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A method is proposed to transit the rotor-to-stator rubbing to no-rub motion through active auxiliary bearing. The key point of
this technique is to express the attractive domain of no-rub motion based on the phase characteristic and to represent the desired
status. The feedback actuation is applied by an active auxiliary bearing to drive the rotor approaching the desired status. After that,
the control actuation is turned off. Although the desired status is still in rubbing, it is in the attractive domain of no-rub motion,
and the response of the rotor is automatically attracted to no-rub motion.

1. Introduction

Rubbing between the rotor and the stator is a serious
malfunction, which frequently happens in the operation of a
rotatingmachine. Itmay lead to heavy damage of themachine
or even to complete destruction. Therefore, it is necessary
to understand the dynamical behavior of the rotor-to-stator
rubbing and to control it. Chu and Zhang [1] investigated the
reliability of the rotor system with rubbing and found out
four different scenarios to and out of chaos. Some publica-
tions researched the whirling motion of full annular rotor
rubbing, for example, [2, 3]. Karpenko et al. [4] described
the experimental verification of a nonlinear Jeffcott rotor
model with a preloaded snubber ring. Popprath and Ecker [5]
presented a mathematical model to investigate the dynamics
of a Jeffcott rotor having intermittent contact with a stator and
exhibited rich dynamical behavior by numerical results. Jiang
[6] studied the global response characteristics of a piecewise
smooth dynamical system with contact analytically.

For controlling the rotor-to-stator rubbing, many works
investigated control forces acting directly on the rotor to
minimize rotor vibration, for example, [7–12]. A control
strategy using an active auxiliary bearing was proposed, in
which actuation was on the auxiliary bearing and thereby
indirectly on the rotor. Compared with the conventional

auxiliary bearing, the active auxiliary bearing has the fol-
lowing advantages [13]: it not only limits the large response
amplitude of the rotor for preventing the rotor/blades and
the casing/seals from direct contact, but it also effectively
reduces the rubbing severity, and it especially avoids the
occurrence of the destructive rubbing instabilities. Addi-
tionally, the capability of existing auxiliary bearings can
be well extended from this concept by introducing active
control. Ginzinger and Ulbrich [13] developed a two-phase
control strategy to control a rubbing rotor applying an active
auxiliary bearing. Chavez et al. [14] used sliding control
and cross coupled feedback in a rotor system driven by a
power limited motor to reduce the impact forces and to
decrease the lateral and torsional vibrations. Ginzinger and
Ulbrich [15] presented a framework for the development of
a feedback controller for an active auxiliary bearing. Cade et
al. [16] considered an active auxiliary bearing system with a
control strategy designed to limit the trapped contact modes
in a rotor/magnetic bearing system. Because the auxiliary
bearing exerts control forces on the rotating system only
when rotor establishes contact with the auxiliary bearing,
[13–16] dealt with the problem of rotor-to-stator rubbing
mainly by minimizing contact force or bringing system into
a stable full annular rub.
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Usually the state variables are chosen as displacement and
velocity; however, amplitude and phase are also key variables
for describing the vibration. In our previous work [17], a
method was proposed to reduce the vibration amplitude
at resonance by modulating the phase relations between
excitement and response. Also, the phase characteristic of
a disk rubbing with a ring supported elastically was used
to explain the mechanism of stiffness increase phenomenon
[18]. In this work, based on the phase characteristic, a
control scheme is proposed to eliminate the rubbing of the
rotor system by active auxiliary bearing. In the following
section, themodel of the piecewise smooth rotor/statorwith a
Jeffcott rotor and an active auxiliary bearing is introduced. In
Section 3, the phase characteristic of the rubbing rotor system
is analyzed. In Section 4, the corresponding controlmethod is
presented. In Section 5, the method is numerically simulated.

2. Mathematical Model

The rotor-to-stator system with a Jeffcott rotor and an active
auxiliary bearing is shown in Figure 1(a). A disk with
mass 𝑚 is mounted at the midpoint of the weightless shaft
with total stiffness 𝑘

𝑟
, viscous 𝑐, and rotating at a constant

speed of 𝜔. The mass center of the rotor is located at a
distance 𝑒 from its geometrical center.The auxiliary bearing is
considered to be rigid and modeled as the radial springs with
stiffness 𝑘

𝑠
.The clearance between the rotor and the auxiliary

bearing is denoted by 𝛾. For directly expressing the phase
difference between the excitement (the rotating motion) and
the response (thewhirlingmotion), a polar coordinate system
is chosen, shown as Figure 1(b). The center of the auxiliary
bearing is assumed as the origin of the coordinates. The
current position of the rotor 𝑂

