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The exponentially growing population, with limited resources, has exerted an intense pressure on the agriculture sector. In order
to achieve high productivity the use of pesticide has increased up to many folds. These pesticides contain organophosphorus
(OP) toxic compounds which interfere with the proper functioning of enzyme acetylcholinesterase (AChE) and finally affect the
central nervous system (CNS). So, there is a need for routine, continuous, on spot detection of OP compounds which are the main
limitations associated with conventional analytical methods. AChE based enzymatic biosensors have been reported by researchers
as the most promising tool for analysis of pesticide level to control toxicity and for environment conservation. The present review
summarises AChE based biosensors by discussing their characteristic features in terms of fabrication, detection limit, linearity
range, time of incubation, and storage stability. Use of nanoparticles in recently reported fabrication strategies has improved the
efficiency of biosensors to a great extent making them more reliable and robust.

1. Introduction

At present pesticides play a major role in agriculture. Pes-
ticides have the insecticidal property due to which they are
in great use [1, 2]. But human health and the surroundings
are affected by these pesticides as they contain the toxic
compounds. These toxic compounds are hazardous as they
can accumulate in grains, vegetables, fruits, and so forth,
percolate in soil, and finally lead to water contamination
[3, 4]. The concentration of these toxic compounds in the
environment is increasing day by day with an exponential
rate. Organophosphorus (OP) constitutes one of the impor-
tant classes of toxic compounds which can cause headache,
drowsiness, confusion, depression, irritability, disorientation,
impaired memory and concentration, speech difficulties,
eye pain, abdominal pain, convulsions, respiratory failure,
and serious neurological disorders [5–10]. The EPA lists
organophosphates as very highly toxic to bees, wildlife,
and humans [1]. These OP pesticides inhibit the enzyme
acetylcholinesterase (AChE, EC 3.1.1.7) which is involved in
the proper functioning of the central nervous system (CNS)
of the humans. Due to this inhibition of the enzyme AChE,

acetylcholine (ACh) neurotransmitter accumulates in the
bodywhich interfereswith themuscular responses andfinally
leads to respiratory problems, myocardial malfunctioning,
and even death [11, 12]. The toxicity of different pesticides
depends upon the chemical structure of the pesticides [12,
13]. The repeated low level exposure to OP compounds
leads to the acute effect on the health of humans. The
contamination of soil and food due to these pesticides has
caused a serious concern, so it is necessary to monitor their
increasing concentration in the food products of daily use.
Soil is known to be a natural purifier in which the OP
pesticides along with water interact with the soil particles
and do not contaminate ground water, but by the time some
of the OP pesticides come forward such as organochlorine
pesticides which can even percolate even through the soil
and contaminate both ground and surface water. Many rules
and regulations have been made on the international level
to reduce the contamination of ground and surface water.
Regulatory limits and the guideline levels are also there for
permissible residues in drinking water [14].

It is necessary to develop the methods which are fast,
sensitive, and reliable for the detection of OP pesticides
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Figure 1: Basic principle of electrochemical biosensor.

Thiocholine in oxidised state
Thiocholine in reduced state

Acetylthiocholine

AChE
Electrode (CH3)3NCH2CH2SH+CH3COOH

SCH2CH2N(CH3)3

SCH2CH2N(CH3)3 + 2H+
+ 2e−

(CH3)3NCH2CH2SCOCH3
+

+
+

+

Scheme 1: Reaction involved in generation of electrochemical response biosensor.

in fruits, vegetables, water, and so forth [15]. Conventional
analytical methods to monitor the concentration of these
acute toxic compounds include capillary electrophoresis
[16], colorimetry [17], gas chromatography (GC) [18], mass
spectrometry (MS) [19], thin layer chromatography [20, 21],
and high performance liquid chromatography (HPLC) [22].
The above said methods have some limitations, that is,
sample preparation which is hectic and time consuming;
requiring expensive equipments and trained manpower; less
economical; and so forth. To overcome the above problems,
development of biosensor is being encouraged.They are sim-
ple, sensitive, of low developmental cost, and user friendly; a
normal person can handle it easily.

The present review describes and discusses the use of
AChE biosensors for detection of OP compounds and mea-
surement of toxicity level in different samples.

