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Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced
thermoelasticmedia.The theory of generalized surfacewaves has been firstly developed and then it has been employed to investigate
particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves
velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic
theories.The wave velocity equations have been obtained in different cases.The numerical results are given for equation of coupled
thermoelastic theory (C-T), Lord-Shulman theory (L-S), Green-Lindsay theory (G-L), and the linearized (G-N) theory of type II.
Comparisonwasmadewith the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced
of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate
that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.

1. Introduction

A reinforced concrete member will be designed for all condi-
tions of stress thatmay occur accordancewith the principle of
mechanics. Fibre-reinforced composites are used in a variety
of structures due to their low weight and high strength.
The characteristic property of a reinforced composite is that
its components act together as single anisotropic units as
long as they remain in the elastic condition. Investigation
of interaction between magnetic field, stress, and strain in a
thermoelastic solid is very important due to its many appli-
cations in the field of geophysics, plasma physics, and related
topics, especially in the nuclear field, where the extremely
high temperature and temperature gradients, as well as the
magnetic fields originating inside nuclear reactors, influence
their design. Recently, more attention has been studied the
dynamical problem of propagation of surface waves in a
homogeneous and non-homogeneous elastic and thermo-
plastic media because of its utilitarian aspects in earthquake,
engineering, and seismology on account of the occurrence of
nonhomogeneities in the Earth’s crust, as the Earth is made

up of different layers. Abd-Alla et al. [1] investigated propaga-
tion of Rayleigh waves in generalized magnetothermoelastic
orthotropic material under initial stress and gravity field.
Thermal stresses in an infinite circular cylinder have been
investigated by Abd-Alla et al. [2]. Abd-Alla and Mahmoud
[3] studied the magnetothermoelastic problem in rotational
nonhomogeneous orthotropic hollow cylinder under the
hyperbolic heat conduction model. Abd-Alla and Ahmed [4]
investigated the Rayleigh waves in an orthotropic thermoe-
lastic medium under gravity field and initial stress. Rayleigh
waves in a magnetoelastic half-space of orthotropic material
under the influence of initial stress and gravity field have been
investigated by Abd-Alla et al. [5]. Elnaggar and Abd-Alla [6]
studied Rayleigh waves in magneto-thermomicroelastic half-
space under initial stress. Abd-Alla and Ahmed [7] discussed
Rayleigh waves in an orthotropic thermoelastic medium
under gravity field and initial stress. Effect of rotation and
initial stress on an infinite generalized magnetothermoelastic
diffusion body with a spherical cavity has been investigated
by Abd-Alla and Abo-Dahab [8]. Wu and Chai [9] studied
propagation of surface waves in anisotropic solids: theoretical
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calculation and experiment. Wu and Liu [10] investigated
the measurement of anisotropic elastic constants of fibre-
reinforced composite plate by using ultrasonic bulk wave
and laser generated Lamb wave. The group velocity variation
of Lamb wave in Fibre-reinforced composite plate studied
by Rhee et al. [11]. Fu and Zhang [12] investigated the
continuum-mechanical modeling of kink-band formation in
fibre-reinforced composites. Espinosa et al. [13] discussed
the modeling impact induced delamination of woven Fibre-
reinforced composites with contact/cohesive laws. Wave
propagation inmaterials reinforcedwith bi-directional Fibres
presented by Weitsman and Benveniste [14]. Weitsman [15]
introduced the wave propagation and energy scattering in
materials reinforced by inextensible Fibres. Dai and Wang
[16] considered the stress wave propagation in piezoelectric
Fibre-reinforced laminated composites subjected to thermal
shock. Ohyoshi [17] studied the propagation of Rayleigh
waves along an obliquely cut surface in a directional Fibre-
reinforced composite. Rogerson [18] investigated the pene-
tration of impact waves in a six-ply fibre composite laminate.
Weitsrian [19] studied the reflection of harmonic waves in
fibre-reinforced materials. Huang et al. [20] investigated the
effect of fibre-matrix interphase on wave propagation along,
and scattering from,multilayered fibres in composites. Fu and
Zhang [21] discussed the continuum-mechanical modeling
of kink-band formation in fibre-reinforced composites. B.
Singh and S. J. Singh [22] investigated the reflection of plane
waves at the free surface of a fibre-reinforced elastic half-
space. Sengupta and Nath [23] studied the surface waves
in fibre-reinforced anisotropic elastic media. Samal and
Chattaraj [24] studied the surface wave propagation in Fibre-
reinforced anisotropic elastic layer between liquid saturated
porous half-space and uniform liquid layer. Chatopadhyay et
al. [25] investigated the reflection of quasi-P and quasi-SV
waves at the free and rigid boundaries of a fibre-reinforced
medium. Singh [26] discussed the wave propagation in an
incompressible transversely isotropic fibre-reinforced elastic
media. Singh [27] studied the wave propagation in thermally
conducting linear fibre-reinforced composite materials. Abd-
Alla et al. [28] studied the thermal stresses in a nonhomoge-
neous orthotropic elastic multilayered cylinder.

Recently, Othman and Lotfy [29] investigated the effect
of magnetic field and rotation of the 2D problem of a fibre-
reinforced thermoelastic under three theories with influence
of gravity. Abouelregal and Abo-Dahab [30] discuss the
dual phase lag model on magnetothermoelasticity infinite
nonhomogeneous solid having a spherical cavity. Abd-Alla
and Abo-Dahab [31] investigated the effect of magnetic field
on poroelastic bone model for internal remodeling. Abd-
Alla et al. [32, 33] studied the Rayleigh waves in generalized
magneto thermoviscoelastic granular medium under the
influence of rotation, gravity field, and initial stress and mag-
netothermoelastic half-space of a homogeneous orthotropic
material under the effect of the rotation, initial stress and
gravity field. Abo-Dahab [34] investigated propagation of
Stoneley waves inmagnetothermoelasticmaterials with voids
and two relaxation times.

The present investigation is devoted to study the propa-
gation of surface waves in fibre-reinforced anisotropic

thermoelastic medium subjected to gravity field and relax-
ation times leading to particular cases such as Rayleighwaves,
Love waves and Stoneley waves. The surface wave velocity
and attenuation coefficient are obtained in the physical
domain by using the harmonic vibrations. The effects of the
gravity, relaxation times, and parameters for fibre-reinforced
of the material medium on surface waves are studied
simultaneously. The analytical expressions for surface waves
velocity and attenuation coefficient are represented graph-
ically. Numerical results for the surface waves velocity and
attenuation coefficient are given and illustrated graphically
in the presence and absence of the gravity field and rotation.

