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When liquid filled containers are excited vertically, it is known that, for some combinations of frequency and amplitude, the free
surface undergoes unbounded motion leading to instability, called parametric instability or parametric resonance, while for other
combinations the free surface remains plane. In this paper, the stability of the plane free surface is investigated theoretically when
the vessel is a vertical axisymmetric container.The effect of coupled horizontal excitation on the stability is examined.The dynamics
of sloshing flows under specified excitations are simulated numerically using fully nonlinear finite element method based on non-
linear potential flow theory. A mixed Eulerian-Lagrangian technique combined with 4th-order Runge-Kutta method is employed
to advance the solution in time. A regridding technique based on cubic spline is applied to the free surface for every finite time step
to avoid possible numerical instabilities.

1. Introduction

The motion of the unrestrained free surface of the liquid
due to external excitation in the liquid filled containers is
known as sloshing. Sloshing is likely to be seen whenever we
have a liquid with a free surface in the presence of gravity.
At equilibrium the free surface of the liquid is static, when
the container is perturbed; an oscillation is set up in the
free surface. The phenomenon of liquid sloshing occurs in
a variety of engineering applications such as sloshing in
liquid propellant launch vehicles, liquid oscillation in large
storage tanks by earthquake, sloshing in the nuclear reactors
of pool type, nuclear fuel storage tanks under earthquake,
and the water flow on the deck of ship. Such liquid motion
is potentially dangerous problem to engineering structures
and environment leading to failure of engineering structures
and unexpected instability.Thus, understanding the dynamic
behaviour of liquid free surface is essential. As a result the
problem of sloshing has attracted many researchers and
engineers motivating to understand the complex behaviour
of sloshing and to design the structures to withstand its
effects.

Liquid sloshing can be stimulated by a variety of container
excitations. The container excitation can be horizontal, verti-
cal, or rotational. Under horizontal excitations the liquid free
surface experiences normal sloshing; the sloshing frequency
will be equal to excitation frequency. When the external
excitation frequency is equal to fundamental slosh frequency,
the free surface undergoes resonance. Extensive research
has been done on sloshing response under pure horizontal
excitations. When the liquid filled container is subjected to
vertical excitations, for some combinations of amplitude and
frequency of the external excitation, the free surface under-
goes unbounded motion leading to instability called para-
metric instability, and for few other combinations the free
surface undergoes bounded motion. In case of parametric
instability the rate of growth of amplitude is exponential, and
this exponentially growing response is potentially dangerous
to the system.

The problem of liquid response under vertical excitations
was first studied experimentally by Faraday [1], reporting
that the frequency of the liquid vibrations on free surface is
half of the external excitation frequency. The sloshing waves
generated under vertical excitation are sometimes referred
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Figure 1: Axisymmetric tanks and their boundary conditions.

to as Faraday waves. Rayleigh [2, 3] analyzed Faraday’s
study and confirmed Faraday’s observations. Matthiessen
[4] conducted experiments and reported that the fluid free
surface vibrations are synchronous to the external excita-
tion. The discrepancy between Faraday’s observations and
Matthiessen’s observations was explained mathematically by
Benjamin andUrsell [5]. Benjamin andUrsell [5] investigated
the problem theoretically.They considered linearized inviscid
potential flow model with surface tension. They concluded
that the response of the plane free surface of fluid under
vertical excitation is governed by Mathieu equation. The
solution of Mathieu equation [6] may be stable, periodic or
unstable depending on the system parameters. The stability
and instability of theMathieu equation are shown in the form
of plots of amplitude versus frequency of external excitation
which gives regions of stability and instability. Benjamin and
Ursell concluded that, if the response of the free-surface is
unstable, the resulting motion can have a frequency equal
to (1/2)𝑛Ω, where 𝑛 is an integer and Ω is the natural
sloshing frequency. The problem of sloshing under vertical
excitation in various geometric shapes of the container has
been studied by various researchers. For example,Dodge et al.
[7] and Miles [8] have studied the liquid surface oscillations
under vertical excitation in cylindrical tanks. Khandelwal
and Nigam [9] have studied the parametric instability in
rectangular tanks. The problem of parametric oscillations
was discussed by Miles and Henderson [10], in their review
paper. Most of the studies available in the old literature on the
problem of parametric sloshing under vertical excitation are
both experimental or analytical involving complex equations
and heavy derivations. In order to understand the complex
behaviour of sloshing under vertical excitations including
nonlinear terms, numerical simulations are advantageous
compared to analytical solutions. Analytical solutions get
complicated when the shape of container is not regular.
Numerical methods like finite element method, finite volume
method, finite differencemethod, boundary elementmethod,
and so forth are available for numerical modeling of sloshing
waves. The studies on parametric sloshing using numerical
modeling are very few. Frandsen [11] analysed the problem
numerically and theoretically considering fully nonlinear

