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The boundary layer equation of the pseudoplastic fluid over a flat plate is considered. This equation is a boundary value problem
(BVP) with the high nonlinearity and a boundary condition at infinity. To solve such problems, powerful numerical techniques are
usually used. Here, through using differential transform method (DTM), the BVP is replaced by two initial value problems (IVP)
and then multi-step differential transform method (MDTM) is applied to solve them. The differential equation and its boundary
conditions are transformed to a set of algebraic equations, and the Taylor series of solution is calculated in every sub domain. In
this solution, there is no need for restrictive assumptions or linearization. Finally, DTM results are compared with the numerical
solution of the problem, and a good accuracy of the proposed method is observed.

1. Introduction

Boundary layer equation of the Newtonian fluid over a flat
plate is one of the classic issues of mechanical engineering.
Because of high level of application of non-Newtonian
fluids in industry, the boundary layer equation of the non-
Newtonian fluids is being noted by engineers. On the other
hand, nonlinearity of these equations attracted the interest
of mathematicians to evaluate the power and accuracy of
the approximate and numerical methods. One of the most
significant non Newtonian models is the power law one. In
this model, shear thinning or shear thickening property of
the fluid is considered and the shear stress has a nonlinear
relationwith shear rate, while shear stress has a linear relation
with shear rate for the Newtonian fluid.

As we pointed out above, boundary layer problems are
among the nonlinear ones and most of them do not have
an exact analytical solution. So, numerical and approximate
methods are used by researchers to solve such equations.
The most known numerical method used to solve boundary
layer problems is the shooting one. Based on this method,
boundary value problem is transformed to an initial value
problemwith unknown initial values. After that, the problem

is replaced with a system of first-order ordinary differen-
tial equations and usually is solved through Runge-Kutta
method. Shooting method is appropriate to solve many
boundary value problems, but this one is not useful for
solving some BVPs because of the instability of the solution.

Approximate techniques like decomposition method
(DM), homotopy analysis method (HAM), homotopy per-
turbation method (HPM), and variational iteration method
(VIM) are good substitutes for numerical methods. During
the recent years, boundary layer problems have been solved
using some of these methods, such as HAM [1–9], HPM
[10–14], VIM [15–17], and DM [18–21]. In most of the
researches, somemodifications were introduced to overcome
the nonlinearity and the boundary condition at infinity.

Differential transform method (DTM) is also one of the
other approximate methods to solve differential equations.
Here, DTM and multi-step DTM are used to solve the
boundary layer equation of the pseudoplastic fluid. This
method was introduced by Zhou [22] to solve initial value
problems in analysis of the electrical circuits. After that,
DTM is applied to differential algebraic equation [23, 24],
partial differential equation [25–30], integral equation [31–
33], ordinary differential equation [34–38], and fractional
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Table 1: The properties of the DTM and multi-step DTM.

Original function DTM Multi-step DTM
𝑓 (𝑡) = 𝑔 (𝑡) ± 𝑠 (𝑡) 𝐹 (𝑘) = 𝐺 (𝑘) ± 𝑆 (𝑘) 𝐹 (𝑘) = 𝐺 (𝑘) ± 𝑆 (𝑘)

𝑓 (𝑡) = 𝑐𝑔 (𝑡) 𝐹 (𝑘) = 𝑐𝐺 (𝑘) 𝐹 (𝑘) = 𝑐𝐺 (𝑘)

f (t) =
dng (t)
dtn

F (k) =
(k + n)!

k!
G (k + n) F (k) =

(k + n)!

Hnk!
G (k + n)

𝑓 (𝑡) = 𝑔 (𝑡) 𝑠 (𝑡) 𝐹 (𝑘) =
𝑘

∑
𝑟=0

𝐺 (𝑟) 𝑆 (𝑘 − 𝑟) 𝐹 (𝑘) =
𝑘

∑
𝑟=0

𝐺 (𝑟) 𝑆 (𝑘 − 𝑟)

differential equation [39–42]. The method is an iterative
technique to find the Taylor series solution of the problem.
There is no need for the high calculation cost to determine
the coefficients of Taylor series, which is the reverse of the
standard Taylor series method.