2. AChE Based Catalysis

AChE belongs to the family of carboxylesterase (EC number
3.1.1.7.). It is serine protease and stabilises level of acetyl-
choline (neurotransmitter) by catalysing the conversion of
acetylcholine to thiocholine. AChE is concentrated at neuro-
muscular junctions and cholinergic brain synapses.When the
enzyme is present in the active form it terminates synaptic
transmission. AChE is highly efficient and catalyses the
breakdownofACh inmicroseconds keeping the synaptic cleft
clear as to avoid the collision of the messages. AChE has two
active subsites, anionic and esteratic subsite. Acetylcholine
mediates messages between the nerves which is responsible
formuscle contraction.WhenACh is released from the nerve
into the synaptic cleft, it got recognised by ACh receptors
present on the postsynaptic membrane which further trans-
mits signal. Along with the ACh receptors AChE is also
present on the postsynaptic membrane which helps in the
termination of the signal transmission by hydrolysing ACh.
On hydrolysis, ACh split into two products one is choline and
the other is acetic-acid. Choline and acetic-acid are recycled
by the body to again form acetylcholine to maintain the
reserves of neurotransmitters so that they can be used by

the body again during the time of need. In the presence of
inhibitor (OP compound), which forms covalent bond with
serine present on the active site of AChE, leads to inactivation
of the enzyme [54, 55], and themuscles involved do not relax,
leading to paralytic conditions. The intensity of inhibition of
AChE is proportional to the concentration of OP compound,
that is, inhibitor, and is also exploited as principle of detection
method for concentration of OP compounds [55–58].

3. Basic Principle of Biosensors

Biosensor comprises basically of three elements, that is, bio-
logical recognition element, transducer, and signal detector
as shown in Figure 1. The biological recognition element
must be extremely specific to the analyte for the accurate
detection of the analyte in different samples. As recognition
element and analyte come in close proximity to each other
the chemical changes take place in the form of the genera-
tion of electroactive species, reduced forms of by-products,
consumption of oxygen, and so forth [59]. These changes are
detected and displayed on controlling system.

3.1. Principle of OP Biosensor Based on Inhibition Mechanism
of AChE. The sensitivity of biosensor relies on the biorecog-
nition layer which catalyses the reaction. The product/by-
product further or itself acts as signal which is directly
or inversely proportional to the analyte concentration. In
case of AChE inhibition based OP biosensors, the signal
generated is inversely proportional to the concentration of
OP compound or, in other terms, we can say that increased
concentration of OP compound leads to weak signals. The
AChE biosensor basically works on the inhibition effect. The
biosensor in which the AChE is used as the biorecognition
element can detect the toxic organophosphates along with
the others such as carbamate pesticides, nerve agents, and
several other natural toxins [60, 61]. Some drugs can also be
detected with the help of such biosensors [62]. If the inhibitor
is not present in the sample then the acetylthiocholine will be
converted into the thiocholine and the acetic-acid. as shown
in Scheme 1. But if the inhibitor is present in the sample
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Figure 2: Principle of AChE inhibition-based OP biosensor.
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Figure 3: Different supports available for fabrication of working electrode.

then the concentration of thiocholine is decreased or no
thiocholine and acetic-acid is produced, in other words it
completely inhibits the conversion as shown in Figure 2 [63].
Under the influence of applied voltage thiocholine is oxidised.
The anodic oxidation current is inversely proportional to
the toxic compound present in the sample and the time of
exposure.

In the beginning, AChE biosensors were not considered
as reliable tools, but with time the advances in fabrication
strategies and methods of enzyme purification and its sta-
bilization have overcome the drawbacks related to accuracy,
sensitivity, and reliability [64].

4. Fabrication of AChE Based OP Biosensor

In AChE biosensor the working electrode is prepared by
attachment of enzyme on different supports. The supports
may be matrices, screen-printed electrodes, semiconductors
such as Quantum dots (QD), nanomaterial, and so forth
[127], as shown in Figure 3. After immobilization of enzyme
onto a particular support, conformational changes take place

which finally affect the sensitivity, stability, response time,
and reproducibility. A variety of methods are available for
immobilization of enzymes including physical adsorption,
physical entrapment, covalent coupling, self-assemblymono-
layer, oriented immobilization, and electropolymerisation.
Physical adsorption includes the formation of weak bonds
such as the Van der Waals forces, and the electrostatic
interactions take place between the enzyme and the support
that has an advantage of retaining the activity of immobilized
enzyme and method is economical. The drawback associated
with this method is the leakage of enzyme [79]. In physical
entrapment, AChE enzyme is confined within the gel, the
matrices, or in the membranes and used for fabrication of
working electrode. This is a one-step procedure which is
carried out at low temperature, is simple and cheap, without
hampering the activity to enzyme. This method also suffers
from leaching of enzyme, nonspecific immobilization, and
lower reproducibility. In covalent coupling, stable covalent
bond is formed between the support and the enzyme that
prevents leaching of enzyme, enzyme is in direct availability
for interaction with the analyte that further leads to quick
response time. But this method involves a high amount of