inviscid potential flow equations. Frandsen applied finite
difference method for sloshing response. Frandsen study
was on 2-dimensional rectangular tanks. Wu et al. [12]
applied finite elementmethod for solving sloshing 2D and 3D
sloshing problems. Wu et al. discussed the sloshing response
under vertical excitations in rectangular tanks. Ning et al.
[13] applied boundary element method to study the liquid
sloshing in rectangular containers under coupled horizontal
and vertical excitations. In the present paper the sloshing
response under vertical excitations in axisymmetric tanks,
that is, upright cylindrical and annular cylindrical tanks, is
taken up. First, the stability of plane free surface of liquid in
axisymmetric tanks is obtained from the linearized equations
and the sloshing response of fluid is numerically simulated for
various frequencies and amplitude of the external excitation
using finite element method under pure vertical excitations.
Then the numerical work is extended to explore the sloshing
behaviour in axisymmetric tanks under coupled horizontal
and vertical excitations. According to the authors’ knowledge
there is no study available in the literature on parametric
sloshing using finite element method in axisymmetric tanks.

2. Governing Equations

Consider that an axisymmetric tank fixed in cylindrical
coordinate system 𝑂𝑟𝜃𝑧 is moving with respect to inertial
cylindrical coordinate system 𝑂

0
𝑟
0
𝜃
0
𝑧
0
. The origins of these

systems are at center of the tank at the free surface and
pointing upwards in 𝑧-direction. These two coordinate sys-
tems coincide when the tank is at rest. Figure 1 shows the
axisymmetric tanks in the moving cylindrical coordinate
system𝑂𝑟𝜃𝑧 along with the prescribed boundary conditions.

Let the tank be displaced horizontally along 𝑟 by 𝑟
𝑡
(𝑡) and

vertically along 𝑧 by 𝑧
𝑡
(𝑡). The displacements of the tank are

governed by

𝑋 = [𝑟
𝑡
(𝑡) , 𝑧
𝑡
(𝑡)] . (1)

Let the tank be filled with fluid to a depth ℎ. Fluid is assumed
to be inviscid and incompressible, and motion is irrotational.



Advances in Acoustics and Vibration 3

Therefore the fluid motion is governed by Laplace’s equation
with the unknown as velocity potential 𝜙:

∇
2
0 = 0, (2)

where ∇2 = 𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2
𝜕2

𝜕𝜃2
+

𝜕2

𝜕𝑧2
. (3)

Equation (2) is an elliptic partial differential equation and
needs Neumann and Dirichlet boundary conditions to solve.
The fluid obeys Neumann boundary conditions on the walls
of the container and Dirichlet boundary conditions on the
liquid free surface. In the moving coordinate system the
velocity component of the fluid normal to the walls is zero.
Hence, on the bottom and on the walls of the tank (Γ

𝐵
) we

have
𝜕0

𝜕𝑟

𝑟=𝑅, 𝑅in
= 0;

𝜕0

𝜕𝑧

𝑧=−ℎ
= 0. (4)

On the free surface (Γ
𝑆
), liquid obeys dynamic and kinematic

boundary conditions, respectively, given by

𝜕0

𝜕𝑡

𝑧=𝜉
+
1

2
∇0 ⋅ ∇0 + (𝑔 + 𝑧



𝑡
) 𝜉 + 𝑟𝑟



𝑡
= 0, (5)

𝜕𝜉

𝜕𝑡
+
𝜕0

𝜕𝑟

𝜕𝜉

𝜕𝑟
−
𝜕0

𝜕𝑧
= 0, (6)

where 𝜉 is the free surface elevationmeasured vertically above
the still water level, 𝑟

𝑡
and 𝑧
𝑡
are the horizontal and vertical

accelerations of the tank, and 𝑔 is acceleration due to gravity.