This paper is organized as follows. In Section 2, DTM and
multi-step DTM are introduced. In Section 3, the boundary
layer equation of the pseudoplastic fluid is extracted from
continuity and momentum equations as presented in [43]. In
Section 4, the problem is solved and the results are illustrated
as some figures and tables.

2. Differential Transform Method

The differential transform is defined as follows:

𝑋 (𝑘) =
1

𝑘!
[

𝑑𝑘𝑥 (𝑡)

𝑑𝑡𝑘
]
𝑡=𝑡0

, (1)

where 𝑥(𝑡) is an arbitrary function and 𝑋(𝑘) is the trans-
formed function. The inverse transformation is as follows:

𝑥 (𝑡) =
∞

∑
𝑘=0

𝑋 (𝑘) (𝑡 − 𝑡0)
𝑘
. (2)

Substituting (1) into (2), we have

𝑥 (𝑡) =
∞

∑
𝑘=0

(𝑡 − 𝑡0)
𝑘

𝑘!
[

𝑑𝑘𝑥 (𝑡)

𝑑𝑡𝑘
]
𝑡=𝑡0

. (3)

The function𝑥(𝑡) is usually considered as a series with limited
terms and (2) can be rewritten as

𝑥 (𝑡) ≈
𝑚

∑
𝑘=0

𝑋 (𝑘) (𝑡 − 𝑡0)
𝑘
, (4)

where𝑚 represents the number of Taylor series’ components.
Usually, through elevating this value, we can increase the
accuracy of the solution.

Although the DTM series solution is a good approximate
of the exact solution, but this series is diverged for greater
areas. There are two ways to overcome this problem. One is
the using pade approximate technique. Usually, Pade approx-
imate gives us more exact information about the behavior of
the solution (see [44]). Another one is to usemulti-stepDTM.
Based on this one, solution domain is divided to some sub
domains.

To solve a differential equation in the domain [0, 𝑇] using
multi-step DTM, this domain is divided to 𝑁 sections. We

suppose the sub domains are equal and length of each sub
domain is𝐻 = 𝑇/𝑁. So, there is a separate function for every
sub domain as follows:

𝑥 (𝑡) =

{{{{{{{{
{{{{{{{{
{

𝑥1 (𝑡) , 𝑡 ∈ [𝑡1, 𝑡2]
...

𝑥𝑖 (𝑡) , 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1]
...

𝑥𝑁 (𝑡) , 𝑡 ∈ [𝑡𝑁, 𝑡𝑁+1] ,

(5)

where 𝑡𝑖 = (𝑖 − 1)𝐻. Multi-step DTM for every sub domain is
defined as

𝑋𝑖 (𝑘) =
𝐻𝑘

𝑘!
[

𝑑𝑘𝑥𝑖 (𝑡)

𝑑𝑡𝑘
]
𝑡=𝑡𝑖

. (6)

The inverse multi-step DTM is

𝑥𝑖 (𝑡) =
∞

∑
𝑘=0

𝑋𝑖 (𝑘) (
𝑡 − 𝑡𝑖

𝐻
)
𝑘

. (7)

Some of the properties of DTM and multi-step DTM are
shown in Table 1. These properties are extracted from (1) and
(6).

3. Mathematical Formulation

Two-dimensional boundary layer equations for an incom-
pressible fluid are

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
=

1

𝜌

𝜕𝜏

𝜕𝑌
(8)

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0, (9)

where 𝜌 is the fluid density, 𝜏 is the shear stress, and 𝑈 and 𝑉
are the velocities in direction of 𝑥 and 𝑦, respectively. For the
non-Newtonian power-law fluid, the shear stress is calculated
through the following relation:

𝜏 = 𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑈

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1 𝜕𝑈

𝜕𝑌
, (10)

where𝑚 and 𝑛 are the flow consistency and power-law index,
respectively.
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Here, the following dimensionless parameters are used:

Re =
𝜌𝑈2−𝑛
∞

𝐿𝑛

𝑚
, 𝑥 =

𝑋

𝐿
, 𝑦 =

𝑌

𝐿
Re1/(𝑛+1),

𝑢 =
𝑈

𝑈∞
, V =

𝑉

𝑈∞
Re1/(𝑛+1),

(11)

where 𝐿 is the plate length, 𝑈∞ is the far field velocity, and Re
is generalized Reynolds number.

