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Wolfram divided the 256 elementary cellular automata rules informally into four classes using dynamical concepts like periodicity,
stability, and chaos. Rule 24, which is Bernoulli 𝜎

𝜏
-shift rule and is member of Wolfram’s class II, is said to be simple as periodic

before. Therefore, it is worthwhile studying dynamical behaviors of four rules, whether they possess chaotic attractors or not. In
this paper, the complex dynamical behaviors of rule 24 of one-dimensional cellular automata are investigated from the viewpoint
of symbolic dynamics. We find that rule 24 is chaotic in the sense of both Li-Yorke and Devaney on its attractor. Furthermore, we
prove that four rules of global equivalence 𝜀2

5
of cellular automata are topologically conjugate.Then, we use diagrams to explain the

attractor of rule 24, where characteristic function is used to describe the fact that all points fall into Bernoulli-shift map after two
iterations under rule 24.

1. Introduction

Cellular automata (CA) was first introduced by von Neu-
mann in 1951 [1]. CA is a mathematical model consisting
of large numbers of simple identical components with local
interactions [2]. The simple components act together to
produce complex global behavior. CA performs complex
computation with high degree of efficiency and robustness.
Three major factors have resulted in the revival of interest in
the behavior of cellular systems [3]. First, the development
of powerful computers and microprocessors has made the
rapid simulation of CA possible. Second, the use of CA
to simulate physical systems has attracted much interest in
the scientific community. Third, the advent of VLSI as an
implementation medium has focused attention on the com-
munication requirements of successful hardware algorithms.
Therefore, many researches about CA have been reported [4–
6], especially in cryptography [7–9] and image processing
[10, 11]. In addition, the analysis of dynamical behavior about
dynamical system has aroused wide public concern [12–16],
such as chaotic behavior [17, 18]. Thus, it is also important to
analyze chaotic behavior of CA.

Here, we will only consider Boolean automata for which
the cellular state 𝑥 ∈ {0, 1}. A cellular automaton consists of a
number of cells which evolve by a simple local rule (identical
rule). The value of each cell in the next stage is determined
by the values of the cell and its neighbor cells in the current
stage under the local rule [19].The identical rule contained in
each cell is essentially a finite state machine (FSM) which is
specified in the form of a rule table [20]. A rule table contains
an entry for possible neighborhood which consists of a cell
and the adjacent cells. The cellular array is 𝑑-dimensional,
where 𝑑 = 1, 2, 3 is used in practice. In this paper, we will
concentrate on 𝑑 = 1. For a one-dimensional CA, a cell is
connected to 𝑟 local neighbors (cells) on either side, where 𝑟
is referred to as the radius. A one-dimensional CA has 𝑛 cells
linked in a line or in a circle. Denote the value in the 𝑖th cell at
the 𝑡th stage by 𝑥

𝑖
[𝑡]. For 2-state 3-neighborhood CA (𝑟 = 1),

the evolution of 𝑖th cell can be represented as a function of
the present states of (𝑖 − 1)th, (𝑖)th, and (𝑖 + 1)th. The local
function 𝑓

𝑖
is a deterministic function to determine the next-

stage value of the 𝑖th cell, 𝑥
𝑖
[𝑡 + 1] = 𝑓

𝑖
(𝑥
𝑖−1
[𝑡], 𝑥
𝑖
[𝑡], 𝑥
𝑖+1
[𝑡]).

For example, the rule 24 is a one-dimensional CA and its
rule table is shown in Table 1. Thus, we have 𝑓(000) = 0,
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Table 1: The truth table of Boolean function of rule 24.

𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

[𝑓
24
(𝑥)]
𝑖

𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

[𝑓
24
(𝑥)]
𝑖

000 0 100 1
001 0 101 0
010 0 110 0
011 1 111 0

𝑓(001) = 0, 𝑓(010) = 0, 𝑓(011) = 1, 𝑓(100) = 1, 𝑓(101) = 0,
𝑓(110) = 0, and 𝑓(111) = 0. Then, we find that the groups
of three bits between parentheses represent all the possible
neighborhood states and the single bit after equal sign is the
resulting output bit at the next time step. The rule number is
obtained bymultiplying each output bit by the corresponding
power of two and adding the results. Therefore, there exist
2
8

= 256 possible rules with 𝑟 = 1. In this paper, we mainly
discuss rule 24. The rule 24 can be used to extract binary
image edges. We know that bit strings 011 and 100 must be
detected at the edges of binary images. If every row of an
image is evolved according to the rule 24, every column of
the image is evolved according to the rule 24 and their results
do bitwise XOR (exclusive OR); then the image edges can
be obtained. Therefore, it is worth researching the dynamical
behaviors of rule 24.