2. Formulation of the Problem

We consider homogeneous thermally conducting trans-
versely two fibre-reinforced media. Let 𝑀

1
and 𝑀

2
be

two fibre-reinforced elastic thermoelastic semi-infinite solid
media. They are perfectly welded in contact to prevent any
relative motion or sliding before and after the disturbances
and that the continuity of displacement, stress, and so for
the hold good across the common boundary surface. Further
the mechanical properties of 𝑀

1
are different from those of

𝑀
2
. These media extend to an infinite great distance from

the origin and are separated by a plane horizontal boundary
and 𝑀

2
is to be taken above 𝑀

1
. Let 𝑂𝑥𝑦𝑧 be a set of

orthogonal Cartesian coordinates, let 𝑂 be any point of the
plane boundary, and let 𝑂𝑦 points vertically downward to
the medium 𝑀

1
. We consider the possibility of a type of

wave travelling in the direction 𝑂𝑥 in such a manner that
the disturbance is largely confined to the neighborhood of the
boundary and, at any instant, all particles in any line parallel
to 𝑦-axis have equal displacements. These two assumptions
conclude that the wave is a surface wave and all partial
derivatives with respect to 𝑧 are zero. Further let us assume
that 𝑢, V are the components of displacements at any point
(𝑥, 𝑦, 𝑧) at any time 𝑡. It is also assumed that gravitational field
produces a hydrostatic initial stress that is produced by a slow
process of creep where the shearing stresses tend to become
smaller or vanish after a long period of time.

The equilibrium equation of the initial stress is in the form

𝜕𝜏

𝜕𝑥
= 0,

𝜕𝜏

𝜕𝑦
+ 𝜌𝑔 = 0. (1)

The equations and constitutive relations for suchmedium
in the absence of body forces and heat sources are

(𝜆 + 2𝛼 + 4𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽)

𝜕
2
𝑢

𝜕𝑥2
+ (𝜆 + 𝛼 + 𝜇

𝐿
)
𝜕
2V

𝜕𝑥 𝜕𝑦

+ 𝜇
𝐿

𝜕
2
𝑢

𝜕𝑦2
− 𝛽
1
(1 + 𝜗

0

𝜕

𝜕𝑡
)
𝜕𝑇

𝜕𝑥
− 𝜌𝑔

𝜕V

𝜕𝑥

= 𝜌(
𝜕
2
𝑢

𝜕𝑡2
− 2Ω

𝜕V

𝜕𝑡
− Ω
2
𝑢) ,

(2)
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(𝜆 + 2𝜇
𝑇
)
𝜕
2V

𝜕𝑦2
+ (𝜆 + 𝛼 + 𝜇

𝐿
)
𝜕
2
𝑢

𝜕𝑥 𝜕𝑦
+ 𝜇
𝐿

𝜕
2V

𝜕𝑥2

− 𝛽
2
(1 + 𝜗

0

𝜕

𝜕𝑡
)
𝜕𝑇

𝜕𝑦
+ 𝜌𝑔

𝜕𝑢

𝜕𝑥

= 𝜌(
𝜕
2V

𝜕𝑡2
+ 2Ω

𝜕𝑢

𝜕𝑡
− Ω
2V) ,

(3)

𝑘
∗

1
(𝑛
∗
+ 𝑡
1

𝜕

𝜕𝑡
)
𝜕
2
𝑇

𝜕𝑥2
+ 𝑘
∗

2
(𝑛
∗
+ 𝑡
1

𝜕

𝜕𝑡
)
𝜕
2
𝑇

𝜕𝑦2

= 𝜌𝐶
∗
(𝑛
1

𝜕

𝜕𝑡
+ 𝜏
0

𝜕
2

𝜕𝑡2
)𝑇 + 𝑇

0
(𝑛
1

𝜕

𝜕𝑡
+ 𝜏
0
𝑛
0

𝜕
2

𝜕𝑡2
)

× (𝛽
1

𝜕𝑢

𝜕𝑥
+ 𝛽
2

𝜕V

𝜕𝑦
) .

(4)

3. Special Cases of Thermoelasticity Theory

We get that the forms show the behavior under gravity field;
the theories are as follows.

(1) The equation of the coupled thermoelasticity (C-T
theory) is obtained when

𝑛
∗
= 𝑛
1
= 1, 𝑡

1
= 𝜏
0
= 𝜃
0
= 0, 𝜏

0
= 0. (5)

(2) Consider Lord-Shulman theory.
For the Lord-Shulman (L-S) theory

𝑛
∗
= 𝑛
1
= 𝑛
0
= 1, 𝑡

1
= 𝜃
0
= 0, 𝜏

0
> 0. (6)

(3) Consider the Green-Lindsay theory.
For the Green-Lindsay (G-L) theory

𝑛
∗
= 𝑛
1
= 1, 𝑛

0
= 𝑡
1
= 0, 𝜃

0
≥ 𝜏
0
> 0. (7)

(4) Consider the Green-Nagdhi theory.
For the Green- Nagdhi theory (G-N) of type 2,

𝑛
∗
> 0, 𝑛

1
= 0, 𝑛

0
= 1,

𝑡
1
= 𝜗
0
= 0, 𝜏

0
= 1.

(8)

For plane strain deformation in the 𝑥-𝑦 plane, the compo-
nents of stress take the form

𝜏
11
= (𝜆 + 2𝛼 + 4𝜇

𝐿
− 2𝜇
𝑇
+ 𝛽)

𝜕𝑢

𝜕𝑥

+ (𝜆 + 𝛼)
𝜕V

𝜕𝑦
− 𝛽
1
(1 + 𝜗

0

𝜕

𝜕𝑡
)𝑇,

(9)

𝜏
12
= 𝜇
𝐿

𝜕V

𝜕𝑥
+ 𝜇
𝐿

𝜕𝑢

𝜕𝑦
, (10)

𝜏
21
= 𝜇
𝐿

𝜕V

𝜕𝑥
+ 𝜇
𝐿

𝜕𝑢

𝜕𝑦
, (11)

𝜏
22
= (𝜆 + 𝛼)

𝜕𝑢

𝜕𝑥
+ (𝜆 + 2𝜇

𝑇
)
𝜕V

𝜕𝑦
− 𝛽
2
(1 + 𝜗

0

𝜕

𝜕𝑡
)𝑇, (12)

where

𝛽
1
= (2𝜆 + 3𝛼 + 4𝜇

𝐿
− 2𝜇
𝑇
+ 𝛽) 𝛼

1
+ (𝜆 + 𝛼) 𝛼

2
,

𝛽
1
= (2𝜆 + 𝛼) 𝛼

1
+ (𝜆 + 2𝜇

𝑇
) 𝛼
2
.