3. Governing Equation for Dynamic Stability
of Free Surface

The possible general solution of the Laplace equation, which
satisfies the previously given boundary conditions on the
rigid surfaces for axisymmetric tanks, can be represented as
[14]

0=

∞

∑
𝑚=0

∞

∑
𝑛=1

cosh [(𝜌
𝑚𝑛
/𝑅) (𝑧+ℎ)]

cosh [(𝜌
𝑚𝑛
/𝑅) ℎ]

cos𝑚𝜃𝑀
𝑚
(
𝜌
𝑚𝑛

𝑅
𝑟)𝐹
𝑚𝑛(𝑡) ,

𝜉 =

∞

∑
𝑚=0

∞

∑
𝑛=1

cos𝑚𝜃𝑀
𝑚
(
𝜌
𝑚𝑛

𝑅
𝑟) 𝑧
𝑚𝑛

(𝑡) ,

(7)

where 𝑚 is the circumferential mode number and n is the
radial wave number. 𝐹

𝑚𝑛
(𝑡), 𝑧
𝑚𝑛
(𝑡) are the time evolution

functions and will be determined from the initial boundary
conditions.The function𝑀

𝑚
(𝜌
𝑚𝑛
𝑟) is different for cylindrical

and annular tanks and is given by [14]

𝑀
𝑚
(
𝜌
𝑚𝑛

𝑅
𝑟)

=

{{{{{{

{{{{{{

{

𝐽
𝑚
(
𝜌
𝑚𝑛

𝑅
𝑟)

for cylindrical tanks,
𝐽
𝑚
(
𝜌
𝑚𝑛

𝑅
𝑟)𝑌
𝑚
(𝜌
𝑚𝑛
𝑅) − 𝐽

𝑚
(𝜌
𝑚𝑛
𝑅)𝑌
𝑚
(
𝜌
𝑚𝑛

𝑅
𝑟)

for annular tanks,

(8)

where in (9), 𝐽
𝑚
is the Bessel function of the first kind of order

𝑚 and 𝑌
𝑚
is the Bessel function of the second kind of order

𝑚. For cylindrical tank, 𝜌
𝑚𝑛

are the roots of

𝜕𝐽
𝑚
((𝜌
𝑚𝑛
/𝑅) 𝑟)

𝜕𝑟

𝑟=𝑅
= 0. (9)

And for annular cylindrical tank, 𝜌
𝑚𝑛

are the roots of

𝐽


𝑚
(𝜌
𝑚𝑛
) 𝑌


𝑚
(𝑘𝜌
𝑚𝑛
) − 𝑌


𝑚
(𝜌
𝑚𝑛
) 𝐽


𝑚
(𝑘𝜌
𝑚𝑛
) = 0, (10)

where 𝑘 = 𝑅in/𝑅 is the ratio of inner radius to outer radius of
the tank.

To obtain the equation which governs the free surface
stability, the free surface boundary conditions (5) and (6) are
linearized and the solution of Laplace equation is substituted
in the linearized boundary conditions. The linearized free
surface boundary conditions obtained considering pure ver-
tical excitation exists are

𝜕0

𝜕𝑡

𝑧=𝜉
+ (𝑔 + 𝑧



𝑡
) 𝜉 = 0,

𝜕𝜉

𝜕𝑡
−
𝜕0

𝜕𝑧
= 0.

(11)

Substituting (7) into (11), we get

𝑑𝐹
𝑚𝑛

(𝑡)

𝑑𝑡
+ (𝑔 + 𝑧



𝑡
) 𝑧
𝑚𝑛

(𝑡) = 0, (12)

𝑑𝑧
𝑚𝑛

(𝑡)

𝑑𝑡
− 𝜆
𝑚𝑛

tanh (𝜆
𝑚𝑛
ℎ) 𝐹
𝑚𝑛

(𝑡) = 0. (13)

Differentiating (12) w.r.t. time and substituting (13), we get

𝑑2𝑧
𝑚𝑛 (𝑡)

𝑑𝑡2
+ 𝜔
2

𝑚𝑛
(1 +

𝑧
𝑡

𝑔
)𝑧
𝑚𝑛 (𝑡) = 0, (14)

where

𝜔
𝑚𝑛

= √
𝑔𝜌
𝑚𝑛

𝑅
tanh(

𝜌
𝑚𝑛
ℎ

𝑅
). (15)

Equation (15) gives the slosh frequencies of the free surface for
cylindrical and annular tanks. The values of 𝜌

𝑚𝑛
are different

for cylindrical and annular tanks and are calculated from
(9), (10), respectively. The tank is assumed to be excited
periodically with 𝑧