4 Biochemistry Research International

enzyme usage, is prone to denaturation, is also expensive,
and involves complex procedures [42, 96]. In case of self-
assembled monolayer (SAM) the molecules are organised in
the form of monolayer. These molecules have the head group
and also a tail group having functional groups; head group
has affinity towards the substrate.This layer is easy to prepare,
molecules are present in the ordered manner, and size is also
within the range of nanoscale. Drawbacks of this method are
includes difficulties in reproduction and fouling of electrode
takes place with time due to the weakening of interaction
between the enzyme and the electrode [115, 116]. Oriented
immobilization is among one of the new methods which can
be used. In this method the particular functional groups of
the enzymes are exploited and it is possible to orient the
active site of the enzyme towards the analyte. This technique
requires less quantity of enzyme with specific control over
the orientation [117]. Electropolymerization is also one of the
possiblemethods for the immobilization of theAChE enzyme
in which the electric field is used for the polymerization.

4.1.Membranes Used in Fabrication of OP Biosensor. Inmem-
brane based AChE biosensors the enzyme is immobilized
on the suitable matrices. The membranes which are used
as support for immobilization can be natural or artificial.
The enzyme is confined to the semipermeable membrane
which will allow the passage of the substrate through it.
The sensitivity and the selectivity of the membrane based
biosensors can be enhanced due to the biocompatibility of
the artificial membranes. Different supports have been used
for the immobilization of enzyme (Table 1), such as nylon
and cellulose nitrate [23], glass/sol-gel/polyvinylidene fluo-
ride [24], hybrid mesoporous silica [25], poly-(acrylonitrile-
methylmethacrylate-sodium vinylsulfonate) (PAN) [26, 27],
cellophane [28], poly(2-hydroxyethyl methacrylate) mem-
brane [29], polyvinyl alcohol(PVA)/SbQ [30], polyacry-
lamide [31], bio-immunodyne membrane [118], Si

3
N
4
/Ti

layer [32], pore glass/H+ membrane electrode [33], and
hybond N+ membrane [34]. The artificial membranes are
selective for the different biomolecules, and as they are
highly flexible the response can be enhanced. Membranes
are durable and stable on a wide range of pH. The above
biosensors suffer from the problemofmembrane fouling.The
pores of semipermeable membranes are blocked which may
lead to hindrance in the passage of solute.

4.2. Polymers Used as Immobilization Support. Polymers can
also be used as the support for the enzyme immobilization.
The physical and chemical properties of the polymers vary
in the wide range which can be exploited for the sensor
development [119]. Scince polymer supports are flexible,
biologically compatible and of low cost, they have advantage
over the other supports. They can be used as free standing
film for the biosensor fabrication [120].

4.2.1. Nonconducting Polymer Matrices for Enzyme Immobi-
lization. The nonconducting polymer supports can easily be
prepared in the lab. The variety of the functional groups can

be generated on these supports by the chemical treatment.
The functional groups of interest according to the particular
enzyme can be synthesized on such supports. The life of the
enzyme can also be enhanced by this method as it provides
a microenvironment to the enzyme and can be stored for a
long duration. But there are drawbacks with nonconducting
polymers, being a support it acts as a barrier between electron
and transducer which thus influences the sensitivity of
electrode due to which working of electrode is affected. Some
supports which are used for immobilization of enzymes are
(Table 2)multiwalled carbon nanotubes (MWCNTs)/PAN/Pt
electrode [26], PAN/gold nanoparticles (AuNPs) decorated
Pt electrode [27], mesocellular silica foam (MSF)-PVA/glassy
carbon electrode (GCE) [35], PVA-SbQ polymer decorated
screen-printed electrode (SPE) [36], PVA-SbQ/Pt electrode
[30], polyamidoamine (PAMAM)- Au/carbon nanotubes
(CNTs)/GCE [37],MSF/PVA/GCE [38], nylon net [39], PVA/
azide-unit water pendant (AWP) [121], and CoPC modified
PVA-AWP electrode [40].