In this paper, complex dynamical behaviors of rule 24
are studied in detail. We obtain two conditions according
to Bernoulli 𝜎

𝜏
-shift evolution for attractors under rule 24.

The corresponding strongly connected graphs of transition
matrices of determinative block systems are given. In terms of
strongly connected subgraphs, we can predict the elements of
attractor Λ24. Finally, we have proven that rule 24 is chaotic
in the sense of Li-York and Devaney on sets of Λ24, which
implies that the number of period orbits of rule 24 is infinite.

The rest of the paper is organized as follows. In Section 2,
the intent of the paper and notations of symbolic dynamics
are introduced. In Section 3, the dynamical behaviors of rule
24 are studied. In Section 4, we prove that four rules of global
equivalence 𝜀2

5
are topologically conjugate. In Section 5, char-

acteristic function is used to describe the fact that all points
fall into Bernoulli-shift map after two iterations under rule
24 and Lameray diagram is used to show clearly the iterative
process of an attractor. Section 6 presents some conclusions.

2. Preliminaries

In 1980s, Wolfram proposed CA as models for physical sys-
tems which exhibit complex or even chaotic behaviors based
on empirical observations, and he divided the 256 elementary
cellular automata (ECA) rules informally into four classes
using dynamical concepts like periodicity, stability, and chaos
[21–23]. However, some authors [24–28] found that some
rules of Bernoulli 𝜎

𝜏
-shift rules are chaotic in the sense of

both Li-York and Devaney, where these rules were said to
be simple as periodic by Wolfram. Rule 24 is belonging to
Bernoulli 𝜎

𝜏
-shift rules. Therefore, we need to research rule

24 and to find its some new dynamical properties.

In this paper, we will use some notations about CA as
follows.

Chua et al. [29] mentioned that each rule has three glob-
ally equivalent local rules determined by three corresponding
global transformations, namely, left-right transformation 𝑇†,
global complementation 𝑇, and left-right complementation
𝑇
∗. Each equivalence class is identified by 𝜀

𝜅

𝑚
, where 𝜅 is

complexity index and 𝑚 is index of 𝜅th class. In [30], the
authors presented that 112 rules of 256 local rules were
Bernoulli 𝜎

𝜏
-shift rules. Each of the 112 Bernoulli 𝜎

𝜏
-shift

rules has an ID code𝐵
𝑁
[𝛼, 𝛽, 𝜏], where 𝛼 denotes the number

of attractors of rule 𝑁, 𝛽 denotes the slope of the Bernoulli
𝜎
𝜏
-shift map, and 𝜏 denotes the relevant forward time-𝜏.

Hence, the space-time evolution of any one of the 112 rules on
their attractors can be uniquely predicted by two parameters:
𝛽 = ±2

𝜎 and 𝜏. For example, the attractors of rule 14 are
(𝛽 = −1/2, 𝜎 = −1, 𝜏 = 1) and (𝛽 = 2, 𝜎 = 1, 𝜏 = 1).

Some notations about symbolic dynamics can be referred
to in [24–27]

It follows from [31] that the Boolean function of rule 24 is

[𝑓
24
(𝑥)]
𝑖
= 𝑥
𝑖−1

⋅ 𝑥
𝑖
⋅ 𝑥
𝑖+1

⊕ 𝑥
𝑖−1

⋅ 𝑥
𝑖
⋅ 𝑥
𝑖+1
, (1)

for all 𝑥 ∈ 𝑆
𝑍, 𝑖 ∈ 𝑍, where “⋅,” “−,” and “⊕” stand for

“AND,” “NOT,” and “XOR” logical operation, respectively.
Sometimes, “⋅” is omitted for simplicity. The truth table of
Boolean function of rule 24 is shown in Table 1.