𝑡
(𝑡) = 𝑎V cos(𝜔V𝑡), where 𝑎V is vertical

forcing amplitude, 𝜔V is vertical forcing angular frequency,
and 𝑡 is time. Under harmonic vertical excitation (14) reduces
to

𝑑
2𝑧
𝑚𝑛 (𝑇)

𝑑𝑇2
+ Ω
2

𝑚𝑛
(1 − 𝑘V cos (2𝑇)) 𝑧𝑚𝑛 (𝑇) = 0, (16)

where 𝑇 = (1/2)𝜔V𝑡, Ω𝑚𝑛 = 𝜔
𝑚𝑛
/𝜔V, and 𝑘V = 𝑎V𝜔

2

V/𝑔. Equa-
tion (16) is Mathieu’s equation.The stability and instability of
the free surface under vertical excitation are guided by (16).

Mathieu equation is a second-order differential equation
with periodic coefficients. The solution of Mathieu equation
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may be bounded or unbounded, that is, stable or unstable. If
the solution is bounded, it may be periodic, or nonperiodic.
The theory of Mathieu equation is well documented by
McLachlan [6], and Mathieu equation applications con-
cerning parametric instability are documented by Bolotin
[15]. The form of the solution for Mathieu equation can
be obtained by Floquet’s theory [16]. According to Floquet
theory the solution of Mathieu equation can be expressed
as a linear combination of two linearly independent Floquet
solutions 𝐹

𝑟
(𝑧) and 𝐹

𝑟
(−𝑧). The Floquet solution can be

represented in the form

𝐹
𝑟 (𝑧) = 𝑒

𝑖𝑟𝑧
𝑝 (𝑧) , (17)

where 𝑟 is called characteristic exponent and depends on
Ω
𝑚𝑛
, 𝑘V and 𝑝(𝑧) is a periodic function with period 𝜋. The

behaviour of the solution can be obtained from (17). Solution
ofMathieu equation is boundedwhen the value of 𝑟 is real and
unboundedwhen the value of 𝑟 is complex. In stable solution,
if 𝑟 is irrational then solution is not periodic, if 𝑟 is rational
then solution is periodic but not with period 𝜋 or 2𝜋, and if 𝑟
is an integer then solution is periodic with period 𝜋 or 2𝜋.

The behaviour of the solution can be obtained from the
stability chart, a plot of system parametersΩ

𝑚𝑛
, 𝑘V. The plots

have regions of stability and instability, fromwhich behaviour
of solution can be sought. The stable and instable regions
are separated by boundary curves, on which the solution is
periodic with period 𝜋 or 2𝜋. To plot the stability chart it
is needed to plot only the boundary curves. The periodic
solutions on the boundary curves can be expanded as a
Fourier series [15].The periodic solutionwith a period 2𝜋 can
be written in the form

𝑧 (𝑡) =

∞

∑
𝑘=1,3,5

(𝑎
𝑘
sin 𝑘𝑡

2
+ 𝑏
𝑘
cos 𝑘𝑡

2
) . (18)

Substituting the series (18) into (16) and equating the coeffi-
cients of identical sine and cosine terms lead to the following
system of linear homogenous algebraic equations:

(1 +
𝑘V

2
−

1

4Ω2
𝑚𝑛

)𝑎
1
−
𝑘V

2
𝑎
3
= 0,

(1 −
𝑘2

4Ω2
𝑚𝑛

)𝑎
𝑘
−
𝑘V

2
(𝑎
𝑘−2

+ 𝑎
𝑘+2

) = 0 𝑘 = 3, 5, 7, . . . ,

(1 −
𝑘V

2
−

1

4Ω2
𝑚𝑛

)𝑏
1
−
𝑘V

2
𝑏
3
= 0,

(1 −
𝑘2

4Ω2
𝑚𝑛

)𝑏
𝑘
−
𝑘V

2
(𝑏
𝑘−2

+ 𝑏
𝑘+2

) = 0 𝑘 = 3, 5, 7, . . . .