(13)

By Helmholtz’s theorem [35], the displacement vector 𝑢 can
be written in the form

�⃗� = grad𝜑 + curl �⃗�, (14a)

where the scalar 𝜑 and the vector �⃗� represent irrotational and
rotational parts of the displacement �⃗�. It is possible to take
only one component of the vector �⃗� to be nonzero, as

�⃗� = (0, 0, 𝜓) . (14b)

From (14a) and (14b) we obtain

𝑢 =
𝜕𝜑

𝜕𝑥
+
𝜕Ψ

𝜕𝑦
, V =

𝜕𝜑

𝜕𝑦
−
𝜕Ψ

𝜕𝑥
. (14c)

Substituting from (14c) into (2) and (3) we get

(𝜆 + 2𝛼 + 4𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽)

𝜌

𝜕
2
𝜑

𝜕𝑥2
+
(𝜆 + 𝛼 + 2𝜇

𝐿
)

𝜌

𝜕
2
𝜑

𝜕𝑦2

− 𝛽
1
(1 + 𝜗

0

𝜕

𝜕𝑡
)𝑇 + 𝑔

𝜕Ψ

𝜕𝑥

=
𝜕
2
𝜑

𝜕𝑡2
+ 2Ω

𝜕Ψ

𝜕𝑡
− Ω
2
𝜑,

(15)

(𝛼 + 3𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽)

𝜌

𝜕
2
Ψ

𝜕𝑥2
+
𝜇
𝐿

𝜌

𝜕
2
Ψ

𝜕𝑦2
− 𝑔

𝜕𝜑

𝜕𝑥

=
𝜕
2
Ψ

𝜕𝑡2
− 2Ω

𝜕𝜑

𝜕𝑡
− Ω
2
Ψ,

(16)

(𝜆 + 𝛼 + 2𝜇
𝐿
)

𝜌
(
𝜕
2
𝜑

𝜕𝑥2
) +

(𝜆 + 2𝜇
𝑇
)

𝜌
(
𝜕
2
𝜑

𝜕𝑦2
)

−
𝛽
2

𝜌
(1 + 𝜗

0

𝜕

𝜕𝑡
)𝑇 + 𝑔

𝜕Ψ

𝜕𝑥
=
𝜕
2
𝜑

𝜕𝑡2
+ 2Ω

𝜕Ψ

𝜕𝑡
− Ω
2
𝜑,

(17)

−
𝜇
𝐿

𝜌
(
𝜕
2
Ψ

𝜕𝑥2
) +

(𝛼 + 𝜇
𝐿
− 2𝜇
𝑇
)

𝜌
(
𝜕
2
Ψ

𝜕𝑦2
) + 𝑔

𝜕𝜑

𝜕𝑥

= −
𝜕
2
Ψ

𝜕𝑡2
+ 2Ω

𝜕𝜑

𝜕𝑡
+ Ω
2
Ψ.

(18)

From (16) and (18) we get

𝜕
2
Ψ

𝜕𝑥2
+ 𝑓
1

𝜕
2
Ψ

𝜕𝑦2
= 0, (19)

where

𝑓
1
=

(𝛼 + 2𝜇
𝐿
− 2𝜇
𝑇
)

(𝛼 + 2𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽)

. (20)
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Also from (15) and (17) we get

𝜕
2
𝜑

𝜕𝑥2
+ 𝑓
2

𝜕
2
𝜑

𝜕𝑦2
− 𝑓
3
(1 + 𝜗

0

𝜕

𝜕𝑡
)𝑇 + 𝑓

4

𝜕Ψ

𝜕𝑥

= 𝑓
5
(
𝜕
2
𝜑

𝜕𝑡2
+ 2Ω

𝜕Ψ

𝜕𝑡
− Ω
2
𝜑) ,

(21)

where

𝑓
2
=

(2𝜆 + 𝛼 + 2𝜇
𝐿
− 2𝜇
𝑇
)

(2𝜆 + 3𝛼 + 6𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽)

,

𝑓
3
=

(𝛽
2
+ 𝛽
1
)

(2𝜆 + 3𝛼 + 6𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽)

,

𝑓
4
=

2𝑔

2𝜆 + 3𝛼 + 6𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽

,

𝑓
5
=

2

(2𝜆 + 3𝛼 + 6𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽)

.

(22)

The solution of (19) and (21) has the form

𝜑 = 𝐹 (𝑦) 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

,

Ψ = 𝐺 (𝑦) 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

,

𝑇 = 𝐻 (𝑦) 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

.

(23)

Substituting from (23) in to (19) we get

𝐺

− 𝑚
2
𝐺 = 0. (24)

The solution for (24) as the form

𝐺 = 𝐶
1
𝑒
𝑚𝑦

+ 𝐶
2
𝑒
−𝑚𝑦

. (25)

Equation (24) must have exponential solutions in order that
𝐺 will describe surface waves; they must become vanishingly
small as 𝑦 → ∞:

𝐺 = 𝐶
2
𝑒
−𝑚𝑦

, (26)

where𝑚2 = 𝜔2/𝑓
1
.

Substituting from (23) in to (21) we get

𝐻 = 𝑓
6
𝐹

+ 𝑓
7
𝐹 + 𝑓
8
𝐶
2
𝑒
−𝑚𝑦

, (27)

where

𝑓
6
=

𝑓
2

𝑓
3
(1 − 𝑖𝜔𝑐𝜗

0
)
,

𝑓
7
=

𝜔
2
(𝑐
2
𝑓
5
− 1) + 𝑓

5
Ω
2

𝑓
3
(1 − 𝑖𝜔𝑐𝜗

0
)

,

𝑓
8
=
𝑖𝜔 (𝑓
4
− 2𝑐𝑓
5
Ω)

𝑓
3
(1 − 𝑖𝜔𝑐𝜗

0
)
.

(28)

From (26) and (27), we can obtain the temperature 𝑇 and
the potential function Ψ as follows:

Ψ = 𝐶
2
𝑒
−𝑚𝑦

𝑒
𝑖𝜔(𝑥−𝑐𝑡)

,

𝑇 = [𝑓
6
𝐹

+ 𝑓
7
𝐹 + 𝑓
8
𝐶
2
𝑒
−𝑚𝑦

] 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

.

