
Combining Static and Dynamic Analysis for
Automatic Identification of Precise Access-Control Policies

Paolina Centonze
IBM Watson Research Center
Hawthorne, New York, USA

paolina@us.ibm.com

Robert J. Flynn
Polytechnic University

Brooklyn, New York, USA
flynn@poly.edu

Marco Pistoia
IBM Watson Research Center
Hawthorne, New York, USA

pistoia@us.ibm.com

Abstract

Given a large component-based program, it may be very
complex to identify an optimal access-control policy, allow-
ing the program to execute with no authorization failures
and no violations of the Principle of Least Privilege. This
paper presents a novel combination of static and dynamic
analysis for automatic determination of precise access-
control policies for programs that will be executed on Stack-
Based Access Control systems, such as Java and the Com-
mon Language Runtime (CLR). The static analysis soundly
models the execution of the program taking into account na-
tive methods, reflection, and multi-threaded code. The dy-
namic analysis interactively refines the potentially conser-
vative results of the static analysis, with no need for writing
or generating test cases or for restarting the system if an
authorization failure occurs during testing, and no risk of
corrupting the underlying system on which the analysis is
performed.

We implemented the analysis framework presented by
this paper in an analysis tool for Java programs, called
Access-Control Explorer (ACE). ACE allows for automatic,
safe, and precise identification of access-right requirements
and library-code locations that should be made privilege-
asserting to prevent client code from requiring unnecessary
access rights. This paper presents experimental results ob-
tained on large production-level applications.

1 Introduction

Defining the security policy of a program is a challeng-
ing activity, which becomes particularly difficult when the
program is large and complex and consists of multiple com-
ponents.1 Ideally, the security policy should be just suffi-

1As an example, the Eclipse community [9] is currently undergoing a
very expensive process to enable Java security on the Rich Client Platform
(RCP) [10]. This requires determining the authorization and privilege-

cient for the program to run without authorization failures.
Any access right unnecessarily granted to the program or its
users is a violation of the Principle of Least Privilege [31].

Modern component-based software systems, such as
Java [27] and Microsoft .NET Common Language Runtime
(CLR) [13], have adopted a form of authorization checking
called Stack-Based Access Control (SBAC); when access to
a restricted resource is attempted, a stack inspection ensures
that all the code on the call stack is sufficiently authorized.

In SBAC systems, when library code is developed, an
important decision that needs to be made is whether the
portion of library code requesting an access right should
be made privilege-asserting. This causes the run-time
stack inspection to stop at the library level. As a result,
client code is exempted from the requirement to exhibit
the access right requested by the library. For example,
a library providing socket connections to its clients may
have been programmed to log the network operations to a
file. While it is reasonable to impose that the client code
be granted the necessary SocketPermission, it is not
reasonable to impose that any client code be granted the
FilePermission to write to the log file. If client code
had to be granted that FilePermission, a violation of
the Principle of Least Privilege would arise; a malicious
client could misuse that permission to log false informa-
tion. Clearly, privilege-asserting code should be inserted
cautiously because when client code is above privilege-
asserting code on the stack, its access rights are not verified.

Traditionally, security policies are defined using a com-
bination of source-code inspection and testing. However,
for large and complex programs, manual code inspections
may be impractical, tedious, time consuming, and error
prone. This type of analysis may even be infeasible if source
code is unavailable, which is the case if the program was
machine generated or written by a third party. On the other
hand, testing requires writing or generating test cases, exe-

assertion requirements of the entire RCP. Part of the static analysis work
described in this paper has been used to facilitate that goal.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192377566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cuting them, and logging all the authorization failures. For
each failure, it is necessary to identify the missing access
right, and decide whether that access right should be granted
or not. Since every authorization failure can cause a pro-
gram crash, for each failure occurring during testing it may
be necessary to grant the missing authorization and restart
the program. Furthermore, testing is unsound since some
paths of execution, along with the access rights required
to execute those paths, may remain undiscovered until the
code is deployed. Another problem is that the system on
which the tests are performed can become corrupted if the
program being tested is malicious or behaves incorrectly.

An interesting alternative is static analysis. With static
analysis, a model of the execution of the program is cre-
ated, and the access rights necessary to execute the program
are obtained from the model of the execution rather than
from the execution itself. In general, given a program, the
execution model built by the static analyzer is a conserva-
tive overapproximation of any run-time program execution.
While it guarantees soundness, this also means that a static
analyzer may include in the model infeasible events (false
alarms). Thus, blindly granting to a program all the au-
thorization requirements reported by a static analyzer may
easily generate violations of the Principle of Least Privilege.

While theoretically sound, in practice a static analyzer
may be unsound for several reasons:

• Multi-language Code. Today’s large and complex ap-
plications are likely to comprise components written
in different languages. For example, a Java program
is almost always going to trigger the execution of sev-
eral native methods, written in C and executed directly
on the underlying operating system [33]. A static an-
alyzer purely for Java will not be able to model the
control and data flow generated by those methods. As
a result, the analysis will be incomplete and unsound,
failing to report actual authorization requirements.

• Reflection. Reflection is a mechanism that enables
code to dynamically discover and manipulate fields
and methods of loaded classes [33]. Modeling re-
flection through static analysis is potentially unsound
since the type of the objects obtained through reflec-
tion is often known and available only at run time [21].