𝑟
is given by the radius 𝜌 and

the angle 𝜓. The phase angle of the imbalance force is 𝜑 = 𝜔𝑡.
When 𝜌 ≥ 𝛾, the normal contact force and the friction force
between the rotor and the auxiliary bearing are 𝐹

𝑁
and 𝐹

𝑇
=

𝜇𝐹
𝑁
, respectively, where 𝜇 is the friction coefficient.
The equations that govern the motion of the rotor-to-

stator system in polar coordinate form can be formulated into
nondimensional form as

̈𝜌 + ] ̇𝜌 + 𝜌 − 𝜌�̇�2 + Θ𝑓
𝑁
− 𝑒𝜔
2 cos (𝜔𝜏 − 𝜓) = 0,

𝜌�̈� + 2 ̇𝜌�̇� + ]𝜌�̇� + Θ𝜇𝑓
𝑁
− 𝑒𝜔
2 sin (𝜔𝜏 − 𝜓) = 0,

𝑓
𝑁
= 𝑘 (𝜌 − 1) ,

(1)

where the dot denotes the derivatives with respect to nondi-
mensional time 𝜏. We define Θ = 1 if 𝜌 ≥ 1 and Θ = 0,
if 𝜌 < 1. The nondimensional parameters and variables are
listed as follows:

𝜔
2

𝑛
=

𝑘
𝑟

𝑚

, 𝜏 = 𝜔
𝑛
𝑡, 𝜌 =

𝜌

𝛾

, ] =
𝑐

2√𝑘
𝑟
𝑚

,

𝑒 =

𝑒

𝛾

, 𝑓
𝑁
=

𝐹
𝑁

𝑘
𝑟
𝛾

, 𝑘 =

𝑘
𝑠

𝑘
𝑟

.

(2)

3. Phase Characteristics of Rubbing Motion

In this section, the characteristics of the phase difference
between the excitement force and the response 𝜑 − 𝜓 are
analyzed. It is noticed that the 𝜑 − 𝜓 represents 𝜑 − 𝜓 or
mod(𝜑 − 𝜓, 2𝜋), which is in the range [0, 2𝜋].

The rotor/stator system governed by (1) has a steady-
state periodic solution that has a constant amplitude and
a frequency equal to the rotating speed of the rotor. The
solution is corresponding to ̈𝜌 = ̇𝜌 = �̈� = 0 and �̇� = �̇� = 𝜔;
substituting this specific solution into (1) yields

𝜌 − 𝜌�̇�
2

+ Θ𝑘 (𝜌 − 1) − 𝑒𝜔
2 cos (𝜑 − 𝜓) = 0,

]𝜌�̇� + Θ𝜇𝑘 (𝜌 − 1) − 𝑒𝜔2 sin (𝜑 − 𝜓) = 0.
(3)

From (3), the radial amplitude 𝜌 and the phase difference
𝜑 − 𝜓 are obtianed, when Θ = 0,

(𝜌 − 𝜌𝜔
2

)

2

+ (]𝜌𝜔)2 = (𝑒𝜔2)
2

,

tan (𝜑 − 𝜓) = ]𝜔
1 − 𝜔
2
.

(4)

When Θ = 1,

(𝜌 − 𝜌𝜔
2

+ 𝑘𝜌 − 𝑘)

2

+ (]𝜌𝜔 + 𝜇𝑘𝜌 − 𝜇𝑘)2 = (𝑒𝜔2)
2

,

𝑒𝜔
2

[(]𝜔 + 𝜇𝑘) cos (𝜑 − 𝜓) − (1 + 𝑘 − 𝜔2) sin (𝜑 − 𝜓)]

= 𝑘 (𝜇 − 𝜇𝜔
2

− ]𝜔) .

(5)

The amplitude and the phase difference are expressed
as a function of the rotor speed 𝜔 in (4) and (5). In (4),
the nondimensional viscous ] is small; it is obvious that the
phase difference 𝜑 − 𝜓 approaches to 𝜋 with the increase
of the rotor speed 𝜔 if there exists no-rub solution when
𝜔 > 1. For synchronous full annular rub solution, the
phase difference 𝜑 − 𝜓 is less than 𝜋/2, which was explained
in [18]. As an example, the phase difference and radial
displacement depending on the rotor speed are numerically
plotted according to (4) and (5) in Figures 2(a) and 2(b),
respectively, for ] = 0.1, 𝜇 = 0.06, 𝑒 = 0.2, and 𝑘 = 8.