The subset, denoted byΛ24, is derived from the parameter
of rule 24: 𝛽 = 1/2, 𝜎 = −1, 𝜏 = 2; that is,

Λ
24

= {𝑥 ∈ 𝑆
𝑍

| [𝑓
24
(𝑥)]
𝑖
= 𝑥
𝑖−1
, ∀𝑖 ∈ 𝑍} . (2)

3. Dynamical Behaviors of 𝑓
24

In the section, we investigate the complexity and chaotic
dynamics of𝑓

24
. In order to give our results, some definitions

need be introduced.

Definition 1 (see [32]). A square {0, 1}matrix𝐴 is irreducible,
if for every pair of indices 𝑖 and 𝑗 there is an 𝑛 such that𝐴𝑛

𝑖𝑗
>

0.

Definition 2 (see [32]). A square {0, 1}matrix 𝐴 is aperiodic,
if there exists𝑁, such that 𝐴𝑛

𝑖𝑗
> 0, 𝑛 > 𝑁, for all 𝑖, 𝑗.

Definition 3 (see [32]). Suppose that 𝑔 : 𝑋 → 𝑌 is a
continuousmapping, where𝑋 is a compact topological space.
𝑔 is said to be topologically mixing if, for any two open sets,
𝑈,𝑉 ⊂ 𝑋, ∃𝑁 > 0, such that 𝑔𝑛(𝑈) ∩ 𝑉 ̸= 0, for all 𝑛 ≥ 𝑁.

Definition 4 (see [26]). Let (𝑋, 𝑓) and (𝑌, 𝑔) be compact
spaces; we say 𝑓 and 𝑔 are topologically conjugate if there is
a homeomorphism ℎ : 𝑋 → 𝑌, such that ℎ ∘ 𝑓 = 𝑔 ∘ ℎ.

We give conditions according to Bernoulli 𝜎
𝜏
-shift evolu-

tion for rule 24 as follows.

Theorem 5. For rule 24, there exists a subset Λ24 ⊂ 𝑆
𝑍

which satisfies 𝑓
24
|
Λ
24 = 𝜍|

Λ
24 if and only if, for all 𝑥 =
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(. . . , 𝑥
−1
, 𝑥
0
, 𝑥
1
, . . .) ∈ Λ

24,𝑥
𝑖−1

,𝑥
𝑖
, and𝑥

𝑖+1
have the following

relations.

(i) If 𝑥
𝑖
= 0, then 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0; 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 1,

𝑥
𝑖+2

= 1; 𝑥
𝑖−2

= 0, 𝑥
𝑖−1

= 1, 𝑥
𝑖+1

= 0.
(ii) If 𝑥

𝑖
= 1, then 𝑥

𝑖−2
= 0, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0, 𝑥

𝑖+2
= 0.

Proof. Necessity: suppose that there exists a subset Λ24 ∈ 𝑆
𝑍

such that 𝑓
24
|
Λ
24 = 𝜍|

Λ
24 . Then for all 𝑥 = (. . . , 𝑥

−1
, 𝑥
0
,

𝑥
1
, . . .) ∈ Λ

24, we have [𝑓
24
(𝑥)]
𝑖
= 𝑥
𝑖−1

, for all 𝑥 ∈ 𝑍.

(i) If 𝑥
𝑖
= 0, then 𝑥

𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

= 0 ⊕ 𝑥
𝑖−1
𝑥
𝑖+1

;
according to Table 1, we get 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0; 𝑥

𝑖−1
=

0, 𝑥
𝑖+1

= 1, 𝑥
𝑖+2

= 1; 𝑥
𝑖−2

= 0, 𝑥
𝑖−1

= 1, 𝑥
𝑖+1

= 0.
(ii) If 𝑥

𝑖
= 1, then 𝑥

𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

= 𝑥
𝑖−1
𝑥
𝑖+1

⊕ 0;
according to Table 1, we get 𝑥

𝑖−2
= 0, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
=

0, 𝑥
𝑖+2

= 0.

Sufficiency: suppose that there exists a subset Λ24 ⊂ 𝑆
𝑍

and, for all 𝑥 ∈ Λ
24, the relations between 𝑥

𝑖−1
, 𝑥
𝑖
and 𝑥

𝑖+1

satisfy the conditions (i) and (ii) in Theorem 5, for all 𝑖 ∈ 𝑍.