• Callbacks. A library callback is a method invocation
whose receiver is a parameter passed to the library by
a client. Libraries are typically analyzed as incomplete
programs [30] since clients are likely to be available
only at run time. For example, let foo be a library
method taking a parameter of type T and invoking
method bar on that parameter. A client program can
create an object t of type T and pass it to foo by call-
ing foo(t). As a result, foo will execute callback
t.bar. If neither T nor T.bar are final, a client pro-
gram could subclass T and override method bar, caus-

ing bar to arbitrary access restricted resources that are
unknown at static-analysis time.

In essence, neither dynamic analysis nor static analysis can
independently guarantee the identification of a policy suffi-
cient to execute a program and yet not too permissive. This
paper presents a novel combination of static and dynamic
analysis extending previous work that was completely based
on static analysis [20, 26, 37]. The contribution of this
paper is to achieve precise identification of authorization
and privilege-assertion requirements in SBAC systems. The
main characteristics of the static analyzer that contribute to
its precision are the following:

1. A scalable but precise context- sensitivity level [30]
2. An automatic model generator for native methods

based on language transformation and sound with re-
spect to the security analysis described in this paper

3. A sound models for reflection and callbacks
4. A complete model of the stack inspection mechanism,

which includes privilege-asserting and multi-threaded
code

The dynamic analysis framework described in this paper
is completely novel and includes the following components:

1. A sandboxing environment that protects the underly-
ing system on which the analysis is performed from
malicious or bad-performing programs

2. A configurable framework allowing the dynamic
analyzer to automatically detect authorization and
privilege-assertion requirements in the presence of dif-
ferent security subsystems and to automatically form
the security policy of a component-based program

3. An interactive system for authorization decisions, al-
lowing the user to precisely identify the code loca-
tion responsible for each authorization and privilege-
assertion requirement

4. A mechanism for immediate identification of the secu-
rity side effects of any method invocation

5. An automatic mechanism for policy minimization that
eliminates redundant policy requirements

The static and dynamic analysis described in this paper
has been implemented in a tool for Java programs called
Access-Control Explorer (ACE). This paper presents the re-
sults obtained by running ACE on production-level code.

2 Motivating Examples

This section motivates the importance of combining
static and dynamic analysis for precise identification of au-
thorization and privilege-assertion requirements.

2.1 Authorization Analysis

In Java, access rights are implemented as objects
of class Permission or one of its subclasses. A

Permission object is completely characterized by the
fully-qualified name of the Permission subclass, along
with the String parameters representing the target and
the mode of access, as in java.io.FilePermission
"C:/log.txt", "read". Stack inspection is per-
formed by function checkPermission in Java and
Demand in the CLR.

import java.io.*;
import java.net.*;

public class SecurityLibrary {
private String dir = "C:";
private String file = "log.txt";
private String name;
public FileInputStream readLogFile1()

throws Exception {
return new FileInputStream

(dir + File.separator + file);
}
public FileInputStream readLogFile2()

throws Exception {
file = "audit.txt";
return new FileInputStream

(dir + File.separator + file);
}
public FileInputStream readLogFile3

(String fileName)throws Exception {
return new FileInputStream(fileName);

}
public String getSystemProperty1() {
if (Math.sqrt(4) > 0)

return System.getProperty("user.home");
else

return System.getProperty("user.dir");
}
private void changeName() {
name = "user.dir";

}
public String getSystemProperty2() {
name = "user.name";
changeName();
return System.getProperty(name);

}
public void changeClassLoader()

throws Exception {
Thread t = Thread.currentThread();
URL[] urlArray = new URL[] {

new URL("http://abc.xyz.com") };
URLClassLoader loader =

new URLClassLoader(urlArray);
t.setContextClassLoader(loader);

}
}

Figure 1. SecurityLibrary.java

Figure 1 shows the example of a library requesting au-
thorizations. The static analysis framework presented in this
paper can help a developer and system administrator detect
a superset of the library’s authorization requirements but, as
observed in Section 1, a purely static analysis approach is
limited due to conservativeness and unsoundness. For the

example of Figure 1, such limitations would manifest them-
selves as follows:

• The permissions required by readLogFile1 and
readLogFile2 cannot be easily evaluated with just
static analysis; even a static analysis engine that
keeps track of String constants is unable to eval-
uate the expression dir + File.separator +
file, unless it performs String computations.

• For method getSystemProperty1, a path in-
sensitive [30] static analyzer is unable to com-
pute that java.util.PropertyPermission
"user.home", "read" is the only permission re-
quired to execute getSystemProperty1. Re-
porting a java.util.PropertyPermission
"user.dir", "read" requirement is a false
alarm.

• To account for multi-threaded applications, static
analyzers are typically interprocedurally flow
insensitive [30] and do not perform interproce-
dural strong updates [22]. As a consequence,
although java.util.PropertyPermission
"user.dir", "read" is the only permission
required to execute getSystemProperty2,
an interprocedurally flow-insensitive static an-
alyzer will also report an unnecessary require-
ment for java.util.PropertyPermission
"user.name", "read".

• A static analyzer for Java will typically not de-
tect the java.lang.RuntimePermission
"setClassLoader" requirement of method
changeClassLoader since the receiver of the
setContextClassLoader method call, t, is
obtained as the return value of the call to method
Thread.currentThread, which is native and, as
such, not modeled by the analyzer. This false negative
leads to unsound results.