In Figure 2(a), the contact does not happen along the
curve denoted by 1. The rotor first establishes contact with
the bearing at the rotor speed 𝜔 = 0.925 marked as 2
where the curve has its first kink. It is found that when the
contact occurs, the phase difference 𝜑 − 𝜓 is less than 𝜋/2
until the speed approaches 𝜔 = 2.321 marked by 3. At
the point 3, an infinitesimal increase in rotor speed causes
the phase difference to jump to point 5, about 𝜋. Then, the
phase difference is kept along the curvemarked by 5-6.When
the rotor speed is decreased, the phase difference follows
the curve 6-5-4-2-1. A jump occurs at the point marked by
4, where the phase difference becomes less than 𝜋/2 again.
The corresponding radial amplitude diagrams are plotted in
Figure 2(b). It can be seen that the amplitude jumps at the
same speeds as the phase difference. Particularly, it is noticed
that no-rub solution and rubbing solution coexist between
the rotor speed𝜔 = 1.103 and𝜔 = 2.321.Thephase difference
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Figure 1: (a) The schematic plot of the rotor-to-stator system; (b) the section view on the plane of the rotor and the stator ring.
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Figure 2: (a) Phase difference shift depending on rotor speed; (b) radial displacement amplitude depending on rotor speed.

of the no-rub solution is about 𝜋 while that of the rubbing
solution is less than 𝜋/2, and the dashed curve represents
unstable solution between the no-rub and rubbing solutions,
which is important for determining the attractive domain
of the no-rub motion. (𝜌, ̇𝜌, 𝜓, �̇�) represents the position of
rotor center, the phase difference 𝜑 − 𝜓 should near 𝜋/2 if
(𝜌, ̇𝜌, 𝜓, �̇�) is in the attractive domain of the rubbing motion
while the phase difference 𝜑 − 𝜓 should near 𝜋 if (𝜌, ̇𝜌, 𝜓, �̇�)
is in the attractive domain of the no-rub motion.

In certain parameters, the synchronous full annular rub
solutions become unstable; then partial rubs and dry whip
may occur in the system. As an example, the bifurcation
diagrams of the amplitude and the phase difference against
rotor speed for parameters ] = 0.1, 𝜇 = 0.06, 𝑒 = 0.2, and
𝑘 = 8 are plotted in Figure 3. The scenario of rotor responses
with the increase of the rotating speed is no-rub synchronous

whirl → a synchronous full annular rub → a partial rubwith
forward whirl → a partial rub with backward whirl → dry
whip as shown in Figure 3.

To eliminate these rubs with real time control methods,
the difficulty is that the auxiliary bearing exerts action
on the rotor only if contact is kept, while the interaction
between the bearing and the rotor will induce the stiffness
increase; therefore, some previous control strategies were
mainly configured to minimize contact force or to control
the system into a stable full annular rub. In other words, the
motion is still in rubbing contact. Indeed, there exist stable
no-rub motion and rub motion at the same rotor speed.
In this work, a control approach is developed to transit the
complex behaviors in rubs to no-rub motion based on the
phase characteristic.
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Figure 3: Bifurcation diagrams of (a) radial displacement amplitude and (b) phase difference.
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Figure 4: Control result at 𝜔 = 1.9. Time history of (a) the radial displacement amplitude and (b) phase difference.

4. Controller Design

Thecontrol strategy in this paper consists of two steps: at first,
when the rotor is rubbing with the active auxiliary bearing,
the feedback actuation is applied by the active auxiliary
bearing to drive rotor to the desired status. Although the
desired status is not a no rub vibration with small amplitude,
it is in the attractive domain of no rub motion; then, the
feedback actuation is turned off because the desired status can
be transited to the no-rub motion and the no-rub motion is
maintained without control. Therefore, the key point of this
control strategy is to find the attractive domain of no-rub
motion such that the desired status can be determined.

The phase characteristic analyzed in Section 3 is used to
find the attractive domain of no-rub motion. Although the
exact boundary of the attractive domain of no-rub motion is
not obtained, the approximate one is enough to determine the
desired status.

The desired nondimensional radial displacement must
be greater than 1 for that auxiliary bearing to exert control
action on the rotor. According to the analysis in Section 3, the
unstable solution separates the no-rub and rubbing solutions,

and the phase difference of no-rub motion is near 𝜋, so the
desired phase difference is in neighborhood of 𝜋.