(19)

The periodic solution with period 𝜋 can be expressed in
Fourier series as

𝑧 (𝑡) = 𝑏
0
+

∞

∑
𝑘=2,4,6

(𝑎
𝑘
sin 𝑘𝑡

2
+ 𝑏
𝑘
cos 𝑘𝑡

2
) . (20)

Substituting the series (20) into (16) and equating the coeffi-
cients of identical sine and cosine terms lead to the following
system of linear homogenous algebraic equations:

(1 −
1

Ω2
𝑚𝑛

)𝑎
2
−
𝑘V

2
𝑎
4
= 0,

(1 −
𝑘2

4Ω2
𝑚𝑛

)𝑎
𝑘
−
𝑘V

2
(𝑎
𝑘−2

+ 𝑎
𝑘+2

) = 0 𝑘 = 4, 6, 8, . . . ,

𝑏
0
−
𝑘V

2
𝑏
2
= 0,

(1 −
1

Ω2
𝑚𝑛

)𝑏
2
−
𝑘V

2
(𝑏
0
+ 𝑏
4
) = 0,

(1 −
𝑘2

4Ω2
𝑚𝑛

)𝑏
𝑘
−
𝑘V

2
(𝑏
𝑘−2

+ 𝑏
𝑘+2

) = 0 𝑘 = 4, 6, 8, . . . .

(21)

The system of linear homogenous equations (19) and (21) has
a nontrivial solution when the determinant composed of the
coefficients is zero. The determinants are written as



1 ±
𝑘V

2
−

1

4Ω2
𝑛

−
𝑘V

2
0 ⋅ ⋅ ⋅

−
𝑘V

2
1 −

9

4Ω2
𝑛

−
𝑘V

2
⋅ ⋅ ⋅

0 −
𝑘V

2
1 −

25

4Ω2
𝑛

⋅ ⋅ ⋅

...
...

... d



= 0. (22)

Equation (22) gives determinant obtained from both the
conditions of (19) combined under the ± sign:



1 −
1

Ω2
𝑛

−
𝑘V

2
0 ⋅ ⋅ ⋅

−
𝑘V

2
1 −

4

Ω2
𝑛

−
𝑘V

2
⋅ ⋅ ⋅

0 −
𝑘V

2
1 −

16

Ω2
𝑛

⋅ ⋅ ⋅

...
...

... d



= 0,



1 −
𝑘V

2
0 0 ⋅ ⋅ ⋅

−𝑘V 1 −
1

Ω2
𝑛

−
𝑘V

2
0 ⋅ ⋅ ⋅

0 −
𝑘V

2
1 −

4

Ω2
𝑛

−
𝑘V

2
⋅ ⋅ ⋅

0 0 −
𝑘V

2
1 −

16

Ω2
𝑛

⋅ ⋅ ⋅

...
...

...
... d



= 0.

(23)

By solving the previously determinants, a stability map can
be plotted. The stability chart for (16) is shown in Figure 2.
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Figure 2: Stability chart for dynamic stability of free surface under
vertical excitations.

From Figure 2, we can predict the stability of the free surface.
If the amplitude and frequency of the external excitation lie
inside the curves (grey colored region), the free surface is
unstable, and the amplitude grows unbounded exponentially.
If the parameters of external excitation are outside the curves
the free surface is stable. Thus from the stability charts, the
stability of the plane free surface of fluid can be predicted.

4. Numerical Modeling of Nonlinear Sloshing

In the present section, numerical modeling of nonlin-
ear sloshing response using finite element method is dis-
cussed. The external excitation will excite only the anti-
symmetric modes of sloshing in an axisymmetric tank; one
can expand the velocity potential 𝜙 in Fourier series of
cos𝑚𝜃-typemodes.Thus the velocity potential takes the form
𝜙(𝑟, 𝑧, 𝜃, 𝑡) = 𝜙(𝑟, 𝑧, 𝑡) cos𝑚𝜃 [17]. By substituting this into
(2), we get the Laplace equation and the Neumann boundary
condition for axisymmetric tanks as

∇
2
0 = 0, (24)

where ∇2 = 𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+

𝜕
2

𝜕𝑧2
−
𝑚2

𝑟2
, (25)

𝜕0

𝜕𝑟

𝑟=𝑅,𝑅in
= 0;

𝜕0

𝜕𝑧

𝑧=−ℎ
= 0, (26)

where the angular variable 𝜃 is separated. The governing
equation is independent of the variable 𝜃 now; similarly the
boundary conditions become independent of the variable 𝜃.
Thus the 3-dimensional problem of sloshing in axisymmetric

tanks can be modeled numerically as a 2-dimensional prob-
lem in the plane𝑂𝑟𝑧. In the present study, non-linear sloshing
analysis is carried out completely using 2-dimensional finite
element method. The finite element model based on mixed
Eulerian-Lagrangian scheme is adopted. The free surface
nodes behave like Lagrangian particles and interior nodes
behave like Eulerian particles. For this formulation, the free-
surface kinematic and boundary conditions (5) and (6),
respectively, are modified and written in Lagrangian form as
[18]