4.2.2. Conducting Polymer Matrices Used for Enzyme Immo-
bilization. The conducting polymers are the polymers which
are synthesized by the chemical and the electrochemical
method. The properties of these polymers can easily be
adjusted according to the need such as the thickness of
film, functionalization, conductivity, and so forth. They
can also be used for the enzyme entrapment during elec-
tropolymerization and used in the uniform covering of
the electrode surface having substrate of any shape and
size with the help of the polymer film [122, 123]. Different
supports which are used for immobilization of enzymes are
(Table 3) poly-(acrylamide)/pH electrode [31], polyethylen-
imine (PEI)/GCE [41], PEI/SPE [42], mercaptobenzoth-
iazole/polyaniline (PANI)/Au electrode [43], PANI/CNTs
coatedwith single strandedDNA (ssDNA)/Au electrode [44],
AuNP-polypyrrole (PPy) nanowire/GCE [45], PPy and PANI
copolymer doppedMWCNTs/GCE [46], Silk fibroninmatrix
[47], CS/ALB/GCE [48], PB/GCE [49], GnPs/Chitosan/GCE
[50], polymeric enzyme electrode [51], ZrO

2
/SPE [52], and

Gold (Au) nanoparticles/poly(dimethyldiammonium chlo-
ride) (PDDA) protected Prussian blue (PB) matrix [53].
The conducting polymers suffer from demerits of high cost,
difficult in processing, lack of mechanical stability after
doping, difficult to fabricate, short life span, and so forth.

4.3. Sol-Gel Base AChE Immobilization. Sol-gel is one of
the important supports which can be used for the enzyme
immobilization. The first and foremost important property
of the sol-gel support is that the pore size can be adjusted
according to the need. They are also chemically inert, do not
show swelling in the aqueous medium, and have photochem-
ical and thermal stability. The antibodies and the enzymes
can especially be immobilized and do not allow the leakage
of the enzyme in the medium. Some of the accountable
demerits include denaturation of biomolecules taking place
at high acidic condition and/or high alcohol concentration.
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The protocols used for the sol-gel film formation are not
amenable for coating the curved surfaces of substrates such
as optical fibers; sufficient signals require a high level of
biomolecules in sol-gel thin films but it is not possible in
the case of proteins that are insoluble or aggregate in the
alkoxy silane solution. Sol-gel supports used for immobi-
lization of enzyme (Table 4) are sol-gel/TMOS [65], sol-
gel/glass [66], silica sol-gel (SiSG) [67], TMOS/sol-gel [68,
69], chromoionophore/sol-gel [70], Al

2
O
3
/sol-gel [71], sol-

gel matrix/TCNQ [72], AuNPs-SiSG [73], alumina/sol-gel
[74], sol-gel/bromothymol blue [75], Zn(oxide)/sol-gel [76],
Si/sol-gel [77], and sol-gel/carbon electrode [78].

4.4. Screen Printing Technique. Screen-printing involves the
immobilization of the biological molecules or the biological
receptor in their active form. Due to the binding of the
molecule in the active form, the analytical changes take
place which will affect the sensitivity and the performance
of the sensor developed. The necessary action must be taken
for the enhancement of the selectivity, sensitivity, exposure
time, and so forth. Supports used for immobilization of
enzyme (Table 5) are TMOS/sol-gel/SPE [68], Al

2
O
3
/sol-

gel/SPE [71], sol-gel/TCNQ/modified SPE [72], SPE/TCNQ/
Graphite electrode [79], CoPC/SPE [80], phenylenedi-
amine/carbon/CoPC SPE [81], graphite-epoxy/SPE [82], glu-
taraldehyde vapour/SPE [83], PVA-SbQ polymer/SPE [36],
SWCNT-CoPC/SPE [84]. TCNQ modified graphite [85], Au
electrode [86], screen printed carbon electrode [87], and PET
chip SPE [88]. Screen-printing is unstable, has high cross-
sensitivity towards anion, and limited life span.