A purely dynamic analysis approach is often limited too for
the unsoundness generated by the absence of a complete
suite of test cases. For example:

• The java.io.FilePermission needed by
readLogFile3 has the special <<ALL FILES>>
target, indicating the entire file system. The reason
for this broad requirement is that the exact file
to be read depends from the parameter passed to
readLogFile3 by the client code. While a static
analyzer can correctly model this requirement, a
dynamic analyzer will show a different target every
time readLogFile3 is invoked with a different
parameter.

• Using dynamic analysis to detect the authorization
requirement for readLogFile1 leads to test-case-
dependent analysis results. In fact, a test case invoking
readLogFile1 before readLogFile2 shows a

java.io.FilePermission "C:/log.txt",
"read" requirement. Conversely, a test case invok-
ing readLogFile1 after readLogFile2 shows
a requirement for java.io.FilePermission
"C:/audit.txt", "read", the reason being
that readLogFile2, as a side effect, changes the
value of file from log.txt to audit.txt. This
shows that any dynamic analysis for authorization-
requirement identification needs to take side effects
into account.

While it is always possible to improve a static or dynamic
analyzer to identify authorization requirements with higher
precision, static and dynamic analysis are always going to
present limitations leading to imprecise policy definitions.
The solution presented in this paper eliminates such impre-
cisions by combining the two approaches.

2.2 Privilege-Asserting-Code Analysis

A Java developer can make a portion of library
code privilege-asserting by wrapping it into a call to
doPrivileged. Method createSocket in Figure 2
opens a socket on behalf of its clients, but upon doing so, it
logs the operation to a file. To prevent its clients (which will
be on the stack) from requiring the FilePermission
to write to the log file, the logging operation is wrapped
into a call to doPrivileged. For large and complex li-
braries, it is very difficult to detect manually which portions
of code should be made privilege-asserting, and to identify
the sets of permissions that library code implicitly grants to
its clients by virtue of calling doPrivileged. This paper
shows how a synergy of static and dynamic analysis can be
used to make this process both automatic and precise.

import java.io.*;
import java.net.*;
import java.security.*;

public class SecurityLibrary2 {
private final String logFileName = "C:\\log.txt";
public Socket createSocket(String host, int port)

throws Exception {
FileOutputStream f = (FileOutputStream)

AccessController.doPrivileged
(new PrivilegedExceptionAction() {

public Object run() throws Exception {
return new FileOutputStream(logFileName);

}
});
PrintStream ps = new PrintStream(f);
ps.print("Socket opened...");
return new Socket(host, port);

}
}

Figure 2. SecurityLibrary2.java

In the CLR, privilege-asserting code is achieved by call-
ing the Assert function, which can be seen as a pa-
rameterized version of doPrivileged. In fact, unlike
doPrivileged, Assert takes an IPermission ob-
ject as a parameter. The effect is that the stack inspec-
tion is truncated only if the IPermission object being
checked is the same as, or weaker than, the one passed to
Assert. From this point of view, Assert is more se-
cure than doPrivileged, which truncates the stack in-
spection indiscriminately. The static and dynamic analy-
sis algorithms described in this paper can be used to make
doPrivileged equivalent to Assert by precisely con-
trolling the Permission checks from which client code is
shielded and by only recommending insertions of privilege-
asserting code as close to the authorization checks as possi-
ble.

3 Static Analyzer

ACE effectively models the run-time stack inspection
mechanism using a context-sensitive [30] static analyzer.
The context-sensitivity policy adopted by ACE disam-
biguates each method invocation based on the invocation
context—the receiver and parameters used in that invoca-
tion. Moreover, ACE disambiguates objects based on their
allocation sites, as in Andersen’s analysis [2]; each allo-
cation site represents an equivalence class of dynamically
allocated objects. Unlike other, less precise approaches
[16], these context- and object-sensitivity policies allow
distinguishing calls to checkPermission based on the
Permission object being checked. Given the bytecode of
a Java program and library, along with all the libraries upon
which the input program or library depends, the analysis en-
gine produces a call graph G = (N,E). Each node n ∈ N
represents the invocation of a method m along with the in-
vocation context. Each edge e = (n1, n2) ∈ E models the
invocation of the method m2 in the context represented by
n2, performed by the method m1 in the context represented
by n1.

Statically computing authorization and privilege-
assertion requirements can be done by appropriately
modeling the dynamic stack-inspection mechanism. The
static model of stack inspection is based on the observation
that each path in the call graph represents a potential
run-time call stack. Since stack inspection dynamically
propagates authorization requirements backwards across a
call stack starting from a checkPermission method,
the static model propagates authorization-requirement
abstractions backwards in the call graph starting from a
checkPermission node. Authorization requirements
are statically represented as Permission allocation sites.
If P is the set of the Permission allocation sites in a
given program, its powerset, 2P , is naturally endowed with

the structure of a lattice, L := (2P ,∪,∩), where ∪ and
∩ are the usual set-union and set-intersection operators
[15]. The static authorization analysis can then be cast
to a standard data-flow problem [1], in which elements
of 2P are propagated backwards in G and set unions are
performed at the merge points.

More precisely, if n ∈ N is a checkPermission
node, then n represents a call to the checkPermission
method, which takes a Permission object as a parame-
ter. Due to its inherent conservativeness (primarily due to
path insensitivity and interprocedural flow insensitivity, as
explained in Section 2.1), for each checkPermission
node n the static analysis performed by ACE may over-
approximate the Permission parameter for n as a set
Q(n) containing more than one Permission allocation
site. We initialize the static analysis by defining function
Gen : N → 2P as follows: If n is a checkPermission
node, then Gen(n) := Q(n), else Gen(n) := ∅. The same
considerations can be applied to a CLR program by simply
replacing checkPermission with Demand.