𝜕0

𝜕𝑡

𝑧= 𝜉
=

1

2
∇0 ⋅ ∇0 − (𝑔 + 𝑧



𝑡
) 𝜉 − 𝑟𝑟



𝑡
= 0, (27)

𝑑𝑟

𝑑𝑡
=
𝜕0

𝜕𝑟
;

𝑑𝑧

𝑑𝑡
=
𝜕0

𝜕𝑧
. (28)

The problem of sloshing is non-linear because the free-
surface position is not known a priori and the boundary
conditions have non-linear terms. The sloshing problem is
evaluated as an initial boundary value problem; to solve the
problem, fluid is assumed to be at rest with some initial
perturbation on the free surface.The initial conditions for the
free surface in themoving Cartesian system at 𝑡 = 0 and 𝑧 = 0

are assumed as

0 (𝑟, 0, 0) = −𝑟
𝑑𝑟
𝑡
(𝑡)

𝑑𝑡
− 𝑧

𝑑𝑧
𝑡
(𝑡)

𝑑𝑡
, (29)

𝜉 (𝑟, 0) = 0 for horizontal excitation, (30)

𝜉 (𝑟, 0) = 𝜉
0

for vertical excitation, (31)

where 𝜉
0
is the initial elevation of the free surface. Initial

condition in (31) is used in case of pure vertical excitations
only because in case of vertical excitation some initial
perturbation is needed on free surface and without this initial
perturbation, there will not be any oscillation in the fluid
free surface. Equations (24)–(31) give complete behaviour
of nonlinear sloshing flow under coupled horizontal and
vertical excitations. In order to solve this nonlinear sloshing
problem, time interval 𝑡 is divided into a finite number of
time steps, 𝑡

𝑛
= 𝑛Δ𝑡 (𝑛 = 0, 1, 2, 3, . . .), at a particular

time step (𝑛 = 0), the initial boundary conditions (29)–
(31) are known, and using these initial conditions along
with the boundary condition (26), Laplace equation (24) is
solved to get velocity potential 𝜙, with which velocity V is
evaluated; with these evaluated velocities the kinematic and
dynamic free surface boundary conditions, (27)-(28) are time
integrated and the position of free surface is updated to get
the free surface position for the next time step (𝑛 = 1). In
this manner the sloshing response is numerically simulated.
The authors have developed a finite element numerical
formulation for nonlinear sloshing response for sloshing in
2D rectangular tanks [19]. The same numerical formulation
is followed here; the present simulation is an extension of
[19] to axisymmetric containers. In the present paper the
numerical formulation is explained briefly; for complete
in-depth explanation and algorithm readers can refer to
[19].
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4.1. Finite Element Formulation. Four noded axisymmetric
isoparametric quadrilateral ring elements are used to dis-
cretize the fluid domain. By introducing the finite element
shape functions the liquid velocity potential can be approx-
imated as

𝜙 (𝑥, 𝑧) =

𝑛

∑
𝑗=1

𝑁
𝑗 (𝑥, 𝑧) 𝜙𝑗, (32)

where𝑁
𝑗
is finite element shape function, 𝑛 is the number of

nodes in the element, and 𝜙
𝑗
is the nodal velocity potential.

On applying Galerkin residual method to Laplace equation,
we get

𝐾𝜙 = 0 (33)

with matrix 𝐾 defined by

𝐾 = ∫
Ω

(∇𝑁)
𝑇
(∇𝑁) 𝑑Ω, (34)

where Ω is complete liquid domain. Equation (33) is used to
calculate velocity potential 𝜙, for the interior nodes using the
known free surface velocity potential.

4.2. Velocity Recovery. To get the free surface position for
the next time step it is required to compute velocities.
In order to derive a smoothed, accurate, and continuous
velocity, patch recovery technique [20] is applied. In patch
recovery technique, the continuous velocity field is obtained
by considering the linear interpolation of the velocities at the
Gauss integration points,

V̂ = 𝑎
1
+ 𝑎
2
𝜉 + 𝑎
3
𝜂 + 𝑎
4
𝜉𝜂, (35)

where V̂ is any velocity component (V̂
𝑥
or V̂
𝑦
), 𝜉, 𝜂 are the

Gauss locations, and 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
are unknowns which need

to be evaluated. To evaluate these unknowns, a least square fit
is considered between V̂ and V,