(29)

Substituting from (29) and (14c) into (4) for 𝑇,Ψ, 𝑢, and V we
get

𝐹


+ 𝑎𝐹

+ 𝑏𝐹 = 𝑑𝐶

2
𝑒
−𝑚𝑦

, (30)
where

𝑎 =
𝑓
10

𝑓
9

, 𝑏 =
𝑓
11

𝑓
9

, 𝑑 =
𝑓
12

𝑓
9

𝑓
9
= (𝑛
∗
− 𝑖𝜔𝑐𝑡

1
) 𝑘
∗

2
𝑓
6
,

𝑓
10
= −𝜔
2
𝑘
∗

1
𝑓
6
(𝑛
∗
− 𝑖𝜔𝑐𝑡

1
) + (𝑛

∗
− 𝑖𝜔𝑐𝑡

1
) 𝑘
∗

2
𝑓
7

− 𝜌𝐶
∗
(−𝑖𝜔𝑐𝑛

1
− 𝜔
2
𝑐
2
𝜏
0
) 𝑓
6

− 𝑇
0
𝛽
2
(−𝑖𝜔𝑐𝑛

1
− 𝜔
2
𝑐
2
𝜏
0
𝑛
0
) ,

𝑓
11
= −𝜔
2
𝑘
∗

1
(𝑛
∗
− 𝑖𝜔𝑐𝑡

1
) 𝑓
7

− 𝜌𝐶
∗
(−𝑖𝜔𝑐𝑛

1
− 𝜔
2
𝑐
2
𝜏
0
) 𝑓
7

+ 𝜔
2
𝑇
0
𝛽
1
(−𝑖𝜔𝑐𝑛

1
− 𝜔
2
𝑐
2
𝜏
0
𝑛
0
) ,

𝑓
12
= −𝜔
2
𝑘
∗

1
(𝑛
∗
− 𝑖𝜔𝑐𝑡

1
) 𝑓
8

+ 𝑘
∗

2
(𝑛
∗
− 𝑖𝜔𝑐𝑡

1
)𝑚
2
𝑓
8

− 𝜌𝐶
∗
(−𝑖𝜔𝑐𝑛

1
− 𝜔
2
𝑐
2
𝜏
0
) 𝑓
8

− 𝑇
0
(−𝑖𝜔𝑐𝑛

1
− 𝜔
2
𝑐
2
𝜏
0
𝑛
0
)

× (−𝑖𝜔𝑚𝛽
1
+ 𝑖𝜔𝑚𝛽

2
) .

(31)

The solution of (30) is

𝐹 = 𝐶
4
𝑒
−𝑓
14
𝑦
+ 𝐶
6
𝑒
−𝑓
16
𝑦
+𝑀𝐶

2
𝑒
−𝑚𝑦

, (32)
where

𝑓
14
= √

−𝑎√𝑎2 − 4𝑏

2
,

𝑓
16
= √−

𝑎

2
+
1

2

√𝑎2 − 4𝑏,

𝑀 =
𝑑

𝑚4 + 𝑎𝑚2 − 𝑏𝑚
.

(33)

After finding the values of 𝐹 we get the following values:

𝜑 = [𝐶
4
𝑒
−𝑓
14
𝑦
+ 𝐶
6
𝑒
−𝑓
16
𝑦
+𝑀𝐶

2
𝑒
−𝑚𝑦

] 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

, (34)

Ψ = 𝐶
2
𝑒
−𝑚𝑦

𝑒
𝑖𝜔(𝑥−𝑐𝑡)

, (35)

𝑇 = {(𝑓
6
𝑓
2

14
+ 𝑓
7
) 𝐶
4
𝑒
−𝑓
14
𝑦
+ (𝑓
6
𝑓
2

16
+ 𝑓
7
) 𝐶
6
𝑒
−𝑓


16
𝑦

+ [(𝑚
2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
] 𝐶
2
𝑒
−𝑚𝑦

} 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

.

(36)

Substituting from (34), (35), and (36) into (14c), we get the
components of displacement as

𝑢 = {𝑖𝜔𝐶
4
𝑒
−𝑓
14
𝑦
+ 𝑖𝜔𝐶

6
𝑒
−𝑓
16
𝑦

+ (𝑖𝜔𝑀 − 𝑚)𝐶
2
𝑒
−𝑚𝑦

} 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

,

(37)
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V = {−𝑓
14
𝐶
4
𝑒
−𝑓
14
𝑦
− 𝑓
16
𝐶
6
𝑒
−𝑓
16
𝑦

− (𝑚𝑀 + 𝑖𝜔)𝐶
2
𝑒
−𝑚𝑦

} 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

.

(38a)

Substituting from (36), (37), and (38a) in to (9)–(12)we obtain

𝜏
11
= {𝜆 (𝑓

2

14
− 𝜔
2
) + 𝛼 (𝑓

2

14
− 2𝜔
2
) − 4𝜇

𝐿
𝜔
2

+ 2𝜇
𝑇
𝜔
2
−𝛽𝜔
2
− 𝛽
1
(1 − 𝑖𝜔𝜗

0
) (𝑓
6
+ 𝑓
7
)}

× 𝐶
4
𝑒
−𝑓
14
𝑦
𝑒
𝑖𝜔(𝑥−𝑐𝑡)

+ {𝜆 (𝑓
2

16
− 𝜔
2
) + 𝛼 (𝑓

2

16
− 2𝜔
2
)

− 4𝜇
𝐿
𝜔
2
+ 2𝜇
𝑇
𝜔
2
− 𝛽𝜔
2

−𝛽
1
(1 − 𝑖𝜔𝜗

0
) (𝑓
6
𝑓
2

16
+ 𝑓
7
)}

× 𝐶
6
𝑒
−𝑓
16
𝑦
𝑒
𝑖𝜔(𝑥−𝑐𝑡)

+ {𝜆 (𝑚
2
− 𝜔
2
) + 𝛼 [(𝑚

2
− 2𝜔
2
)𝑀 − 𝑖𝜔𝑚]

− (4𝜇
𝐿
− 2𝜇
𝑇
+ 𝛽) (𝜔

2
𝑀+ 𝑖𝜔𝑚)

−𝛽
1
(1 − 𝑖𝜔𝜗

0
) [(𝑚
2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
]}

× 𝐶
2
𝑒
−𝑚𝑦

𝑒
𝑖𝜔(𝑥−𝑐𝑡)

,

(38b)

𝜏
22
= {𝜆 (𝑓

2

14
− 𝜔
2
) − 𝛼𝜔

2
+ 2𝜇
𝑇
𝑓
2

14

−𝛽
2
(1 − 𝑖𝜔𝑐𝜗

0
)