To represent the stack-inspection mechanism precisely,
it is necessary to model the property that privilege-asserting
code, when encountered on a run-time stack, stops the stack
walk. This behavior can be statically represented by func-
tion Kill : N → 2P , which is defined as follows: If
n is a doPrivileged node, then Kill(n) := P , else
Kill(n) := ∅.

In the CLR, as we observed, privilege-asserting code is
parameterized with permissions. Therefore, for the CLR,
Kill : N → 2P is defined in a different way, as follows:
If n is an Assert node and A(n) ⊆ P is the set of
IPermission allocation sites that could flow to the pa-
rameter of Assert in the context of n, then Kill(n) :=
A(n), else Kill(n) := ∅.

The data-flow equations modeling the stack-inspection
mechanism in Java or the CLR are defined as follows:

Out(n) := (In(n) \ Kill(n)) ∪ Gen(n) (1)

In(n) :=
⋃

m∈Γ+(n)

Out(m) (2)

for each n ∈ N , where Γ+ : N → 2N is the successor func-
tion in G, defined by Γ+(n) := {n′ ∈ N | (n, n′) ∈ E}.
Clearly, L has finite height, |P |, and the data-flow functions
from L in L induced by Equations (1) and (2) on each node
n ∈ N are monotonic with respect to the partial order ⊇ of
L. Therefore, Tarski’s Theorem guarantees that the recur-
sive computation of the solutions of Equations (1) and (2)
converges to a fix point in O(|E||P |) time [15].

According to the stack-inspection semantics, the code
performing a privilege-asserting call needs to be granted
the permissions it shields [28]. This behavior can be mod-
eled with a one-step, non-recursive backward propagation

of permission requirements, to be performed upon conver-
gence of the recursive computation of the solutions of Equa-
tions (1) and (2), as described by Equation (3):

In(n) := In(n) ∪
⋃

d∈Γ+(n)∩D

In(d) (3)

for each n ∈ N , where D ⊆ N is the set of the call-graph
nodes representing calls to doPrivileged in Java and
Assert in the CLR. Solving Equation (3) has a time com-
plexity of O(|E|).

Upon convergence, In(n) overapproximates the access
rights necessary to perform the invocation represented by n
at run time. It should be observed that every single method
can be represented by multiple nodes in the call graph, de-
pending on the different calling contexts with which that
method can be invoked. If method m is represented by
nodes n1, n2, . . . , nk ∈ N , then ACE overapproximates the
permissions necessary to invoke m at run time as the set

Π(m) :=
k⋃

i=1

In(ni) (4)

While statically modeling the stack-inspection mechanism,
ACE allows identifying, for each permission q, which code
is responsible for making the call to the security-sensitive
function requiring q. This allows a developer to identify
statically, without executing the program, the portions of the
program under analysis that are candidate for being made
privilege-asserting.

As observed in Section 1, static analysis, which is sup-
posed to be sound, can become unsound due to improper
modeling of callbacks, multi-threaded code, native meth-
ods, and reflection. The following sections explain how
ACE ensures static-analysis soundness.

3.1 Callbacks

When analyzing a library as an incomplete program,
ACE detects all the library entry points that take param-
eters of non-final types or that have fields of non-final
types. Every time a method is invoked on one of those pa-
rameters or fields, if that method is itself non-final, ACE
flags that invocation as potentially requiring the special
AllPermission authorization requirement since the im-
plementation of that method is unknown during the static
analysis.

3.2 Multi-threaded Code

To prevent the freshly created stack of a child thread
from having potentially more permissions than the stack
of the parent thread, SBAC systems attach the par-
ent thread’s stack to the child thread’s stack. When

checkPermission traverses the stack, all the callers in
both the child and the parent threads will have to show pos-
session of the permission being checked. ACE models this
run-time behavior statically by adding an edge from ev-
ery constructor node instantiating a Thread t to the node
where t.start is invoked.

3.3 Native Methods

Without a sound model for native methods, any security
analysis performed by ACE would be unsound since several
security-sensitive functions trigger the invocation of native
methods, such as doPrivileged and the implementa-
tion of Thread.start. For this reason, ACE statically
represents 161 native methods (those that have been estab-
lished to affect authorization) with control- and data-flow-
equivalent stubs. While in the past these stubs needed to
be manually constructed, the most interesting aspect is that
now the process of creating these stubs has been automated
with a tool [37] that converts C code into Java code that is
control- and data-flow-equivalent to its C counterpart. The
Java bytecode representing the automatically translated na-
tive methods is then seamlessly integrated in the analysis
scope. The process of automatic translation prevents errors
in the stub creation and facilitates the creation of new stubs
when new versions of the Java libraries become available.

3.4 Reflection

ACE models reflection by identifying the type to which
the result of a call to newInstance is cast and by using
that type for disambiguation. When the type cannot be in-
ferred, java.lang.Object is conservatively assumed.
The dynamic analysis performed by ACE can be used to
refine conservative results.