(i) If 𝑥
𝑖
= 0, we have [𝑓

24
(𝑥)]
𝑖
= 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1
⊕𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

=

0 ⊕ 𝑥
𝑖−1
𝑥
𝑖+1

.

Therefore,

[𝑓
24
(𝑥)]
𝑖
=

{
{

{
{

{

0, 𝑥
𝑖−1

= 0, 𝑥
𝑖+1

= 0,

0, 𝑥
𝑖−1

= 0, 𝑥
𝑖+1

= 1,

1, 𝑥
𝑖−1

= 1, 𝑥
𝑖+1

= 0.

(3)

(ii) If 𝑥
𝑖
= 1, we have

[𝑓
24
(𝑥)]
𝑖
= 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

= 𝑥
𝑖−1
𝑥
𝑖+1

⊕ 0

= 0, 𝑥
𝑖−1

= 0, 𝑥
𝑖+1

= 0.

(4)

Hence, [𝑓
24
(𝑥)]
𝑖
= 𝑥
𝑖−1

.

Remark 6. From the definition of subsystem, we know that
(Λ
24

, 𝑓
24
) are subsystems of (𝑆𝑍, 𝑓

24
).

The dynamical behaviors of 𝑓
24
(𝑥) on the set Λ24 are

shown as follows.
Let 𝑃 = {𝑟

0
, 𝑟
1
, 𝑟
2
, 𝑟
3
} be a new state set, where 𝑟

0
= (000),

𝑟
1
= (001), 𝑟

2
= (010), 𝑟

3
= (100), and 𝜛24 = {(𝑟𝑟

󸀠

) | 𝑟 =

(𝑏
0
𝑏
1
𝑏
2
), 𝑟󸀠 = (𝑏

󸀠

0
𝑏
󸀠

1
𝑏
󸀠

2
) ∈ 𝑃, ∀1 ≤ 𝑗 ≤ 2 such that 𝑏

𝑗
= 𝑏
󸀠

𝑗−1
}.

Furthermore, subshift Λ
𝜛
24 of 𝜍 is defined as Λ

𝜛
24 = {𝑟 =

(. . . , 𝑟
−1
, 𝑟
0
, 𝑟
1
, . . .) ∈ 𝑃

𝑍

| 𝑟
𝑖
∈ 𝑃, 𝑟

𝑖
𝑟
𝑖+1

∈ 𝜛
24

, ∀𝑖 ∈ 𝑍}. The
transition matrix 𝐵24 of the 𝜍|

Λ
𝜛
24
is

𝐵
24

=

[
[
[

[

1 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

]
]
]

]

. (5)

Obviously, 𝐵24 is a square {0, 1} matrix. A square {0, 1}
matrix corresponds to a directed graph. The vertices of the
graph are the indices for the rows and columns of 𝐵24. There

1

1

0

0

0

0

r0 r1 r2

r3

Figure 1: The corresponding graph 𝐺24 of the matrix 𝐵24.

is an edge from vertex 𝑖 to vertex 𝑗 if 𝐵24
𝑖𝑗

= 1. A square
{0, 1} matrix is irreducible if and only if the corresponding
graph is strongly connected. If Λ

𝐴
is a two-order subshift of

finite type, then it is topologically mixing if and only if 𝐴 is
irreducible and aperiodic.

We give corresponding graph 𝐺
24 of the matrix 𝐵24 in

Figure 1, where vertices are the elements of set 𝑃. It is obvious
that 𝐺24 is a strongly connected graph.

Remark 7. By definition, we know that 𝑃 is the determinative
block system of Λ24 and Λ24 = Λ

24

𝑃
is a subshift of finite type.

Remark 8. Carefully observing Figure 1, we find that there are
several strongly connected subgraphs: 𝑟

0
→ 𝑟
0
, 𝑟
1
→ 𝑟
2
→

𝑟
3
→ 𝑟
1
, 𝑟
0
→ 𝑟
1
→ 𝑟
2
→ 𝑟
3
→ 𝑟
0
. The elements of Λ24

𝑃

will be composed by all vertices of subgraphs, respectively.
For example, 𝑥 ∈ Λ

24

𝑃
and 𝑥

1
is composed of vertices of

subgraph 𝑟
1
→ 𝑟
2
→ 𝑟
3
→ 𝑟
1
; then we have 𝑟

0
⊀ 𝑥
1

and vertices of subgraph 𝑟
1
→ 𝑟
2
→ 𝑟
3
will appear in 𝑥

1
,

if |𝑥
1
| = 3𝑘, 𝑘 = 1, 2 . . ..