Combining (8), (10), and (11), the dimensionless momen-
tum equation can be obtained:

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
=

𝜕

𝜕𝑦
(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1 𝜕𝑢

𝜕𝑦
) (12)

with the boundary conditions

𝑢 (𝑥, 0) = V (𝑥, 0) = 0, 𝑢 (𝑥, ∞) = 1, 𝑢 (0, 𝑦) = 1.
(13)

Similarity variable and stream function for the problem is
defined as [45]

𝜂 =
𝑦

(𝑛 (𝑛 + 1) 𝑥)1/(𝑛+1)

Ψ = (𝑛 (𝑛 + 1) 𝑥)
1/(𝑛+1)𝑓 (𝜂) .

(14)

Regarding (14), the velocities can be obtained as a function of
the similarity variable:

𝑢 =
𝜕Ψ

𝜕𝑦
= 𝑓󸀠 (𝜂)

V = −
𝜕Ψ

𝜕𝑥
=

1

𝑛 + 1
[

𝑛 (𝑛 + 1)

𝑥𝑛
]
1/(𝑛+1)

(𝜂𝑓󸀠 (𝜂) − 𝑓 (𝜂)) .

(15)

Substituting (15) in (12), we have

(
󵄨󵄨󵄨󵄨󵄨𝑓
󸀠󸀠󵄨󵄨󵄨󵄨󵄨
𝑛−1

𝑓󸀠󸀠)
󸀠

+ 𝑛𝑓𝑓󸀠󸀠 = 0. (16)

Equation (16) is the boundary layer equation of the power-law
fluid as a function of index 𝑛. For pseudoplastic fluid (𝑛 < 1)
the value of the 𝑓󸀠󸀠(𝜂) is more than zero [43, 45–48]. So, (16)
can be simplified as

𝑓󸀠󸀠󸀠 (𝜂) + 𝑓 (𝜂) (𝑓󸀠󸀠 (𝜂))
2−𝑛

= 0 for 𝑛 ≤ 1,

𝑓 (0) = 0, 𝑓󸀠 (0) = 0, 𝑓󸀠 (∞) = 1.

(17)

4. Solution of the Problem

In this section, we try to solve (17) using DTM and multi-
step DTM. The solution consists of two stages; first through
mathematical relations and applying DTM, the value of
𝑓󸀠󸀠(0) is found. After that, boundary layer equation of the
pseudoplastic fluid is solved as an initial value problem (IVP)
using multi-step DTM.

4.1. Applying DTM (Obtaining 𝑓󸀠󸀠(0)). The BVP (17) can be
transformed to an initial value problem with the replacement
of the unknown initial condition 𝑓󸀠󸀠(0) = 𝜆 instead of the
boundary condition at infinity 𝑓󸀠(∞) = 1:

𝑓󸀠󸀠󸀠 (𝜂) + 𝑓 (𝜂) 𝑠 (𝜂) = 0 for 𝑛 ≤ 1

𝑓 (0) = 0, 𝑓󸀠 (0) = 0, 𝑓󸀠󸀠 (0) = 𝜆,
(18)

where

𝑠 (𝜂) = (𝑓󸀠󸀠 (𝜂))
2−𝑛

. (19)

By applying the DTM on (18) at 𝜂 = 0, the recursive relation
is derived:

𝐹 (𝑘 + 3) =
−1

(𝑘 + 1) (𝑘 + 2) (𝑘 + 3)

𝑘

∑
𝑟=0

𝐹 (𝑟) 𝑆 (𝑘 − 𝑟)

𝐹 (0) = 0, 𝐹 (1) = 0, 𝐹 (2) =
𝜆

2
.

