both
longitudinal and transverse directions at the bottom
of the asphalt layer.

(6) Based on ANN, an Excel-based computing code
was developed to predict the frequency of different
responses at the bottom of the asphalt layer.

(7) The most prominent factors that affect the effective
length of tensile response pulses are the contact radius
of wheel, the thickness of asphalt layer, the ratio of
resilientmodulus of asphalt layer to the base layer, and
the ratio of resilientmodulus of base to sub-base layer.
The effective length of tensile response pulses in both
longitudinal and transverse directions increases with
the increase of these factors.

Table 8: Bias vector of hidden layer (𝜃ℎ).

−2.98061282
−1.43752227
−3.28639956
0.51238963
0.34781783
1.86026187
0.33527476
0.83759704
−0.52129274
−0.41618793
−1.18229383
−0.33680531
0.90575109
−3.85056664
0.46806618

Table 9: Bias vector of output layer (𝜃𝑜).

−2.67535023
−2.76969939
−2.18693474
−2.97130086

Appendix

Weights and Biases of Artificial Neural
Network (ANN)

This appendix is assigned to input vector, output vector,
weight factors, and bias factors of the backpropagation
network which was discussed in Section 4. The optimum
architecture of backpropagation network is 7-15-4 with sig-
moid transfer function in hidden layer and linear transfer
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function in output layer. The order of normalized predictors
in the input vector is as follows:

𝐼 = {𝑅,𝐻
1
, 𝐻
2
, 𝐻
3
,
𝐸
1

𝐸
2

,
𝐸
2

𝐸
3

,
𝐸
3

𝐸
4

}

1×7

. (A.1)

The order of normalized output parameters in the output
vector is as follows:

𝑂 = {𝐿
𝜎𝑥

eff, 𝐿
𝜎𝑦

eff, 𝐿
𝜀𝑥

eff, 𝐿
𝜀𝑦

eff}1×4. (A.2)

Before simulating of network, inputs and outputs should
be normalized based on the following relation:

𝑄
𝑛
= 2

(Max−Min)
(𝑄 −Min)

− 1, (A.3)

where 𝑄
𝑛
is normalized value of parameter 𝑄, Max is

maximum observed value for parameter𝑄, Min is minimum
observed value for parameter 𝑄. Maximum and minimum
values of input and output parameters are given in Tables 1
and 2.Weightmatrixes for hidden and output layers are given
in Tables 6 and 7, respectively.

Bias vector for hidden and output layer is given inTables 8
and 9, respectively.
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