4 Dynamic Analyzer

A major novelty of ACE is its dynamic-analysis com-
ponent and the static- and dynamic-analysis synergy. For
every method m in the program under analysis, the static
analyzer of ACE reports not only the set Π(m), overap-
proximating the set of permissions required to invoke m,
as defined by Equation (4), but also, for each permission in
Π(m), the execution path that may lead to that authoriza-
tion requirement at run time. This information is then used
to dynamically recreate the invocation of m in the context
reported by the static analysis.

The dynamic analyzer uses reflection to load classes,
create objects, and invoke methods on those classes and
objects. This way, the process of creating a test case is
completely automated. A major concern when perform-
ing dynamic analysis of untrusted code is the potential abil-

ity of that code to compromise the integrity of the under-
lying system. To prevent this, ACE acts as a layer be-
tween the program p under analysis and the underlying sys-
tem. Upon startup, ACE enforces a SecurityManager
and confines p into a sandbox in which p is initially
granted no access rights. Any attempt by p to escape from
its sandbox is intercepted by the SecurityManager,
which raises an AccessControlException. How-
ever, rather than letting the system stop working, ACE
catches the Exception and interactively prompts the
user to make a security decision about it. In partic-
ular, ACE extracts the following information from the
AccessControlException:

1. Precise information about the attempted security-
sensitive operation (for example, opening file
passwords.txt in read mode)

2. The fully-qualified name of the Permission class
guarding the attempted security-sensitive action,
along with the explicit String parameters (tar-
get and modes), if any, of the Permission ob-
ject (for example, java.io.FilePermission
"passwords.txt", "read")

3. All the callers currently on the stack at the time the
security-sensitive operation was attempted

4. The Java ARchive (JAR) file of the class attempting
to escape from the sandbox, along with the Uniform
Resource Locator (URL) of that JAR file and the cer-
tificates of the principals who digitally signed that JAR
file

5. Precise information (source file name, class name,
method signature, and line number) on the portion of
code requesting the privilege, which is also the portion
of code in p that should be made privilege-asserting to
prevent client code from requiring unnecessary autho-
rizations

6. The set of permissions already granted to the code, re-
trievable from the ProtectionDomain of the class
attempting the security-sensitive action [14]

The user can judge, based on this information whether p
should be granted the right to access the security-sensitive
resource. In that case, the ACE layer automatically up-
dates and refreshes the security policy, without the need for
restarting the program or manually editing the policy. The
invocation of m is automatically repeated and, if no other
permission is required, it will now succeed; otherwise, the
user will be prompted with a new security decision.

4.1 Elimination of Static False Alarms

The process described is iterated for every method
m that, according to the static analysis, may attempt
a security-sensitive action. It m does not cause any
AccessControlException when ACE executes it in

the context reported by the static analysis, that means that
the static analysis had reported a false alarm, and that the
corresponding access right should not be granted to p. This
process enables ACE to eliminate statically-detected false
alarms and to build a policy just sufficient to execute the
methods that were dynamically analyzed. Furthermore, the
dynamic analyzer of ACE allows filtering out those static
false alarms caused by the inability of a static analyzer to
perform String computations, as observed in Section 1.

4.2 Configurable Security Subsystem

In the Java type system, any object implementing a class
that extends java.lang.SecurityManager can be
a valid SecurityManager. ACE enables the enforce-
ment of SecurityManager objects of different sub-
types. This is an important feature because while the stan-
dard SecurityManager enforces the stack inspection
mechanism by calling checkPermission, a different
implementation of the SecurityManager may enforce ac-
cess control in a different way [24, 9]. This feature is es-
pecially desirable since it has been proved that the stack in-
spection mechanism is unsound [25]. A static analyzer that
was built to model the stack inspection mechanism typically
does not have the flexibility to automatically model a dif-
ferent access-control mechanism. Therefore, the dynamic
analysis component of ACE becomes a useful feature when
the behavior of the run-time SecurityManager deviates
from the standard one.

4.3 Security Side Effects

Unlike other dynamic analyzers, ACE has a frame-
work for dynamically detecting the security side effects
of each method invocation, such as the side effect caused
by readLogFile2 on the permission requirements of
readLogFile1 in Figure 1, as explained in Section 2.
Specifically, for any policy change, ACE retests all the paths
of execution previously traversed, and detects whether new
authorizations are necessary. By dynamically analyzing
the results of the previously executed static analysis, ACE
achieves complete coverage of the methods requesting per-
missions and identifies a policy compliant with the Principle
of Least Privilege.

4.4 Privilege-Asserting-Code Analysis

As highlighted in Point 5 above, the dynamic-analysis
component of ACE can be used to identify the portions of li-
brary code candidate to be made privileged to prevent client
code from requiring unnecessary access rights. The recom-
mended location is optimal in the sense that it is always the
closest to the authorization check.

4.5 Dynamic Policy Minimization

Another novel contribution of ACE is its ability
to minimize access-control policies. As an example,
java.io.FilePermission "dir/*", "write"
is stronger than java.io.FilePermission
"dir/log.txt", "write". If a program p re-
quires both these permissions, it is sufficient to list in
the policy for p only the stronger one, which makes the
policy easier to maintain. ACE performs minimization
automatically by instantiating all the Permission
objects detected, and by then executing the implies
method of each Permission object against all the other
Permission objects. If p and q are Permission
objects required by p, and p.implies(q) returns true,
then only p needs to be added to the policy for p. Unlike
previous, unsafe policy-minimization approaches [20],
ACE prevents potentially-malicious code embedded into
implies methods from harming the system by executing
implies only under the system SecurityManager.