Remark 9. Let 𝑒
1
= (011), 𝑒

2
= (101), 𝑒

3
= (110), and

𝑒
4
= (111). In terms of Table 1, we find that, after one iteration,

the possible sequences are generated by 𝑒
1
, 𝑒
2
, 𝑒
3
, and 𝑒

4
as

follows:

𝑒
1
→ 010, 𝑒

2
→ 000 or 001, 𝑒

3
→ 000, 001, 100 or

101, 𝑒
4
→ 000 or 100.

We find that, though 𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
⊀ Λ
24

𝑃
, after one or two

iterations, they belong to Λ24
𝑃
. Therefore, we guess that Λ24

𝑃

is the global attractor of 𝑓
24
.

Theorem 10. Λ24
𝑃
is global attractor of 𝑓

24
.

Proof. To prove that Λ24
𝑃
is the global attractor of 𝑓

24
, we

consider two situations.

(i) 𝑥 ∈ Λ
24

𝑃
. Since Λ24

𝑃
is invariant under 𝑓

24
, we have

𝑓
24
(𝑥) ∈ Λ

24

𝑃
.

(ii) 𝑥 ∈ 𝑆𝑍−Λ24
𝑃
. Suppose that there exist𝑦 ∈ 𝑆

𝑍

−Λ
24

𝑃
such

that 𝑓
24
(𝑥) = 𝑦. Then, we have (011) ≺ 𝑦, (101) ≺ 𝑦,

(110) ≺ 𝑦, or (111) ≺ 𝑦 byTheorem 5.Without loss of
generality, we consider several situations as follows.
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(a) Let 𝑦
[−1,1]

= (011). Since 𝑦
𝑖
= [𝑓
24
(𝑥)]
𝑖
, for all

𝑖 ∈ 𝑍, we especially have

[𝑓
24
(𝑥)]
−1
= 𝑥
−2
⋅ 𝑥
−1
⋅ 𝑥
0
⊕ 𝑥
−2
⋅ 𝑥
−1
⋅ 𝑥
0
= 0, (6)

[𝑓
24
(𝑥)]
0
= 𝑥
−1
⋅ 𝑥
0
⋅ 𝑥
1
⊕ 𝑥
−1
⋅ 𝑥
0
⋅ 𝑥
1
= 1, (7)

[𝑓
24
(𝑥)]
1
= 𝑥
0
⋅ 𝑥
1
⋅ 𝑥
2
⊕ 𝑥
0
⋅ 𝑥
1
⋅ 𝑥
2
= 1. (8)

Therefore, it follows from Table 1 that 𝑥
[−1,1]

∈ {(011), (100)}

by (7), which implies that 𝑥
0
⋅ 𝑥
1
⋅ 𝑥
2
⊕ 𝑥
0
⋅ 𝑥
1
⋅ 𝑥
2
= 0. It is

in contradiction to (8). Hence, 𝑦
[−𝑖,𝑖]

= (. . . , 0, 1, 1, . . .) is no
ancestor.

(b) Let 𝑦
[−1,1]

= (101). Since 𝑦
𝑖
= [𝑓
24
(𝑥)]
𝑖
, for all

𝑖 ∈ 𝑍, we especially have

[𝑓
24
(𝑥)]
−1
= 𝑥
−2
⋅ 𝑥
−1
⋅ 𝑥
0
⊕ 𝑥
−2
⋅ 𝑥
−1
⋅ 𝑥
0
= 1, (9)

[𝑓
24
(𝑥)]
0
= 𝑥
−1
⋅ 𝑥
0
⋅ 𝑥
1
⊕ 𝑥
−1
⋅ 𝑥
0
⋅ 𝑥
1
= 0, (10)

[𝑓
24
(𝑥)]
1
= 𝑥
0
⋅ 𝑥
1
⋅ 𝑥
2
⊕ 𝑥
0
⋅ 𝑥
1
⋅ 𝑥
2
= 1. (11)

Therefore, it follows from Table 1 that 𝑥
[−2,0]