(20)

Regarding (19),

𝑠󸀠 (𝜂) 𝑓󸀠󸀠 (𝜂) = (2 − 𝑛) 𝑓󸀠󸀠󸀠 (𝜂) 𝑠 (𝜂) . (21)

Taking differential transform on (21), we have

𝑘

∑
𝑟=0

(𝑟 + 1) 𝑆 (𝑟 + 1) (𝑘 − 𝑟 + 1) (𝑘 − 𝑟 + 2) 𝐹 (𝑘 − 𝑟 + 2)

= (2 − 𝑛)
𝑘

∑
𝑟=0

(𝑟 + 1) (𝑟 + 2) (𝑟 + 3) 𝐹 (𝑟 + 3) 𝑆 (𝑘 − 𝑟) .

(22)

From (19), the value of 𝑆(0) can be obtained:

𝑆 (0) = 𝑠 (0) = (𝑓󸀠󸀠 (0))
2−𝑛

= 𝜆2−𝑛. (23)

Combining (20), (22), and (23), the coefficients of the Taylor
series solution of (18) can be calculated:

𝐹 (0) = 0, 𝐹 (1) = 0, 𝐹 (2) =
𝜆

2
,

𝐹 (3) = 0, 𝐹 (4) = 0, 𝐹 (5) =
−1

120
𝜆3−𝑛,

𝐹 (6) = 0, 𝐹 (7) = 0,

𝐹 (8) =
1

1920
𝜆5−2𝑛 −

1

4032
𝜆5−2𝑛𝑛,

𝐹 (9) = 0, 𝐹 (10) = 0,

𝐹 (11) =
−89

1900800
𝜆7−3𝑛 +

1027

19958400
𝜆7−3𝑛𝑛 −

1

71280
𝜆7−3𝑛𝑛2,

...
(24)
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Now, consider a similar equation (18) in which 𝜆 = 1:

𝑔󸀠󸀠󸀠 (𝜂) + 𝑔 (𝜂) (𝑔󸀠󸀠 (𝜂))
2−𝑛

= 0 for 𝑛 ≤ 1

𝑔 (0) = 0, 𝑔󸀠 (0) = 0, 𝑔󸀠󸀠 (0) = 1.

(25)

In the same manner, the coefficients 𝐺(𝑘) are

𝐺 (0) = 0, 𝐺 (1) = 0, 𝐺 (2) =
1

2
,

𝐺 (3) = 0, 𝐺 (4) = 0, 𝐺 (5) =
−1

120
,

𝐺 (6) = 0, 𝐺 (7) = 0, 𝐺 (8) =
1

1920
−

1

4032
𝑛,

𝐺 (9) = 0, 𝐺 (10) = 0,

𝐺 (11) =
−89

1900800
+

1027

19958400
𝑛 −

1

71280
𝑛2,

...
(26)

Substituting (24) and (26) in (2), the 𝑓(𝜂) and 𝑔(𝜂) are
obtained. These functions have a relation as follows:

𝑓 (𝜂) = 𝜆𝑞𝑔 (𝜆𝑝𝜂) , 𝑝 =
2 − 𝑛

3
, 𝑞 =

2𝑛 − 1

3
. (27)

For 𝑛 = 1, both values of 𝑝 and 𝑞are 1/3 for the Blasius
equation. From (27), we have

𝑓󸀠 (𝜂) = 𝜆𝑞+𝑝𝑔󸀠 (𝜆𝑝𝜂) 󳨀→ 𝑓󸀠 (∞) = 𝜆𝑞+𝑝𝑔󸀠 (∞) . (28)

Regarding (28) and the boundary condition at infinity in (17),
the value of 𝜆 can be obtained:

𝜆 = (
1

𝑔󸀠 (∞)
)
3/(1+𝑛)

. (29)

4.2. Applying Multi-Step DTM (Solution of IVPs). As was
noted, multi-step DTM usually is used for solving problems
in which Taylor series is diverged in the solution domain.
This technique was already used to solve engineering and
computational problems [49–57].