5 Experimental Results

This section presents the experimental results on pro-
duction level code. The applications analyzed, listed in
both Tables 1 and 2, are all from SourceForge [32], except
Crypto, which is obtained by combining in one project all
the cryptography and Transport Layer Security (TLS) ex-
amples from two Java security books [28, 27].

Table 1 describes the general characteristics of the appli-
cations along with statistics from executing the static an-
alyzer of ACE for authorization- and privilege-assertion-
requirement detection. For each application, the size of the
application itself and the sum of the sizes of its supporting
libraries (including the Java core libraries) are displayed.
The time taken by the static analyzer is reported. These re-
sults were obtained on an IBM ThinkPad T23 with 1 GB
of RAM and a processor of 1.3 GHz. The operating sys-
tem was Microsoft Windows XP SP2. The static analyzer
was itself implemented as a Java program running on a Sun
Microsystems’ Java Runtime Environment (JRE) V1.4.2.

Name Size (MB) Static Analysis
Applications Libraries Time Memory

Aamfetch 0.106 36.921 489 sec 251 MB
Crypto 0.760 37.724 321 sec 324 MB
Ganymed 0.336 36.921 567 sec 374 MB
Gnu 1.867 52.408 872 sec 622 MB
JavaSign 0.174 38.441 639 sec 675 MB
JPassword 0.678 36.921 634 sec 397 MB

Table 1. Static-Analysis Statistics

This section does not detail the time required to perform
the dynamic analysis part since that is an interactive pro-

Name Authorization Requirements Privilege-Assertion Requirements
Static Dynamic Refinement Static Dynamic Refinement

False Actual False Actual
Imprecise Precise Minimized Imprecise Precise Total

Aamfetch 49 5 40 4 6 28 20 5 3 8
Crypto 24 7 2 15 12 78 14 40 24 64
Ganymed 45 6 38 1 3 37 9 16 12 28
Gnu 51 15 17 19 11 187 43 78 66 144
JavaSign 19 4 10 5 6 32 0 25 7 32
JPassword 27 3 19 5 6 113 37 55 21 76

Table 2. ACE Authorization and Privileged-Code Requirement Findings

cess, and its duration strictly depends on the experience of
the analyst in using ACE. In our experience, it takes in aver-
age 1 minute to evaluate each statically-detected authoriza-
tion requirement.

Table 2 focuses on the security results. Specifically, for
each application, it shows the following:

1. The number s of authorization requirements detected
using only static analysis.

2. The number f of false alarms among those authoriza-
tion requirements. f is detected by refining the static
analysis results using the dynamic analyzer of ACE.

3. The number a of the actual requirements found—
meaning that these requirements are real. This cate-
gory includes the following:

(a) The number i of the actual, but imprecise, au-
thorization requirements (for example, an actual
FilePermission requirement for which the
static analysis was not able to disambiguate the
file name due to its inability to perform String
computations, as observed in Section 1).

(b) The number p of the actual and precise authoriza-
tion requirements.

(c) The number m of the actual permission require-
ments after policy minimization, as discussed in
Section 4.5.

Notice that s = f+i+p since an authorization require-
ment found by the static analysis can only be false or
actual, and if it is actual it can only be imprecise or pre-
cise. Also, in general, m ≤ s. Table 2 shows the use-
fulness of this automatic combined approach since it
allows detecting authorization requirements (though in
a conservative manner) and then using the dynamic an-
alyzer to significantly reduce the requirements found.

Next, Table 2 shows the results obtained by using ACE
to detect the privilege-assertion requirements, as follows:

1. The number s of privilege-assertion requirements de-
tected using only static analysis.

2. The number f of false alarms among those privilege-
assertion requirements.

3. The number a of the actual requirements found. This
category includes:

(a) The number i of the actual privilege-assertion
requirements that are, however, imprecise since
the Permission objects associated with the
privilege-assertion requirement could not be
uniquely disambiguated.

(b) The number p of the actual and precise privilege-
assertion requirements.

(c) The total number t of the actual privilege-
assertion requirements.

In this case, s = f + i + p and also t = i + p since,
unlike authorization requirements, privilege-assertion
requirements cannot be minimized.

As shown, the combined static and dynamic analysis ap-
proach dramatically improves a process that, if done manu-
ally, would become impractical. With the exhaustive model
for native methods included in the static analyzer of ACE,
no false negative was observed.

6 Conclusion and Future Work

This paper described a combination of static and dy-
namic analysis for precise identification of access-control
policies. The algorithms presented in this paper have
been implemented as part of a tool called Access-Control
Explorer (ACE), which has been used on a number of
production-level applications.

Future areas of investigation will involve improving the
precision of the static analyzer of ACE to reduce the num-
ber of false alarms it generates and simplify the dynamic
analysis. Currently, the static analyzer of ACE employs a
very expensive context-sensitivity policy, which adds preci-
sion indiscriminately, even where it is not needed, thereby
reducing scalability. It would be desirable to automatically
increase the precision of the static analyzer when model-
ing security-sensitive calls, while reducing the precision of
the analyzer where security is not needed. In particular, the
context-sensitivity policy used by ACE disambiguates dif-
ferent calls to the same method based on the receiver and
parameters. If a method is static and takes no parameters,
then all the calls to it will be represented by only one node in
the call graph, which creates a pollution point when model-

ing stack inspection through that node. A research direction
will involve a more precise and selective context-sensitivity
policy that eliminates this problem. Furthermore, integrat-
ing static authorization analysis with an analysis for string
computations will help in eliminating many false alarms.