∈

{(011), (100)} by (9). Furthermore, if 𝑥
[−2,0]

= (011),
we know that 𝑦

[−𝑖,𝑖]
= (. . . , 0, 1, 1, . . .) is no ancestor. If

𝑥
[−2,0]

= (100), then only (011) satisfies (11). However,
we know that 𝑦

[−𝑖,𝑖]
= (. . . , 0, 1, 1, . . .) is no ancestor. The

situations of (110) and (111) are similar to those of (011) or
(101). In conclusion, if 𝑥 ∈ 𝑆

𝑍

− Λ
24

𝑃
, 𝑥 will be no ancestor

or its ancestor will be no ancestor. Therefore, Λ24
𝑃
is global

attractor of 𝑓
24
.

Remark 11. From the above conclusion, we find that all binary
sequences will be bound to fall into Λ24

𝑃
after two iterations

under 𝑓
24
.

Based on the above definitions and analysis, we have the
following results.

Theorem 12. (a) 𝜍 : Λ24
𝑃
→ Λ
24

𝑃
and 𝜍 : Λ

𝜛
24 → Λ

𝜛
24 are

topologically conjugate.
(b) 𝜍 : Λ24

𝑃
→ Λ
24

𝑃
is topologically mixing.

(c) 𝑓
24
: Λ
24

𝑃
→ Λ
24

𝑃
is topologically mixing.

(d) The topological entropy 𝑒𝑛𝑡(𝑓
24
|
Λ
24

𝑃

) = 𝑒𝑛𝑡(𝜍|
Λ
24

𝑃

) =

0.3823.

Proof. (a) We find out a homeomorphism ℎ from Λ
𝜆
24

1

to
Λ
𝜛
24

1

.
Define

ℎ : Λ
24

𝑃
󳨀→ Λ

𝜛
24 ,

𝑥 = (. . . , 𝑥
−1
, 𝑥
∗

0
, 𝑥
1
, . . .) 󳨃󳨀→ (. . . , 𝑟

−1
, 𝑟
∗

0
, 𝑟
1
, . . .) ,

(12)

where 𝑟
𝑖
= (𝑥
𝑖
𝑥
𝑖+1
𝑥
𝑖+2
), for all 𝑖 ∈ 𝑍. In fact, by the definition

of Λ
𝜛
24 , we have ℎ(𝑥) ∈ Λ

𝜛
24 , for all 𝑥 ∈ Λ

24

𝑃
; thus ℎ(Λ24

𝑃
) ⊆

ℎ(Λ
𝜛
24). Then, it is easy to check that ℎ is homeomorphism

and ℎ ∘ 𝜍|
Λ
24

𝑃

→ 𝜍|
Λ
𝜛
24
∘ ℎ. Therefore, 𝜍|

Λ
24

𝑃

and 𝜍|
Λ
𝜛
24
are

topologically conjugate.

(b) Since 𝜍|
Λ
24

𝑃

and 𝜍|
Λ
𝜛
24
are topologically conjugate, we

only need to check that the transition matrix 𝐵24 of 𝜍|
Λ
𝜛
24

is irreducible and aperiodic. Actually, (𝐵24)𝑛 > 0, for all
𝑛 ≥ 5. By Definitions 1 and 2, we know that 𝐵24 is irreducible
and aperiodic. So, in terms of [32, 33], 𝜍 : Λ

24

𝑃
→ Λ

24

𝑃
is

topologically mixing.
(c) Since 𝑓

24
(𝑥) and 𝜍(𝑥) are equal in the setΛ24

𝑃
and 𝜍|

Λ
24

𝑃

is topologically mixing, 𝑓
24
|
Λ
24

𝑃

is topologically mixing.
(d) The topological entropy 𝜍 on Λ

24

𝑃
equals log 𝜌(𝐵24),

where 𝜌(𝐵24) is the spectral radius of the transition matrix
𝐵
24 of the subshift Λ

24

𝑃
. So, ent(𝜍|

Λ
24

𝑃

) = log 𝜌(𝐵24) =

0.3823. Because two topological conjugate systems have the
same topological entropy, the topological entropy of 𝑓

24
|
Λ
24

𝑃

is equal to that of 𝜍|
Λ
24

𝑃

; namely, ent(𝑓
24
|
Λ
24

𝑃

) = ent(𝜍|
Λ
24

𝑃

) =

0.3823.