× (𝑓
6
𝑓
14

2
+ 𝑓
7
)} 𝐶
4
𝑒
−𝑓
14
𝑦
𝑒
𝑖𝜔(𝑥−𝑐𝑡)

+ {𝜆 (𝑓
16

2
− 𝜔
2
) − 𝛼𝜔

2
+ 2𝜇
𝑇
𝑓
2

16

−𝛽
2
(1 − 𝑖𝜔𝑐𝜗

0
) (𝑓
6
𝑓
2

16
+ 𝑓
7
)}

× 𝐶
6
𝑒
−𝑓
16
𝑦
𝑒
𝑖𝜔(𝑥−𝑐𝑡)

+ {𝜆 (𝑚
2
− 𝜔
2
)𝑀 − 𝛼 (𝜔

2
𝑀+ 𝑖𝜔𝑚)

+ 2𝜇
𝑇
𝑚(𝑚𝑀 + 𝑖𝜔)

−𝛽
2
(1 − 𝑖𝜔𝑐𝜗

0
) [(𝑚
2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
]}

× 𝐶
2
𝑒
−𝑚𝑦

𝑒
𝑖𝜔(𝑥−𝑐𝑡)

(38c)

𝜏
12
= {[−2𝑖𝜔𝜇

𝐿
𝑓
14
] 𝑒
−𝑓
14
𝑦
𝐶
4
+ [−2𝑖𝜔𝜇

𝐿
𝑓
16
] 𝐶
6
𝑒
−𝑓
16
𝑦

+ [𝜇
𝐿
(−2𝑖𝜔𝑚𝑀 + 𝜔

2
− 𝑚
2
)] 𝐶
2
𝑒
−𝑚𝑦

} 𝑒
𝑖𝜔(𝑥−𝑐𝑡)

.

(38d)

4. Boundary Conditions

The stresses components, the displacement components, and
temperature at the boundary surface between the media𝑀

1

and𝑀
2
must be continuous at all times and positions.

Consider the following:

𝜏
22
= 𝜏


22
at 𝑦 = 0,

𝜏
12
= 𝜏


12
at 𝑦 = 0,

𝑢 = 𝑢
 at 𝑦 = 0,

V = V at 𝑦 = 0,

𝜕𝑇

𝜕𝑦
+ ℎ𝑇 =

𝜕𝑇


𝜕𝑦
+ ℎ

𝑇
 at 𝑦 = 0.

(39)

Finally, eliminating the constants 𝐶
2
, 𝐶
4
, 𝐶
6
, 𝐶
2
, 𝐶
4
, and

𝐶


6
from (10), (12), (36), (37), and (38a), (38b), (38c), and

(38d), we get

det (𝑎
𝑖𝑗
) = 0, 𝑖, 𝑗 = 1, 2, 3, (40)

where
𝑎
11
= 𝜆 (𝑓

2

14
− 𝜔
2
) − 𝛼𝜔

2
+ 2𝜇
𝑇
𝑓
2

14

−𝛽
2
(1 − 𝑖𝜔𝑐𝜗

0
) (𝑓
6
𝑓
2

14
+ 𝑓
7
) ,

𝑎
12
= 𝜆 (𝑓

2

16
− 𝜔
2
) − 𝛼𝜔

2
+ 2𝜇
𝑇
𝑓
2

16

−𝛽
2
(1 − 𝑖𝜔𝑐𝜗

0
) (𝑓
6
𝑓
2

16
+ 𝑓
7
) ,

𝑎
13
= 𝜆 (𝑚

2
− 𝜔
2
)𝑀 − 𝛼 (𝜔

2
𝑀+ 𝑖𝜔𝑚)

+ 2𝜇
𝑇
𝑚(𝑚𝑀 + 𝑖𝜔) −𝛽

2
(1 − 𝑖𝜔𝑐𝜗

0
)

× [(𝑚
2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
] ,

𝑎
14
= − [𝜆


(𝑓


14

2

− 𝜔
2
) − 𝛼

𝜔
2
+ 2𝜇


𝑇
𝑓


14

2

−𝛽


2
(1 − 𝑖𝜔𝑐𝜗

0
) (𝑓


6
𝑓


14

2

+ 𝑓


7
)] ,

𝑎
15
= [𝜆

(𝑓


16

2

− 𝜔
2
) − 𝛼

𝜔
2
+ 2𝜇


𝑇
𝑓


16

2

−𝛽


2
(1 − 𝑖𝜔𝑐𝜗

0
) (𝑓


6
𝑓


16

2

+ 𝑓


7
)] ,

𝑎
16
= − [𝜆


(𝑚
2

− 𝜔
2
)𝑀

− 𝛼

(𝜔
2
𝑀

+ 𝑖𝜔𝑚


)

+ 2𝜇


𝑇
𝑚

(𝑚

𝑀

+ 𝑖𝜔)

− 𝛽


2
(1 − 𝑖𝜔𝑐𝜗

0
)