For the convenience, we introduce𝑥
1
= 𝜌,𝑥

2
= ̇𝜌,𝑥

3
= 𝜓,

𝑥
4
= �̇�, and 𝑋(𝑡) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
}. When Θ = 1, (1) can be

described as

�̇�
1
= 𝑥
2
,

�̇�
2
= − 𝑥

1
− ]𝑥
2
+ 𝑥
1
𝑥
2

4
− 𝑘 (𝑥

1
− 1) + 𝑒𝜔

2 cos (𝜔𝑡 − 𝑥
3
) ,

�̇�
3
= 𝑥
4
,

�̇�
4
=

[−2𝑥
2
𝑥
4
− ]𝑥
1
𝑥
4
− 𝜇𝑘 (𝑥

1
− 1) + 𝑒𝜔

2 sin (𝜔𝑡 − 𝑥
3
)]

𝑥
1

.

(6)

The desired status is given by {𝑥
1𝑑
, 𝑥
2𝑑
, 𝑥
3𝑑
, 𝑥
4𝑑
}, where

𝑥
1𝑑

is the desired radial displacement, which is an adequate
magnitude and is greater than 1, 𝑥

2𝑑
= �̇�
1𝑑
, 𝑥
3𝑑

is the desired
phase angle, and 𝑥

4𝑑
= �̇�
3𝑑
. let 𝑦

3𝑑
= 𝜔𝑡 − 𝑥

3𝑑
be the

desired phase difference and 𝑦
4𝑑
= 𝜔 − 𝑥

4𝑑
. Based on the

phase characteristic in Section 3, the desired phase difference
𝑦
3𝑑
= 𝜔𝑡 − 𝑥

3𝑑
should be in neighborhood of 𝜋. The first
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Figure 5: Control result at 𝜔 = 1.9. Time history of (a) the radial displacement amplitude and (b) phase difference.
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Figure 6: Control result at 𝜔 = 2.1. Time history of (a) the radial displacement amplitude and (b) phase difference.

step of control strategy is to choose an appropriate controller
𝑈 = {𝑢

1
, 𝑢
2
} that satisfies

lim
𝑡→∞





𝑥
1
(𝑡) − 𝑥

1𝑑





= 0,

lim
𝑡→∞





𝑥
3
(𝑡) − 𝜔𝑡 + 𝑦

3𝑑





= 0.

(7)

The control system can be described as

�̇�
1
= 𝑥
2
,

�̇�
2
= − 𝑥

1
− ]𝑥
2
+ 𝑥
1
𝑥
2

4
− 𝑘 (𝑥

1
− 1) + 𝑒𝜔

2 cos (𝜔𝑡 − 𝑥
3
)

+ 𝑢
1
,

�̇�
3
= 𝑥
4
,

�̇�
4
= [−2𝑥

2
𝑥
4
− ]𝑥
1
𝑥
4
− 𝜇𝑘 (𝑥

1
− 1)

+ 𝑒𝜔
2 sin (𝜔𝑡 − 𝑥

3
) +𝑢
2
] × (𝑥

1
)
−1

.

(8)

Let

𝑒
1
= 𝑥
1
− 𝑥
1𝑑
,

𝑒
2
= 𝑥
2
− �̇�
1𝑑
,

𝑒
3
= 𝑥
3
− 𝜔𝑡 + 𝑦

3𝑑
,

𝑒
4
= 𝑥
4
− 𝜔 + ̇𝑦

3𝑑
.

(9)

The error equations become

̇𝑒
1
= 𝑒
2
,

̇𝑒
2
= − (𝑒

1
+ 𝑥
1𝑑
) − ]𝑒

2
+ (𝑒
1
+ 𝑥
1𝑑
) (𝑒
4
+ 𝜔)
2

− 𝑘 (𝑒
1
+ 𝑥
1𝑑
− 1) + 𝑒𝜔

2 cos (𝑦
3𝑑
− 𝑒
3
) + 𝑢
1
,

̇𝑒
3
= 𝑒
4
,

̇𝑒
4
= (− 2𝑒

2
(𝑒
4
+ 𝜔) − ] (𝑒

1
+ 𝑥
1𝑑
) (𝑒
4
+ 𝜔)

−𝜇𝑘 (𝑒
1
+ 𝑥
1𝑑
− 1) + 𝑒𝜔

2 sin (𝑦
3𝑑
− 𝑒
3
) + 𝑢
2
)

× (𝑒
1
+ 𝑥
1𝑑
)
−1

.

(10)
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Figure 7: Control result at 𝜔 = 2.28. Time history of (a) the radial displacement amplitude and (b) phase difference.