𝐹 (𝑎) =

4

∑
𝑖=1

{V̂ (𝜉
𝑖
, 𝜂
𝑖
) − V (𝜉

𝑖
, 𝜂
𝑖
)}
2
, (36)

where 𝑖 is 2×2 order Gauss integration points.Then, the four
unknown coefficients are determined from four simultaneous
equations obtained from

𝜕𝐹 (𝑎)

𝜕𝑎
𝑘

= 0; 𝑘 = 1, 2, 3, 4. (37)

Substituting the obtained 𝑎
𝑘
’s in (35) gives the velocity

values for individual elements and these are averaged for
the common nodes. Finally, a smoothed velocity field which
is interelement continuous is constructed by interpolating
the finite element shape functions used in (32) and nodal
averaged velocities. The global continuous velocity field
V (V
𝑥
or V
𝑦
) is given as

V = 𝑁 ⋅ V̂. (38)

4.3. Numerical Time Integration and Free Surface Updating.
After calculating the velocity at a time step 𝑡, we need to cal-
culate the position of free surface from (28) anddetermine the
potential on the free surface using (27) for the next time step
𝑡+Δ𝑡. As a result, the liquidmesh and the boundary condition
required for the next time step are established. The fourth-
order Runge-Kutta method using explicit time integration is
employed in the present paper for time marching [19].

4.4. Regridding Algorithm. At the beginning of the numerical
simulation, the free surface nodes are uniformly distributed
along the free surface. As the time proceeds the free surface
nodes are spaced unequally and cluster into a steep gradient
leading to numerical instability. This problem occurs for a
long time simulation; to avoid this instability an automatic
regridding condition using cubic spline is employedwhen the
movement of the nodes is 75% more or less than the initial
grid spacing [19].

5. Numerical Results and Discussion

A code is developed following the previous numerical for-
mulation for computing sloshing response under vertical
excitations and coupled excitation in axisymmetric tanks. A
rigid cylindrical tank of radius 1.115m filled with water to a
depth of half of radius and a rigid annular tank of outer radius
1.115m, inner radius of 0.2230m (0.2 times outer radius, 𝑘 =
𝑅in/𝑅 = 0.2) filled with water to a depth of half of net radius,
are considered for the numerical simulation of liquid sloshing
response.The finite elementmesh for the axisymmetric tanks
considered is shown in Figure 3. For different values of 𝑚 =

0, 1, 2 . . . different circumferential modes are obtained. The
dominant mode in most of the applications is the first mode,
𝑚 = 1, because this mode exerts most fluid forces onto the
tank wall [17]. In the present numerical simulation 𝑚 = 1

is considered. From now onwards, the suffix 𝑚 from all the
equations is dropped and it should be noted that𝑚 = 1.

5.1. Free Vibration Analysis. A free vibration problem is
solved first to validate the code for stiffness matrix formu-
lation. A mass matrix 𝑀 (as given in (39)) for the fluid free
surface is computed:

𝑀 =
1

𝑔
∫
Γ
𝑠

𝑁
𝑇
𝑁𝑑Γ
𝑠
. (39)

If 𝜔
𝑛
(𝑚 = 1) denotes the 𝑛th natural slosh frequency of

the fluid and {𝜓
𝑛
} the corresponding mode shape, the free

vibration problem to be solved is

(𝐾 − 𝜔
2

𝑛
𝑀) {Ψ

𝑛
} = 0. (40)

The natural slosh frequencies obtained by solving (40) are
compared with theoretical slosh frequencies obtained from
(15). The roots 𝜌

𝑛
for various modes of cylindrical tanks and

for different 𝑘 values of annular tanks can be obtained from
[21]. For the present problem, the root values for the first
five modes for cylindrical tanks are 𝜌

𝑛
= 1.841, 5.335, 8.535,

11.205, 14.850 and for annular tank (𝑘 = 0.2) are 𝜌
𝑛
= 1.7051,
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Figure 3: A schematic mesh for axisymmetric tanks.

Table 1: Slosh frequencies (rad/s) in axisymmetric tanks.

Mode Cylindrical tank Annular cylindrical tank
Present FEM Theory Present FEM Theory

𝑛 = 1 3.4304 3.4298 2.9827 2.9822
𝑛 = 2 6.8235 6.8158 6.4865 6.4828
𝑛 = 3 8.6915 8.6646 8.6211 8.6036
𝑛 = 4 10.2111 10.1484 10.3933 10.3449

4.9608, 8.4331, 12.1650, 15.9932. Table 1 shows the first four
slosh frequencies in rad/s obtained for the present tanks using
finite element method and the pervious analytical formula.
Both the results are in good match.