Theorem 13. 𝑓
24

is chaotic in the sense of both Li-Yorke and
Devaney on Λ24

𝑃
.

Proof. It follows from [33] that the positive topological
entropy implies chaos in the sense of Li-Yorke and topo-
logically mixing implies chaos in the sense of Li-Yorke
and Devaney, since rule 𝑁 = 24 possesses very rich and
complicated dynamical properties on Λ24

𝑃
.

4. The Relationship between Four Rules of
Global Equivalence Class 𝜀2

5

In this section, we will discuss the relationship between four
rules of global equivalence class 𝜀2

5
. In [31], rules 24, 66, 231,

and 189 are partitioned into global equivalence class 𝜀2
5
. Next,

we prove that they are topologically conjugate to each other.

Theorem 14. (i) 𝑓
24

: 𝑆
𝑍

→ 𝑆
𝑍 and 𝑓

66
: 𝑆
𝑍

→ 𝑆
𝑍 are

topologically conjugate.
(ii) 𝑓
24
: 𝑆
𝑍

→ 𝑆
𝑍 and 𝑓

231
: 𝑆
𝑍

→ 𝑆
𝑍 are topologically

conjugate.
(iii) 𝑓
24
: 𝑆
𝑍

→ 𝑆
𝑍 and 𝑓

189
: 𝑆
𝑍

→ 𝑆
𝑍 are topologically

conjugate.

Proof. By [31], we have

𝑓
24
= 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1
,

𝑓
66
= 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1
,

𝑓
231

= 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1
,

𝑓
189

= 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1
.

(13)

Then we have

𝑇
†

∘ 𝑓
24
(𝑥
𝑖
) = 𝑥
−𝑖+1

𝑥
−𝑖
𝑥
−𝑖−1

⊕ 𝑥
−𝑖+1

𝑥
−𝑖
𝑥
−𝑖−1

,

𝑓
66
∘ 𝑇
†

(𝑥
𝑖
) = 𝑥
−𝑖−1

𝑥
−𝑖
𝑥
−𝑖+1

⊕ 𝑥
−𝑖−1

𝑥
−𝑖
𝑥
−𝑖+1

,
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Figure 2: Let 𝐼 = 14. (a), (b), and (c) describe the process, where all points fall into Bernoulli-shift map after two iterations under rule 24.

𝑇 ∘ 𝑓
24
(𝑥
𝑖
) = 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1
,

𝑓
231

∘ 𝑇 (𝑥
𝑖
) = 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

⊕ 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1
,

𝑇 ∘ 𝑇
†

∘ 𝑓
24
(𝑥
𝑖
) = 𝑥
−𝑖+1

𝑥
−𝑖
𝑥
−𝑖−1

⊕ 𝑥
−𝑖+1

𝑥
−𝑖
𝑥
−𝑖−1

,

𝑓
189

∘ 𝑇 ∘ 𝑇
†

(𝑥
𝑖
) = 𝑥
−𝑖−1

𝑥
−𝑖
𝑥
−𝑖+1

⊕ 𝑥
−𝑖−1

𝑥
−𝑖
𝑥
−𝑖+1

.

(14)

Therefore, we have 𝑇† ∘ 𝑓
24
(𝑥
𝑖
) = 𝑓
66
∘ 𝑇
†

(𝑥
𝑖
), 𝑇 ∘ 𝑓

24
(𝑥
𝑖
) =

𝑓
231

∘ 𝑇
†

(𝑥
𝑖
), 𝑇 ∘ 𝑇

†

∘ 𝑓
24
(𝑥
𝑖
) = 𝑓
189

∘ 𝑇 ∘ 𝑇
†

(𝑥
𝑖
). So, 𝑓

24
, 𝑓
66
,

𝑓
231
,and 𝑓

189
are topologically conjugate to each other.

Remark 15. If there are two systems topologically conjugate,
these two systems have the same dynamical properties.
Rules 𝑓

24
, 𝑓
66
, 𝑓
231

, and 𝑓
189

are topologically conjugate,
respectively. Therefore, if we know that one of four rules is
chaotic in the sense of both Li-Yorke and Devaney in its
attractors, we can deem that the other four rules are chaotic

in the sense of both Li-Yorke and Devaney in their attractors,
respectively.