To solve boundary layer problems, the domain [0, ∞)
is replaced by [0, 𝜂∞). But 𝜂∞ should be great enough that
the solution is not to be dependent on. The solution domain
should be divided to 𝑁 equal parts (𝐻 = 𝜂∞/𝑁). So, we have

𝑔󸀠󸀠󸀠
𝑖

(𝜂𝑖) + 𝑔𝑖 (𝜂𝑖) 𝑠𝑖 (𝜂𝑖) = 0,

(𝑖 − 1) 𝐻 ≤ 𝜂𝑖 < 𝑖𝐻, for 1 ≤ 𝑖 ≤ 𝑁,
(30)

where

𝑠𝑖 (𝜂) = (𝑔󸀠󸀠
𝑖

(𝜂))
2−𝑛

. (31)

Applying multi-step DTM on (30) and (31), we have

𝐺𝑖 (𝑘 + 3) =
−𝐻3

(𝑘 + 1) (𝑘 + 2) (𝑘 + 3)

𝑘

∑
𝑟=0

𝐺𝑖 (𝑟) 𝑆𝑖 (𝑘 − 𝑟) ,

for 1 ≤ 𝑖 ≤ 𝑁

𝑘

∑
𝑟=0

(𝑟 + 1)

𝐻
𝑆𝑖 (𝑟 + 1)

(𝑘 − 𝑟 + 1) (𝑘 − 𝑟 + 2)

𝐻2
𝐺𝑖 (𝑘 − 𝑟 + 2)

= (2 − 𝑛)
𝑘

∑
𝑟=0

(𝑟 + 1) (𝑟 + 2) (𝑟 + 3)

𝐻3
𝐺𝑖 (𝑟 + 3) 𝑆𝑖 (𝑘 − 𝑟) ,

for 1 ≤ 𝑖 ≤ 𝑁.

(32)

So

𝑆𝑖 (1) =
2 − 𝑛

𝐺𝑖 (2)
[3𝐺𝑖 (3) 𝑆𝑖 (0)] . (33)

And for 𝑘 ≥ 1

𝑆𝑖 (𝑘 + 1)

=
1

2 (𝑘 + 1) 𝐺𝑖 (2)
[ −
𝑘−1

∑
𝑟=0

(𝑟 + 1) 𝑆𝑖 (𝑟 + 1) (𝑘 − 𝑟 + 1)

× (𝑘 − 𝑟 + 2) 𝐺𝑖 (𝑘 − 𝑟 + 2)

+ (2 − 𝑛)
𝑘

∑
𝑟=0

(𝑟 + 1) (𝑟 + 2) (𝑟 + 3) 𝐺𝑖

× (𝑟 + 3) 𝑆𝑖 (𝑘 − 𝑟) ] .

(34)

The initial conditions of the problem are considered for first
sub domain (𝑖 = 1). Regarding (6), (25), and (31), initial
conditions transformed as follows:

𝐺1 (0) = 𝑔1 (0) = 0

𝐺1 (1) = 𝐻𝑔󸀠
1

(0) = 0

𝐺1 (2) =
𝐻2

2
𝑔󸀠󸀠
1

(0) =
𝐻2

2

𝑆1 (0) = 𝑠1 (0) = (𝑔󸀠󸀠
1

(0))
2−𝑛

= 1.

(35)

Theboundary conditions of each sub domain are the continu-
ity of the 𝑔(𝜂𝑖), 𝑔

󸀠(𝜂𝑖), and 𝑔󸀠󸀠(𝜂𝑖).These boundary conditions
can be obtained from (7):

𝑔𝑖 (𝜂𝑖+1) =
𝑚

∑
𝑘=0

𝐺𝑖 (𝑘)

𝑔𝑖+1 (𝜂𝑖+1) = 𝐺𝑖+1 (0)

󳨀→ 𝐺𝑖+1 (0) =
𝑚

∑
𝑘=0

𝐺𝑖 (𝑘)

(36)
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Table 2: Comparison of the DTM results, numerical solution, and
results of Lemieux et al. [43].