× [(𝑚
2

𝑓


6
+ 𝑓


7
)𝑀

+ 𝑓


8
] ] ,

𝑎
21
= −2𝑖𝜔𝜇

𝐿
𝑓
14
, 𝑎

22
= −2𝑖𝜔𝜇

𝐿
𝑓
16
,

𝑎
23
= 𝜇
𝐿
(−2𝑖𝜔𝑚𝑀 + 𝜔

2
− 𝑚
2
) ,

𝑎
24
= 2𝑖𝜔𝜇



𝐿
𝑓


14
,

𝑎
25
= 2𝑖𝜔𝜇



𝐿
𝑓


16
,

𝑎
26
= − [𝜇



𝐿
(−2𝑖𝜔𝑚


𝑀

+ 𝜔
2
− 𝑚
2

)] ,

𝑎
31
= 𝑖𝜔, 𝑎

32
= 𝑖𝜔, 𝑎

33
= 𝑖𝜔𝑀 − 𝑚,

𝑎
34
= −𝑖𝜔, 𝑎

35
= −𝑖𝜔, 𝑎

36
= − (𝑖𝜔𝑀


− 𝑚

) ,



6 Journal of Applied Mathematics

𝑎
41
= −𝑓
14
, 𝑎

42
= −𝑓
16
, 𝑎

43
= − (𝑚𝑀 + 𝑖𝜔) ,

𝑎
44
= 𝑓


14
, 𝑎

45
= 𝑓


16
, 𝑎

46
= 𝑚

𝑀+ 𝑖𝜔,

𝑎
51
= (𝑓
6
𝑓
2

14
+ 𝑓
7
) (ℎ−𝑓

14
) ,

𝑎
52
= (𝑓
6
𝑓
2

16
+ 𝑓
7
) (ℎ − 𝑓

16
) ,

𝑎
53
= [(𝑚

2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
] (1 − 𝑚) ,

𝑎
54
= − [(𝑓



6
𝑓


14

2

+ 𝑓


7
) (ℎ

− 𝑓


14
)] ,

𝑎
55
= − [(𝑓



6
𝑓


16

2

+ 𝑓


7
) (ℎ

− 𝑓


16
)] ,

𝑎
56
= − [(𝑚

2

𝑓


6
+ 𝑓


7
)𝑀

+ 𝑓


8
] (1 − 𝑚


) ,

𝑎
61
= (𝑓
6
𝑓
14

2
+ 𝑓
7
) , 𝑎

62
= (𝑓
6
𝑓
16

2
+ 𝑓
7
) ,

𝑎
63
= [(𝑚

2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
] ,

𝑎
64
= − (𝑓



6
𝑓


14

2

+ 𝑓


7
) ,

𝑎
65
= − (𝑓



6
𝑓


16

2

+ 𝑓


7
) ,

𝑎
66
= − [(𝑚

2

𝑓


6
+ 𝑓


7
)𝑀

+ 𝑓


8
] .

(41)

5. Stoneley Waves

It is the generalized form of Rayleigh waves in which we
assume that the waves are propagated along the common
boundary of two semi-infinite media𝑀

1
and𝑀

2
. Therefore

(40) determines the wave velocity equation for Stoneley
waves in anisotropic fibre-reinforced solid thermoelastic
media under the influence of gravity. Clearly, from (40), it
follows thatwave velocity of the Stoneleywaves depends upon
the parameters for fibre-reinforced of the material medium,
gravity, rotation, and the densities of both mediums, since
the wave velocity equation (40) for Stoneley waves under the
present circumstances depends on the particular value of 𝜔
and creates a dispersion of a general wave form. Further, (40),
of course, is in complete agreement with the corresponding
classical result, when the effect of gravity, rotation, and
parameters for fibre-reinforcement is ignored.

6. Rayleigh Waves

To investigate the possibility of Rayleigh waves in anisotropic
fibre-reinforced thermoelasticmedia, we replacemedium𝑀

2

by vacuum, in the preceding problem, since the boundary
(y=0) is adjacent to vacuum. So the boundary condition in
this case may be expressed as

𝜏
12
= 0 at 𝑦 = 0,

V = 0 at 𝑦 = 0,

𝜕𝑇

𝜕𝑦
+ ℎ𝑇 = 0 at 𝑦 = 0.

(42)

Eliminating the constants𝐶
2
,𝐶
4
, and𝐶

6
from (10), (12), (34),

(35), (36), and (37), we get

det (𝑏
𝑖,𝑗
) = 0, 𝑖, 𝑗 = 1, 2, 3, (43)

where

𝑏
11
= −2𝑖𝜔𝜇

𝐿
𝑓
14
, 𝑏

12
= −2𝑖𝜔𝜇

𝐿
𝑓
16
,

𝑏
13
= 𝜇
𝐿
(−2𝑖𝜔𝑚𝑀 + 𝜔

2
+ 𝑚
2
) , 𝑏

21
= 𝑓
14
,

𝑏
22
= 𝑓
16
, 𝑏

23
= (𝑚𝑀 + 𝑖𝜔) ,

𝑏
31
= (ℎ−𝑓

14
) (𝑓
6
𝑓
2

14
+ 𝑓
7
) ,

𝑏
32
= (ℎ−𝑓

16
) (𝑓
6
𝑓
2

16
+ 𝑓
7
) ,

𝑏
33
= (ℎ − 𝑚) [(𝑚

2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
] .

(44)

7. Love Waves

To investigate the possibility of love waves in a fibre-
reinforced thermoelastic solidmedia, we replacemedium𝑀

2

that is obtained by two horizontal plane surfaces at a distance
𝐻-apart, while 𝑀

1
remains infinite. For medium 𝑀

1
, the

displacement component ] remains the same as in general
case given by (38a), (38b), (38c), and (38d).

The boundary condition of Love wave is as follows:

𝜏
12
= 𝜏


12
, at 𝑦 = 0,

V = V, at 𝑦 = 0,

𝑇 = 𝑇

, at 𝑦 = 0,

𝜏


12
= 0, at 𝑦 = −𝐻,

V = 0 at 𝑦 = −𝐻, 𝑇

= 0 at 𝑦 = −𝐻.

(45)

Eliminating the constants𝐶
2
,𝐶
4
,𝐶
6
,𝐶
2
,𝐶
4
, and𝐶

6
from

(10), (12), (34), (35), (36), and (37), we get

det (𝑐
𝑖,𝑗
) = 0, 𝑖, 𝑗 = 1, 2, 3, (46)