To diminish the error equations (10), the action of the
controller is proposed as

𝑢
1
= (𝑒
1
+ 𝑥
1𝑑
) + ]𝑒

2
− (𝑒
1
+ 𝑥
1𝑑
) (𝑒
4
+ 𝜔)
2

+ 𝑘 (𝑒
1
+ 𝑥
1𝑑
− 1) − 𝑒𝜔

2 cos (𝑦
3𝑑
− 𝑒
3
)

− (𝑎
1
𝑒
1
+ 𝑏
1
𝑒
2
) ,

𝑢
2
= 2𝑒
2
(𝑒
4
+ 𝜔) + ] (𝑒

1
+ 𝑥
1𝑑
) (𝑒
4
+ 𝜔) + 𝜇𝑘 (𝑒

1
+ 𝑥
1𝑑
− 1)

− 𝑒𝜔
2 sin (𝑦

3𝑑
− 𝑒
3
) − (𝑒
1
+ 𝑥
1𝑑
) (𝑎
2
𝑒
3
+ 𝑏
2
𝑒
4
) .

(11)

The errors of (10) are governed mainly by the design param-
eters (𝑎

1
, 𝑏
1
, 𝑎
2
, 𝑏
2
), which can be determined by letting all

eigenvalues of Jacobian of (10) have negative real parts. The
rotor approaches the desired status for suitable values of
(𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
). For example, in the next section, the values

(𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
) in (10) are set as (6, 8, 6, 8) to guarantee that the

eigenvalues are with negative real parts and that the trajectory
reaches the desired status.

5. Numerical Simulations

In the following, numerical simulations are demonstrated to
show the practical feasibility of this idea for parameters ] =
0.1, 𝜇 = 0.06, 𝑒 = 0.2, and 𝑘 = 8.

For rotor speed 𝜔 = 1.9, the response of the rotor
is a partial rub with forward whirl as shown in Figure 3.
The control results in Figure 4 show the amplitude of the
rotor 𝜌 and the phase difference 𝜔𝑡 − 𝜓 under the driving
frequency at 𝜔 = 1.9. The jump in figure is caused by mod
(𝜑 − 𝜓, 2𝜋). The aim is to eliminate the partial rub between
the rotor and stator. According to the phase characteristic,
𝑦
3𝑑
, should approach 𝜋. The desired controlled position and

the values (𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
) in (10) are set as (1.1, 0, 𝜔𝑡 − 3.07, 𝜔)

and (6, 8, 6, 8). The control input is activated at 𝑡 = 20,
and after a short transition the rotor reaches the desired
position (1.1, 0, 𝜔𝑡 − 3.07, 𝜔). At this time, the control input
is inactivated, and after a short time the response of the

rotor is stabilized to no-rub motion itself. The partial rub
with forward whirl of rotor is stabilized to no-rub motion
successfully.

From the above analysis in Section 4, it is known that the
desired phase difference can be chosen in neighborhood of
𝜋. For the same rotor speed 𝜔 = 1.9, the desired controlled
position is set as (1.1, 0, 𝜔𝑡 − 2.5, 𝜔) and the other values
are not changed; the partial rub with forward whirl of rotor
is also stabilized to no-rub motion successfully as shown in
Figure 5. It is shown that the desired phase difference has a
wide tolerance.

For rotor speed, 𝜔 = 2.1, the response of rotor is a
partial rub with backward whirl as shown in Figure 3. The
desired controlled position and the values (𝑎

1
, 𝑏
1
, 𝑎
2
, 𝑏
2
) in

(9) are set as (1.1, 0, 𝜔𝑡 − 3.07, 𝜔) and (6, 8, 6, 8). The control
input is activated at 𝑡 = 20, and after a short transition
the rotor reaches the desired position (1.1, 0, 𝜔𝑡 − 3.07, 𝜔).
Once the rotor enters the attractive domain, the partial rub
with backward whirl can be stabilized to no-rub motion even
without control. The results are shown in Figure 6.

For rotor speed𝜔 = 2.28, the response of rotor is drywhip
as shown in Figure 3. There is a period of transient before
the response of rotor becomes dry whip, and the control
input is activated in this period of time. Using the control
strategy proposed in this paper, the dry whip is stabilized to
no-rub motion as shown in Figure 7. In this case, the desired
controlled position and the values (𝑎

1
, 𝑏
1
, 𝑎
2
, 𝑏
2
) in (9) are set

as (2, 0, 𝜔𝑡 − 3.07, 𝜔) and (6, 8, 6, 8).

6. Conclusions

This paper proposes a method to control rotor-to-stator
rubbing based on the phase characteristics of the rotor. It has
three advantages: firstly, the method eliminates the rubbing
between the rotor and the stator. Secondly, the control input
need not be activated all the time and can be turned off
when the trajectory enters the attractive domain of the no-
rub motion; then, the response of the rotor is attracted
to no-rub motion automatically. Finally, because the phase
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characteristic is invariant, the control strategy is the same for
various rubs.
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