DTM Numerical Lemieux et al. [43]
𝑓󸀠󸀠(0) 𝑓󸀠󸀠(0) 𝑓󸀠󸀠(0)

𝑛 = 0.1 0.1091 0.1140 0.1085
𝑛 = 0.2 0.1472 0.1493 0.1470
𝑛 = 0.3 0.1881 0.1889 0.1882
𝑛 = 0.4 0.2306 0.2308 0.2307
𝑛 = 0.5 0.2734 0.2734 0.2734
𝑛 = 0.6 0.3156 0.3157 0.3156
𝑛 = 0.7 0.3567 0.3567 0.3567
𝑛 = 0.8 0.3962 0.3962 0.3962
𝑛 = 0.9 0.4339 0.4339 0.4339
𝑛 = 1 0.4696 0.4696 0.4696

𝑔󸀠
𝑖
(𝜂𝑖+1) =

𝑚

∑
𝑘=1

𝑘

𝐻
𝐺𝑖 (𝑘)

𝑔󸀠
𝑖+1

(𝜂𝑖+1) =
𝐺𝑖+1 (1)

𝐻

󳨀→ 𝐺𝑖+1 (1) =
𝑚

∑
𝑘=1

𝑘𝐺𝑖 (𝑘)

𝑔󸀠󸀠
𝑖

(𝜂𝑖+1) =
𝑚

∑
𝑘=2

𝑘 (𝑘 − 1)

𝐻2
𝐺𝑖 (𝑘)

𝑔󸀠󸀠
𝑖+1

(𝜂𝑖+1) =
2

𝐻2
𝐺𝑖+1 (2)

󳨀→ 𝐺𝑖+1 (2) =
1

2

𝑚

∑
𝑘=2

𝑘 (𝑘 − 1) 𝐺𝑖 (𝑘) .

(37)

And we have for 𝑆

𝑆𝑖+1 (0) = 𝑠𝑖+1 (𝜂𝑖+1) = (𝑔󸀠󸀠
𝑖+1

(𝜂𝑖+1))
2−𝑛

= (
𝑚

∑
𝑘=2

𝑘 (𝑘 − 1)

𝐻2
𝐺𝑖 (𝑘))

2−𝑛

.

(38)

The value of the 𝑔󸀠(𝜂∞) can be calculated by differentiating
from (7):

𝑔󸀠 (∞) ≃ 𝑔󸀠 (𝜂∞) = 𝑔󸀠
𝑁

(𝜂𝑁+1) =
𝑚

∑
𝑘=1

𝑘

𝐻
𝐺𝑁 (𝑘) . (39)

The unknown parameter (𝜆) is calculated from (29). Now,
(18) is solved with a similar process like (25) using multi-step
DTM. The only difference is that the condition 𝑓󸀠󸀠(0) = 𝜆 is
replaced by the condition 𝑔󸀠󸀠(0) = 1.

In Figure 1 𝑓󸀠(𝜂) is illustrated for different values of 𝑛 and
comparedwith the numerical solution and results of Lemieux
et al. [43]. The numerical solution of the problem is done by
the MATLAB software. Figures 2 and 3 show the variation of
𝑓(𝜂) and 𝑓󸀠󸀠(𝜂), respectively. The most important step of this
scheme is to choose the appreciate finite value of 𝜂∞. Thus
to estimate this value, we start with an initial guess for 𝜂∞
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Figure 1: Variation of 𝑓󸀠(𝜂) and comparison with the numerical
solution and results of Lemieux et al. [43].
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Figure 2: Variation of 𝑓(𝜂) for different values of 𝑛.
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Figure 3: Variation of 𝑓󸀠󸀠(𝜂) for different values of 𝑛.
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Table 3: The solution of 𝑓(𝜂) for 𝑛 = 0.7 when 𝜂∞ = 10 and 𝑁 = 10.