7 Related Work

The need for integration of static and dynamic analysis
has been known for a long time. Orso, et al. [23] have com-
bined static and dynamic analysis for networking model-
ing, discovery, and analysis. Our work distinguishes itself
from that work because it precisely addresses the need for a
precise authorization and privilege-assertion analysis. Ernst
[12] discusses synergies and similarities of static and dy-
namic analysis, and how these two approaches can be inte-
grated to achieve optimal results in a wide range of prob-
lems.

Felten, et al. study a number of security problems related
to mobile code [34, 8, 36, 5, 35, 7, 6] and present a formal-
ization of stack introspection that examines authorization
based on the principals currently active in a thread stack
at run time (security state). An authorization optimization
technique, called Security-Passing Style (SPS), encodes the
security state of an application while the application is ex-
ecuting [36]. Each method is modified to pass a security
token as part of each invocation. The token represents an
encoding of the security state at each stack frame, as well
as the result of any authorization test encountered. With
this mechanism, the SPS explores subgraphs of the compa-
rable invocation graph and discovers the associated security
states and authorizations. Their goal is to optimize the au-
thorization performance, while one of the purposes of this
paper is to discover authorization requirements by analyz-
ing all possible paths through the program, even those that
may not be discovered by a limited number of test cases.
Pottier, et al. [29] extend and formalize the SPS via type
theory using a λ-calculus, called λsec. However, their work
does not address incomplete-program analysis [30]. Jensen,
et al. [18] focus on proving that code is secure with respect
to a global security policy. Their model uses operational
semantics to prove the properties, using a two-level tempo-
ral logic, and shows how to detect redundant authorization
tests. They assume all of the code is available for analysis,
and that a call graph can be constructed for the code, though
they do not do so themselves. Bartoletti, et al. [3] are inter-
ested in optimizing performance of run-time authorization
testing by eliminating redundant tests and relocating others
as is needed. The reported results apply operational seman-
tics to model the run-time stack.

Rather than analyzing security policies as embodied by
existing code, Erlingsson and Schneider [11] describe a sys-
tem that inlines reference monitors into the code to enforce

specific security policies. The objective is to define a secu-
rity policy and then inject authorization points into the code.
This approach can reduce or eliminate redundant authoriza-
tion tests. Conversely, this paper examines the authorization
issue from the perspective of an existing system containing
authorization test points. Through static analysis, the math-
ematical framework of this paper can be used to discover
how the security policy needs to be modified or updated to
enable the code to execute.

Hajime and Forrest [17] present a dynamic permission
analysis. Their solution is not interactive, does not deal with
security side effects, is not integrated with a static-analysis
solution, and does not deal with privilege-asserting code,
and does not prevent a malicious program from harming the
underlying system; all the permissions requested by a pro-
gram are automatically granted, with the risk of compro-
mising the underlying system.

Privileged code has historic roots in the 1970’s. The
Digitial Equipment Corporation (DEC) Virtual Address
eXtension/Virtual Memory System (VAX/VMS) operating
system had a feature similar to privilege assertion, called
privileged images. Those images were similar to UNIX
setuid programs [4], except that they ran in the same
process as all the user’s other unprivileged programs. As
such, they were considerably easier to attack than UNIX
setuid programs because they lacked the usual separate
process/separate address space protections, as shown by
Koegel, et al. [19]. Koved, et al. [20] and Pistoia, et al. [26]
automate static security analysis for Java authorization and
privilege assertion. Zhang, et al. [37] enhance those works
with an automated native-code model generator to reduce
the number of false negatives. This paper extends those
works with a more precise static analysis and a novel dy-
namic analysis for elimination of false alarms.

8 Acknowledgments

The authors would like to thank the reviewers of
the Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007) for their precious suggestions.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
MA, USA, Jan. 1986.

[2] L. O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, University of
Copenhagen, May 1994.

[3] M. Bartoletti, P. Degano, and G. L. Ferrari. Static Analysis
for Stack Inspection. In Proceedings of International Work-
shop on Concurrency and Coordination, Electronic Notes in
Theoretical Computer Science, volume 54, Amsterdam, The
Netherlands, 2001. Elsevier.

[4] H. Chen, D. Wagner, and D. Dean. Setuid Demystified. In
Proceedings of the 11th USENIX Security Symposium, pages
171–190, Berkeley, CA, USA, August 2002. USENIX As-
sociation.

[5] D. Dean. The Security of Static Typing with Dynamic Link-
ing. In Proceedings of the 4th ACM conference on Com-
puter and Communications Security, pages 18–27, Zurich,
Switzerland, 1997. ACM Press.

[6] D. Dean, E. W. Felten, and D. S. Wallach. Java Security:
From HotJava to Netscape and beyond. In Proceedings of
the 1996 IEEE Symposium on Security and Privacy, pages
190–200, Silver Spring, MD, USA, 1996. IEEE Computer
Society Press.

[7] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz. Java
Security: Web Browsers and Beyond. Technical Report 566-
597, Princeton University, Princeton, NJ, USA, February
1997.

[8] R. D. Dean. Formal Aspects of Mobile Code Security. PhD
thesis, Princeton University, Princeton, NJ, USA, Jan. 1999.