𝑐
11
= −2𝑖𝜔𝜇

𝐿
𝑓
14
, 𝑐

12
= −2𝑖𝜔𝜇

𝐿
𝑓
16
,

𝑐
13
= 𝜇
𝐿
(−2𝑖𝜔𝑚𝑀 + 𝜔

2
+ 𝑚
2
) ,

𝑐
14
= 2𝑖𝜔𝜇



𝐿
𝑓


14
, 𝑐

15
= 2𝑖𝜔𝜇



𝐿
𝑓


16
,

𝑐
16
= −𝜇


𝐿
(−2𝑖𝜔𝑚


𝑀

+ 𝜔
2
+ 𝑚
2

) ,

𝑐
21
= 𝑓
14
, 𝑐

22
= 𝑓
16
,

𝑐
23
= 𝑚𝑀 + 𝑖𝜔, 𝑐

24
= −𝑓


14

𝑐
25
= −𝑓


16
, 𝑐

26
= − (𝑚


𝑀

+ 𝑖𝜔) ,

𝑐
31
= 𝑓
6
𝑓
2

14
+ 𝑓
7
, 𝑐

32
= 𝑓
6
𝑓
2

16
+ 𝑓
7
,

𝑐
33
= (𝑚
2
𝑓
6
+ 𝑓
7
)𝑀 + 𝑓

8
,

𝑐
34
= − (𝑓



6
𝑓


14

2

+ 𝑓


7
) , 𝑐

35
= − (𝑓



6
𝑓


16

2

+ 𝑓


7
) ,

𝑐
36
= − [(𝑚

2

𝑓


6
+ 𝑓


7
)𝑀

+ 𝑓


8
] , 𝑐

41
= 𝑐
42
= 𝑐
43
= 0,
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Figure 1: Variation of the Stoneley waves velocity and attenuation coefficient (CT) model with respect to the gravity.
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Figure 2: Variation of the Stoneley waves velocity and attenuation coefficient (LS) model with respect to the gravity.
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Figure 3: Variation of the Stoneley waves velocity and attenuation coefficient (GL) model with respect to the gravity.
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Figure 4: Variation of the Stoneley waves velocity and attenuation coefficient (GN type (II)) model with respect to the gravity.
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Figure 5: Variation of the Stoneley waves velocity and attenuation coefficient (CT) model with respect to the rotation.
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Figure 6: Variation of the Stoneley waves velocity and attenuation coefficient (LS) model with respect to the rotation.
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Figure 7: Variation of the Stoneley waves velocity and attenuation coefficient (GL) model with respect to the rotation.
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Figure 8: Variation of the Stoneley waves velocity and attenuation coefficient (GN type (II)) model with respect to the rotation.
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8. Numerical Results and Discussion

With a view to illustrating the analytical procedure presented
earlier, we now consider a numerical example for which com-
putational results are given.The results depict the variation of

Stoneley waves velocity and attenuation coefficient, Stoneley
secular equation, Rayleigh secular equation, Rayleigh waves
velocity and attenuation coefficient, Love waves velocity and
attenuation coefficient, and Love secular equation in the
context of four theories. To study the influence of gravity
field and rotation with reinforcement on wave propagation,
we now present some numerical results for the physical
constants:

𝜌 = 2660 kg/m3, 𝜆 = 5.65 × 10
10Nm−2,

𝜇
𝑇
= 2.46 × 10

10Nm−2, 𝜇
𝐿
= 5.66 × 10

10Nm−2,

𝐶
∗
= 0.787 × 10

3 JKg−1deg−1,

𝛼 = −1.28 × 10
10Nm−2, 𝛽 = 220.90 × 10

10Nm−2,

𝐾
∗

1
= 0.0921 × 10

3 Jm−1deg−1s−1,

𝐾
∗

2
= 0.0963 × 10

3 Jm−1deg−1s−1,

𝛼
1
= 0.017 × 10

4 deg−1,

𝛼
2
= 0.015 × 10

4 deg−1, 𝑇
0
= 293

0K.
(48)

The output is plotted in Figures 1–30.
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Figure 9: Variation of the Stoneley secular equation for the (CT, LS, GL, and GN (type (II)) models with respect to the phase velocity.
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Figure 10: Variation of the Stoneley waves velocity and attenuation coefficient (LS) model with respect to the phase velocity.
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Figure 11: Variation of the Stoneley waves velocity and attenuation coefficient (GL) model with respect to the phase velocity.
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Figure 12: Variation of the Stoneley waves velocity and attenuation coefficient (GN type (II)) model with respect to the phase velocity.
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Figure 13: Variation of the Stoneley waves velocity and attenuation coefficient (GN type (II)) model with respect to the phase velocity.

Figures 1, 2, 3, 4, 5, 6, 7, and 8 show the variation of
the Stoneley waves and attenuation coefficient value with
respect to gravity field 𝑔 and rotation Ω, respectively, has
oscillatory behavior in the whole range of gravity 𝑔 and
rotation for C-T theory, L-S theory, G-L theory, and G-N

theory. These figures indicate that the medium along 𝑔 and
Ω undergoes compressive deformation due to the thermal
shock. In both figureures, it is clear that the Stoneley wave
velocity and attenuation coefficient have a nonzero value only
in a bounded region of space.
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Figure 14: Variation of the Rayleigh waves velocity and attenuation coefficient (CT) model with respect to the gravity.
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Figure 15: Variation of the Rayleigh waves velocity and attenuation coefficient (LS) model with respect to the gravity.
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Figure 16: Variation of the Rayleigh waves velocity and attenuation coefficient (GL) model with respect to the gravity.
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Figure 17: Variation of the Rayleigh waves velocity and attenuation coefficient (GN type (II)) model with respect to the gravity.
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Figure 18: Variation of the Rayleigh waves velocity and attenuation coefficient CT-model with respect to the rotation.
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Figure 19: Variation of the Rayleigh waves velocity and attenuation coefficient LS-model with respect to the rotation.

Figure 9 shows the variation of the Stoneley secular equa-
tion with respect to phase velocity 𝑐, that has an oscillatory
behavior of C-T theory, L-S theory, and G-L theory for differ-
ent values of relaxation time 𝜏

0
in thewhole range of the phase

velocity 𝑐, while in G-N theory it decreases with increasing
the constant 𝑛∗ and it increases with increasing phase velocity
𝑐.This is due to the fact that the thermal waves in the coupled

theory travel with an infinite speed of propagation as opposed
to a finite speed in the generalized case.

Figure 10 displays the variation of the Stoneley wave
velocity and attenuation coefficient with respect to phase
velocity 𝑐 that has oscillatory behavior in the whole range
of 𝑐 for L-S theory, which changes from the positive to the
negative gradually.
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Figure 20: Variation of the Rayleigh waves velocity and attenuation coefficient GL-model with respect to the rotation.

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0.07303371

0.0730337062

0.0730337025

0.073033695

0.0730336987

−0.029056

−0.0290560038

−0.0290560075

−0.0290560113

−0.029056015

GN-model (II)

GN-model (II)

Ω Ω

Ra
yl

ei
gh

 w
av

es
 v

elo
ci

ty

At
te

nu
at

io
n 

co
effi

ci
en

t

Figure 21: Variation of the Rayleigh waves velocity and attenuation coefficient (GN type (II)) model with respect to the rotation.

Figure 11 shows the variations of the Stoneleywaves veloc-
ity and attenuation coefficient with respect to phase velocity 𝑐
that has oscillatory behavior in the whole range of 𝑐 for (G-L
theory) that increases with increasing relaxation time 𝜏

0
, 𝜃
0
.

Figure 12 shows the variations of the Stoneley waves
velocity and attenuation coefficient with respect to phase
velocity 𝑐 for G-N theory in the whole range of 𝑐 for different
values of the constant 𝑛∗ which changes from the positive
to the negative gradually. In both figures, it is clear that
the Stoneley wave velocity and attenuation coefficient have
a nonzero value only in a bounded region of space. It is
observed that the Stoneley wave velocity decreases with
increasing the phase velocity, while the attenuation coefficient
increases with increasing the constant 𝑛∗.