Approximate solution
0 ≤ 𝜂 < 1 𝑓 (𝜂) = 0.1793𝜂2 − 0.0008𝜂5 + 0.0000𝜂8 + ⋅ ⋅ ⋅ ,
1 ≤ 𝜂 < 2 𝑓 (𝜂) = 0.1784 + 0.3546 (𝜂 − 1) + 0.1716(𝜂 − 1)

2
− 0.0074(𝜂 − 1)

3
− 0.0033(𝜂 − 1)

4
+ ⋅ ⋅ ⋅ ,

2 ≤ 𝜂 < 3 𝑓 (𝜂) = 0.6937 + 0.6617 (𝜂 − 2) + 0.1290(𝜂 − 2)
2

− 0.0197(𝜂 − 2)
3

− 0.0018(𝜂 − 2)
4

+ ⋅ ⋅ ⋅ ,
3 ≤ 𝜂 < 4 𝑓 (𝜂) = 1.4637 + 0.8577 (𝜂 − 3) + 0.0679(𝜂 − 3)

2
− 0.0182(𝜂 − 3)

3
− 0.0021(𝜂 − 3)

4
+ ⋅ ⋅ ⋅ ,

4 ≤ 𝜂 < 5 𝑓 (𝜂) = 2.3733 + 0.9481 (𝜂 − 4) + 0.0272(𝜂 − 4)
2

− 0.0090(𝜂 − 4)
3

− 0.0020(𝜂 − 4)
4

+ ⋅ ⋅ ⋅ ,
5 ≤ 𝜂 < 6 𝑓 (𝜂) = 3.3416 + 0.9824 (𝜂 − 5) + 0.0098(𝜂 − 5)

2
− 0.0033(𝜂 − 5)

3
+ 0.0009(𝜂 − 5)

4
+ ⋅ ⋅ ⋅ ,

6 ≤ 𝜂 < 7 𝑓 (𝜂) = 4.3312 + 0.9948 (𝜂 − 6) + 0.0036(𝜂 − 6)
2

− 0.0012(𝜂 − 6)
3

+ 0.0003(𝜂 − 6)
4

+ ⋅ ⋅ ⋅ ,
7 ≤ 𝜂 < 8 𝑓 (𝜂) = 5.3286 + 0.9993 (𝜂 − 7) + 0.0014(𝜂 − 7)

2
− 0.0004(𝜂 − 7)

3
+ 0.0001(𝜂 − 7)

4
+ ⋅ ⋅ ⋅ ,

8 ≤ 𝜂 < 9 𝑓 (𝜂) = 6.2390 + 1.0012 (𝜂 − 8) + 0.0006(𝜂 − 8)
2

− 0.0002(𝜂 − 8)
3

+ 0.0000(𝜂 − 8)
4

+ ⋅ ⋅ ⋅ ,
9 ≤ 𝜂 ≤ 10 𝑓 (𝜂) = 7.3307 + 1.0020 (𝜂 − 9) + 0.0003(𝜂 − 9)

2
− 0.0001(𝜂 − 9)

3
+ 0.0000(𝜂 − 9)

4
+ ⋅ ⋅ ⋅ .

and solve the problem. The solution process is repeated with
another larger value of 𝜂∞ until the values of𝑓󸀠󸀠(0) and 𝑔󸀠󸀠(0)
differ regarding the desired accuracy.

In Table 2 the values of the 𝑓󸀠󸀠(0) = 𝜆 are compared with
the numerical solution and results of Lemieux et al. [43]. The
approximate solution of the problem is presented in Table 3
for a special case (𝑛 = 0.7).

5. Conclusion

In this paper, the boundary layer equation of the pseudoplas-
tic fluid over a flat plate was extracted from the boundary
layer theory as presented in [43].This equation is a boundary
value problem with high nonlinearity and boundary condi-
tion at infinity. Using DTM, the BVP transformed to a pair
of initial value problems andmulti-step DTM is used to solve
them.

Using themethod, the differential equation and boundary
conditions are transformed into a recurrence set of equations.
Finally, the coefficients of power series are obtained based
on the solution of this set of equations. The results validated
with the numerical solution, and a good accuracy is observed.
The proposed method overcame nonlinearity without using
linearization or restrictive assumptions.
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