[9] Eclipse Project, http://www.eclipse.org.
[10] Equinox Project, http://www.eclipse.org/

equinox.
[11] U. Erlingsson and F. B. Schneider. IRM Enforcement of Java

Stack Inspection. In Proceedings of the 2000 IEEE Sympo-
sium on Security and Privacy, pages 246–255, Oakland, CA,
USA, May 2000. IEEE Computer Society.

[12] M. D. Ernst. Static and Dynamic Analysis: Synergy and Du-
ality. In Proceedings of the Program Analysis for Software
Tools and Engineering (PASTE 2004) Workshop, pages 24–
27, June 2004.

[13] A. Freeman and A. Jones. Programming .NET Security.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, June
2003.

[14] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 Plat-
form Security: Architecture, API Design, and Implementa-
tion. Addison-Wesley, Reading, MA, USA, second edition,
May 2003.

[15] G. Grätzer. General Lattice Theory. Birkhäuser, Boston,
MA, USA, second edition, January 2003.

[16] D. Grove and C. Chambers. A Framework for Call Graph
Construction Algorithms. ACM Trans. Program. Lang. Syst.,
23(6):685–746, November 2001.

[17] H. Inoue and S. Forrest. Inferring Java Security Policies
Through Dynamic Sandboxing. In International Conference
on Programming Languages and Compilers, Las Vegas, NE,
USA, June 2005.

[18] T. P. Jensen, D. L. Métayer, and T. Thorn. Verification of
Control Flow Based Security Properties. In Proceedings of
the 1999 IEEE Symposium on Security and Privacy, pages
89–103, Oakland, CA, USA, May 1999.

[19] J. F. Koegel, R. M. Koegel, Z. Li, and D. T. Miruke. A Secu-
rity Analysis of VAX VMS. In ACM ’85: Proceedings of the
1985 ACM Annual Conference on the Range of Computing:
Mid-80’s Perspective, pages 381–386. ACM Press, 1985.

[20] L. Koved, M. Pistoia, and A. Kershenbaum. Access Rights
Analysis for Java. In Proceedings of the 17th ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 359–372, Seattle,
WA, USA, November 2002. ACM Press.

[21] B. Livshits, J. Whaley, and M. S. Lam. Reflection Analysis
for Java. In Proceedings of the 3rd Asian Symposium on
Programming Languages and Systems, pages 139–160, Nov.
2005.

[22] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, June 1997.

[23] A. Orso, M. J. Harrold, and G. Vigna. MASSA: Mobile
Agents Security through Static/Dynamic Analysis. In Pro-
ceedings of the First ICSE Workshop on Software Engineer-
ing and Mobility (WSEM 2001), Toronto, Canada, April
2001.

[24] OSGi Specification, http://www.osgi.org.
[25] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond Stack

Inspection: A Unified Access Control and Information Flow
Security Model. In 28th IEEE Symposium on Security and
Privacy, pages 149–163, Oakland, CA, USA, May 2007.

[26] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. In-
terprocedural Analysis for Privileged Code Placement and
Tainted Variable Detection. In Proceedings of the 19th Euro-
pean Conference on Object-Oriented Programming, pages
362–386, Glasgow, Scotland, UK, July 2005. Springer-
Verlag.

[27] M. Pistoia, N. Nagaratnam, L. Koved, and A. Nadalin. En-
terprise Java Security. Addison-Wesley, Reading, MA,
USA, February 2004.

[28] M. Pistoia, D. Reller, D. Gupta, M. Nagnur, and A. K. Ra-
mani. Java 2 Network Security. Prentice Hall PTR, Upper
Saddle River, NJ, USA, second edition, August 1999.

[29] F. Pottier, C. Skalka, and S. F. Smith. A Systematic Ap-
proach to Static Access Control. In Proceedings of the 10th
European Symposium on Programming Languages and Sys-
tems, pages 30–45. Springer-Verlag, 2001.

[30] B. G. Ryder. Dimensions of Precision in Reference Analysis
of Object-Oriented Languages. In Proceedings of the 12th
International Conference on Compiler Construction, pages
126–137, Warsaw, Poland, April 2003. Invited Paper.

[31] J. H. Saltzer and M. D. Schroeder. The Protection of Infor-
mation in Computer Systems. In Proceedings of the IEEE,
volume 63, pages 1278–1308, Sept. 1975.

[32] SourceForge.net, http://www.sourceforge.net.
[33] Sun Microsystems, JavaTM Technology, http://java.

sun.com.
[34] D. S. Wallach. A New Approach to Mobile-Code Security.

PhD thesis, Princeton University, Princeton, NJ, USA, Jan.
1999.

[35] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Ex-
tensible Security Architectures for Java. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles,
pages 116–128, Saint Malo, France, 1997. ACM Press.

[36] D. S. Wallach and E. W. Felten. Understanding Java Stack
Inspection. In Proceedings of the 1998 IEEE Symposium
on Security and Privacy, pages 52–63, Oakland, CA, USA,
May 1998.

[37] X. Zhang, L. Koved, M. Pistoia, S. Weber, T. Jaeger,
G. Marceau, and L. Zeng. The Case for Analysis Preserv-
ing Language Transformation. In Proceedings of the ACM
SIGSOFT 2006 International Symposium on Software Test-
ing and Analysis (ISSTA). ACM Press, July 2006.