4.5. Quantum Dot as Immobilization Support for AChE.
Quantum dots are highly luminescent photostable fluo-
rophore. QDs are the semiconductor particles that have all
the dimensions confined to the nanometre scale [124]. They
have been used in biosensors as they have their great size
dependent properties and are dimensionally similar with
the biological molecules which are used for immobilization
[125, 126]. QDs can even be coupled with the variety of
biological molecules due to which they are important in
the sensing and development of the sensitive sensors. They
suffer from demerits such as large size (10 to 30 nm) and
blinking behaviour if no emission interrupts longer periods
of fluorescence.The supports which are used for the immobi-
lization of the enzymes are (Table 6) supports used for immo-
bilization of enzyme: CdTe QDs/AuNPs/CHIT/GCE [73],
CdTe QDs/Au electrode [89], poly(allylamine hydrochlo-
ride)/CdTe QDs/glass electrode [90], Mn:ZnSe d dots [91],
and CdTE QDs/Au electrode [92].

4.6. Nanomaterial Based AChE Immobilization. To improve
the reliability of electrochemical based technique, researchers
have been exploring the possibilities of new materials for
improving the properties of transducers. Nanoparticles are
proving to be a boom in the field of biosensing due to
their invaluable properties such as large surface area, high

conductivity, good catalytic property, and so forth. The rate
of electron transfer is enhanced to a great extent. They can
be synthesized in the laboratory and even their particle
size can be adjusted according to the need. The carbon
nanotubes are in regular use nowadays such as Single Walled
Carbon Nanotubes (SWCNTs) and Multiwalled Carbon
Nanotubes (MWCNTs). These carbon nanotubes are highly
conductive and have large surface area. Different supports
used for immobilization of enzyme (Table 7) are AuNPs-
CaCO

3
/Au electrode, Iron(Fe) NP/MWCNTs/Au electrode,

FeNP/MWCNTs/indium tin oxide (ITO) electrode, AuNPs/
PB/GCE [93], MWCNTs-Au nanocomposites/GCE [94],
ZrO
2
/CHIT/GCE [95], Au-Pt bimetallic NPs/GCE [96],

AuNPs/GCE [97], AuNPs-MWCNTs/GCE [98], PB/CHIT/
GCE [99], TiO

2
graphane/GCE [100], graphite-nanoplatelet

CHIT composite/GCE [101], calcium carbonate-CHIT com-
posite/GCE [102], CdS-decorated graphene nanocomposite
[103], CHIT-GNPs/Au electrode [92],MWCNTs-CHIT/GCE
[104], AuNPs/Au electrode [105], PbO

2
/TiO
2
/Ti [106], PB-

CHIT/GCE [107], Er-GRO/Nafion [108], SWCNT mod-
ified FGE [109], Au-PtNPs/3-aminopropyltriethoxysilanes
(APTEs)/GCE [110], CNT web modified GCE [111], PAN-
AuNPs [112], CdTe AuNPs Film [113], and SiSG-AuNPs [114].

5. Conclusion and Future Prospects

It is clear from the comprehensive review presented above
that the AChE based OP biosensor is an important research
field, with lots of applications in environmental monitoring,
human health concern, and food industries. With the devel-
opment of the selective biorecognition elements the high
throughput screening of analyte is now possible in a reliable
manner in a fraction of seconds.The large number of samples
can be screened with ease and accuracy. The oxidising and
reducing ability of the biorecognition element has made
electrochemical biosensor the most appropriate tool for the
detection purpose over the other availablemethods [127].The
electrochemical biosensors have the unique ability to convert
the catalytic signal into the quantifiable digital signal using
microfabrication electronics. Nanoparticles are proving to be
most eligible in fabrication of different working electrodes.
The nanomaterials can be easily synthesized in the laboratory
according to the need in respect to their size and dimensions.
The conductivity of nanomaterials is high due to efficient
electron transfer channels developedwith respect to the other
supports used. The self-life of the AChE biosensor can also
be increased by using nanoparticles based electrodes. A vast
variety of working electrodes for the sensor development can
be fabricated for the improved detection of OP compounds in
different samples. The on spot detection is also an important
parameter for the biosensors which is possible due to the
screen-printing technology. Screen-printed biosensors can be
fabricated in miniaturization form for on-site rapid moni-
toring of the analyte. But till now the commercialization of
the biosensors has not been possible due to the high cost
of the enzyme in the market. Less work has been done on
the validation of the enzymatic biosensors with respect to
the real samples. Many interfering compounds are present in
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the sample and can hamper the sensitivity of the biosensor.
The biosensors must be validated to explore the effect of
interfering compounds on the pesticide detection.