5. Using Diagrams to Explain Attractors of
Four Rules

First, we give a definition on global characteristic function
[30]. Given any local rule 𝑁 and binary configuration, 𝑥 =

[𝑥
0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝐼−1
𝑥
𝐼
] for a ECA, where 𝑥

𝑖
∈ {0, 1}. Then we

can uniquely associate the Boolean string 𝑥 with the binary
expansion of a real number 0

∙
𝑥
0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝐼−1
𝑥
𝐼
on the unit

interval [0, 1]:
𝑥 = [𝑥

0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝐼−1
𝑥
𝐼
] 󳨃󳨀→ 𝜙 ≜ 0

∙
𝑥
0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝐼−1
𝑥
𝐼
, (15)

where𝜙 = ∑
𝐼

𝑖=0
2
−(𝑖+1)

𝑥
𝑖
is the decimal formof Boolean string

𝑥 = [𝑥
0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝐼−1
𝑥
𝐼
]. The ECA’ characteristic function 𝜒

𝑁
of

rule𝑁 is defined as

𝜒
𝑁
: 𝑄 [0, 1] 󳨀→ 𝑄 [0, 1] , that is, 𝜙1

𝑛
= 𝜒
1

𝑁
(𝜙
𝑛−1

) , (16)
where 𝑄 denotes rational numbers.
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(a) (b)

(c)

Figure 3: Several attractors of rule 24, where 𝐼 = 5, and the white lattice stands for 0 and the black for 1.
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Figure 4: The evolution of characteristic function of the period-3
attractor, where the values of characteristic function of the attractor
are 0.2813, 0.1406, and 0.5625, respectively.

We choose 𝐼 = 14. Figure 2 shows characteristic functions
of rule 24. Figures 2(a), 2(b), and 2(c) describe the fact that
all points fall into Bernoulli-shift map after two iterations
under rule 24, which shows that Λ24

𝑃
is global attractor of 𝑓

24
.

The phenomenon also shows that the forecast in Remark 11 is
correct.

If we choose different values of 𝐼 for rule 24, we can get
different initial binary configurations for the evolution of rule
24. The different initial binary configurations may lead to
different attractor periods. If the value of 𝐼 is fixed, we may
find the periods of attractors different. Given 𝐼 = 5, we find
three attractors of rule 24 shown in Figures 3(a), 3(b), and
3(c). Periods of these attractors are 1, 3, and 6, respectively.

Remark 16. The sequence 𝑥 = [𝑥
0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝐼−1
𝑥
𝐼
] consists of

arbitrary alternations of 0 and 1, and there are 2(𝐼+1) different
possibilities of choice for 𝑥.

Next, we use Lameray diagram [34] to present the
evolution process of attractor. In terms of the attractor of
Figure 3(b), we get that the values of characteristic function
of the attractor are 0.2813, 0.1406, and 0.5625, respectively.
Figure 4 shows the iterative process of the attractor.Then, we
can associate the period-3 attractor of rule 24 as a period-3
point of a continuousmap𝑓 : [0, 1] → [0, 1]which we know
to be chaotic because “period-3 implies chaos” [35].

6. Conclusion

In this work, we characterize the global attractor of rule 24.
We derive the conditions according to Bernoulli 𝜎

𝜏
-shift evo-

lution for attractor of rule 24.Then, in terms of the transition
matrix of determinative block system of subsystem of rule 24,
we obtain the value of topological entropy of subsystem. By
corresponding strongly connected graph of transition matrix
of determinative block system of subsystem Λ

24, we guess
that Λ24

𝑃
is the global attractor of 𝑓

24
. Furthermore, we prove
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that Λ24
𝑃
is the global attractor of 𝑓

24
. We find that rule 24 is

topologicallymixing onΛ24
𝑃
.Then, we prove that four rules of

global equivalence 𝜀2
5
of ECA are topologically conjugate. So,

these four rules are chaotic in the sense of both Li-Yorke and
Devaney on their attractors, respectively. We use diagrams to
explain the attractor of rule 24, where characteristic function
and Lameray diagram are used to describe the fact that all
points fall into Bernoulli-shiftmap after two iterations and to
show clearly the iterative process of an attractor, respectively.
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