Figure 13 shows the variations of the Stoneley waves
velocity and attenuation coefficient with respect to phase
velocity 𝑐 for G-N theory in the whole range of 𝑐 for
different values of constant 𝑛∗. In both figureures, it is clear

that the Stoneley wave velocity and attenuation coefficient
have a nonzero value only in a bounded region of space.
It is observed that the Stoneley wave velocity increases
with increasing the phase velocity, while it decreases with
increasing constant 𝑛∗ and attenuation coefficient increases
with increasing the phase velocity, while it increases with
increasing constant 𝑛∗.

Figures 14, 15, 16, 17, 18, 19, 20, and 21 show the variations
of the Rayleigh velocity and attenuation coefficient with
respect to gravity field 𝑔 and rotation Ω, respectively, which
has an oscillatory behavior in the whole range of 𝑔 and Ω

for C-T theory, L-S theory, G-L theory, and G-N theory.
These figureures indicate that the medium of attenuation
coefficient along 𝑔 undergoes compressive deformation due
to the thermal shock, except (C-T theory) it is a tension
deformation. In both figureures, it is clear that the Rayleigh
wave velocity and attenuation coefficient have a nonzero
value only in a bounded region of space. Figure 22 shows the
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Figure 22: Variation of the Rayleigh secular equation for the (CT, LS, GL, and GN (type (II)) models with respect to the phase velocity.
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Figure 23: Variation of the Rayleigh waves velocity and attenuation coefficient (LS) model with respect to the phase velocity.
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Figure 24: Variation of the Rayleigh waves velocity and attenuation coefficient (GL) model with respect to the phase velocity.
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Figure 25: Variation of the Rayleigh waves velocity and attenuation coefficient (GN type (II)) model with respect to the phase velocity.
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Figure 26: Variation of the Rayleigh waves velocity and attenuation coefficient (GN type (II)) model with respect to the phase velocity.

variations of the Rayleigh wave secular with respect to phase
velocity 𝑐, it is increases with increasing the phase velocity for
C-T theory, L-S theory, G-L theory, and G-N theory, while it
decreases with increasing constant 𝑛∗ for G-N theory. In both
figureures, it is clear that the Rayleigh waves secular equation
has a nonzero value only in a bounded region of space.

Figures 23, 24, and 25 show the variations of the Rayleigh
wave velocity and attenuation coefficient with respect to
phase velocity 𝑐, it has oscillatory behavior in the whole range
of 𝑐 for different values of relaxation times 𝜏

0
, 𝜃
0
, and 𝑛

∗,
respectively, for L-S theory, G-L theory, and G-N theory,
which changes from the positive to the negative gradually.



Journal of Applied Mathematics 17

0 0.2 0.4 0.6 0.8 1

2

1.5

1

0.5

0

|Δ
|

CT-model

c

(a)

0 0.2 0.4 0.6 0.8 1

2

1.5

1

0.5

0

|Δ
|

𝜏0 = 0.01, 0.1, 0.2

LS-model

c

(b)

0 0.2 0.4 0.6 0.8 1

2

1.5

1

0.5

0

|Δ
|

GL-model

c

𝜏0 = 0.5,𝜗0 = 0.01, 0.011, 0.012

(c)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

|Δ
|

n
∗
= 0.02, 0.3, 0.4

GN-model (II)

c

(d)

Figure 27: Variation of the Love secular equation for the (CT, LS, GL, and GN (type (II)) models with respect to the phase velocity.
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Figure 28: Variation of the Love waves velocity and attenuation coefficient (LS) model with respect to the phase velocity.
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Figure 29: Variation of the Love waves velocity and attenuation coefficient (GL) model with respect to the phase velocity.
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Figure 30: Variation of the Love waves velocity and attenuation coefficient (GN type (II)) model with respect to the phase velocity.

In both figureures, it is clear that the Rayleigh wave velocity
and attenuation coefficient have a nonzero value only in a
bounded region of space.

Figure 26 shows the variations of theRayleighwave veloc-
ity and attenuation coefficient with respect to phase velocity
𝑐 for G-N theory, the Rayleigh wave velocity increases with
increasing phase velocity, while it decreases with increasing
the constant 𝑛∗, and the attenuation coefficient decreaseswith
increasing phase velocity and the constant 𝑛∗; it is clear that
the Rayleigh wave velocity and attenuation coefficient have a
nonzero value only in a bounded region of space.

Figure 27 shows the variation of the Love waves secular
equation with respect to phase velocity 𝑐, which increases
with increasing phase velocity for C-T theory, L-S theory, G-
L theory, and G-N theory, while it decreases with increasing
the constant 𝑛∗; it is clear that Love waves secular equation
has a nonzero value only in a bounded region of space.

Figures 28, 29, and 30 show the variations of the Love
wave velocity and attenuation coefficient with respect to
phase velocity 𝑐, it has oscillatory behavior in the whole range
of 𝑐 for different values of relaxation times 𝜏

0
, 𝜃
0
, and 𝑛

∗,
respectively, for L-S theory, G-L theory, and G-N theory,
which changes from the positive to the negative gradually. In
both figures, it is clear that Lovewave velocity and attenuation

coefficient have a nonzero value only in a bounded region of
space.

9. Conclusion

Due to the complicated nature of the governing equations of
the generalized thermoelasticity Fibre-reinforced theory, the
work done in this field is unfortunately limited in number.
The method used in this study provides a quite succesful
in dealing with such problems. This method gives exact
solutions in the generalized thermoelastic medium without
any assumed restrictions on the actual physical quantities
that appear in the governing equations of the problem
considered. Important phenomena are observed in all these
computations.

(i) It was found that for large values of time they give
close results. The solutions obtained in the context of
generalized thermoelasticity theory, however, exhibit
the behavior of speed of surface wave propagation.

(ii) By comparing Figures 1–30, it was found that the
surface wave velocity has the same behavior in both
media. But with the passage of rotation, relaxation
times, and gravity, numerical values of surface wave
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velocity in the thermoelastic medium are large in
comparison due to the influences of gravity and relax-
ation times in the elastic medium.

(iii) Special cases are considered as Rayleigh waves, Love
wave, and Stoneley surface waves in anisotropic gen-
eralized thermoelastic medium, as well as in the iso-
tropic case.

(iv) The results presented in this paper should prove use-
ful for researchers in material science and designers
of new materials.

(v) Study of the phenomenon of rotation and gravity is
also used to improve the conditions of oil extractions.
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