Conflict of Interests

The author(s) declare(s) that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Theauthors thank the financial support from theDepartment
of Science & Technology, New Delhi, for providing INSPIRE
fellowship as JRF-P (IF110655) to carry out research work.
Also they are thankful to Department of Bio & Nanotechnol-
ogy, GJUS&T, Hisar and Biosensors & Diagnostics Labora-
tory, Centre for Biotechnology, MDU, Rohtak.

References

[1] A. Mulchandani, W. Chen, P. Mulchandani, J. Wang, and K.
R. Rogers, “Biosensors for direct determination of organophos-
phate pesticides,” Biosensors and Bioelectronics, vol. 16, no. 4-5,
pp. 225–230, 2001.

[2] P. Moris, I. Alexandre, M. Roger, and J. Remacle, “Chemilu-
minescence assays of organophosphorus and carbamate pesti-
cides,” Analytica Chimica Acta, vol. 302, no. 1, pp. 53–59, 1995.

[3] FAO, “Agriculture: towards 2010 document,” in Proceedings of
the C 93/94 Document of 27th Session of the FAO Conference,
Rome, Italy, 1993.

[4] L. Aspelin, Pesticide Industry Sales and Usage, 1992 and
1993 Market Estimates, U.S. Environmental Protection Agency,
Washington, DC, USA, 1994.

[5] C. Tran-Minh, P. C. Pandey, and S. Kumaran, “Studies on
acetylcholine sensor and its analytical application based on the
inhibition of cholinesterase,” Biosensors and Bioelectronics, vol.
5, no. 6, pp. 461–471, 1990.

[6] C. Cremisini, S. Di Sario, J. Mela, R. Pilloton, and G.
Palleschi, “Evaluation of the use of free and immobilised acetyl-
cholinesterase for paraoxon detection with an amperometric
choline oxidase based biosensor,” Analytica Chimica Acta, vol.
311, no. 3, pp. 273–280, 1995.

[7] H. Eyer, D. P. J. Moran, and K. K. Rajah, “Fats in food products,”
Food and Science Technology, vol. 28, p. 162, 1995.

[8] K. Steenland, “Chronic neurological effects of organophosphate
pesticides,” British Medical Journal, vol. 312, no. 7042, pp. 1312–
1313, 1996.

[9] G. A. Jamal, “Neurological syndromes of organophosphorus
compounds,”Adverse Drug Reactions and Toxicological Reviews,
vol. 16, no. 3, pp. 133–170, 1997.

[10] D. E. Ray, “Chronic effects of low level exposure to
anticholinesterases—a mechanistic review,” Toxicology Letters,
vol. 102-103, pp. 527–533, 1998.

[11] W. J. Donarski, D. P. Dumas, D. P. Heitmeyer, V. E. Lewis, and F.
M. Raushel, “Structure-activity relationships in the hydrolysis
of substrates by the phosphotriesterase from Pseudomonas
diminuta,” Biochemistry, vol. 28, no. 11, pp. 4650–4655, 1989.

[12] S. Chapalamadugu and G. R. Chaudhry, “Microbiological and
biotechnological aspects of metabolism of carbamates and

organophosphates,” Critical Reviews in Biotechnology, vol. 12,
no. 5-6, pp. 357–389, 1992.

[13] T. S. S. Dikshith, “Pesticides,” in Toxicology of Pesticides in
Animals, T. S. S. Dikshith, Ed., pp. 1–39, CRC Press, Boston,
Mass, USA, 1991.

[14] E. Jover and J. Maria Bayona, “Trace level determination of
organochlorine, organophosphorus and pyrethroid pesticides
in lanolin using gel permeation chromatography followed by
dual gas chromatography and gas chromatography-negative
chemical ionization mass spectrometric confirmation,” Journal
of Chromatography A, vol. 950, no. 1-2, pp. 213–220, 2002.

[15] J. Zhang, A. Luo, P. Liu, S. Wei, G. Wang, and S. Wei,
“Detection of organophosphorus pesticides using potentiomet-
ric enzymatic membrane biosensor based on methylcellulose
immobilization,” Analytical Sciences, vol. 25, no. 4, pp. 511–515,
2009.
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