5.2. Vertically Excited Tanks. The free surface slosh response
is evaluated using the finite element numerical formulation
discussed previous for different vertical harmonic excitation
amplitudes and frequencies lying inside and outside the
regions of parametric instability. In the numerical simula-
tions, 20 nodes along the 𝑥-direction and 20 nodes along the
𝑧-direction are taken, and a time step of 0.01 s is adopted.The
different cases considered in simulation are marked on the
stability chart as shown in Figure 4.The excitation parameters
for the cases shown in Figure 4 are given in Table 2. The test
cases considered are similar to the cases considered byDodge
et al. [7].

To simulate the vertical slosh response the initial bound-
ary condition on the free surface is assumed to be

𝜉 = 𝜉
0
𝑅 cos(𝜋𝑟

𝑅
) , (41)

where 𝜉
0
= 0.002.

Figures 5(a) and 5(b) show the free-surface elevation at
𝑟 = 𝑅 for case 1 for cylindrical and annular tanks, respectively,
and associated phase plane plots. As case 1 lies in stable
region, the slosh response is stable. The time histories of
the free surface elevation are nondimensionalised. It can
be observed from the phase plane plot that the solution is
bounded.
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Figure 4: Stability chart for sloshing response under vertical
excitations with test cases marked.

Table 2: Excitation parameters for the test cases shown in Figure 4.

Case Ω
𝑛

𝑘V 𝜔V 𝑎V𝜔
2

V

1 1.253 0.5 0.7981𝜔
1

0.5𝑔
2 0.5 0.3 2𝜔

1
0.3𝑔

3 1.0 0.5 𝜔
1

0.5𝑔
4 0.5 0.2 2𝜔

1
0.2𝑔

5 0.6 0.5 1.66𝜔
1

0.5𝑔
6 0.55 0.5 1.8182𝜔

1
0.5𝑔

Figures 6(a) and 6(b) show the free-surface elevation
at 𝑟 = 𝑅 for case 2 for cylindrical and annular tanks
respectively, and associated phase plane plots. As case 2
lies in unstable region, the slosh response is unstable. The
free surface undergoes instability; exponential growth in the
amplitude of free surface can be seen. It can be observed from
the phase plane plot that the solution is unbounded.

Figures 7(a) and 7(b) show the free-surface elevation at
𝑟 = 𝑅 for case 3 for cylindrical and annular tanks, respectively.
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Figure 5: Slosh response and associated phase-plane plot for case 1.

Case 3 also lies in unstable region, but in second instability
region. This case corresponds to instability in the sloshing
mode lying in the second instability region. According to
theory, the effect of parametric resonance gradually reduces
as we move to higher regions of instability. As expected,
the amplitudes do not grow rapidly in this instability region
compared to first instability region response shown in Figures
6(a) and 6(b). In case of annular tank, first the amplitude
of the slosh response started growing exponentially in a
resonance mode and then after certain time the response
reduced gradually. As the amplitude increases the natural
frequency of the system changes and creates low frequency
amplitude oscillations leading to decrease in amplitudes of
response. This behaviour is called detuning effect; under
parametric excitation of frequency close to twice the natural
frequency of a certain mode, the free surface oscillates
exhibiting the shape of that mode. As the excitation ampli-
tude increases, the natural frequency changes and the input
energy can excite the other neighbour modes. If the excited

neighbour nodes are stable, the increase in the amplitude
will be suppressed leading to detuning effect. This detuning
effect can be captured only in non-linear systems. In case of
linear systems [5], the response will be always increasing; this
detuning effect cannot be captured.Thepresent finite element
non-linear numerical model can capture this detuning effect
effectively. No detuning effect was found in cylindrical tank
for the present case, the amplitude increases exponentially,
but themagnitude is lower compared to Figure 6(a), and time
taken to build up instability is large compared to Figure 6(a).
Figures 7(c) and 7(d) show the respective phase-plane plots.
Phase-plane plot for cylinder shows a very slow buildup of
instability.

Figures 8(a) and 8(b) show the slosh response at 𝑟 = 𝑅

for case 4. Case 4 corresponds to instability lying in first
instability region with lower excitation amplitude compared
to case 2. As the excitation amplitude is low, the rate of
increase of amplitude andmagnitude of amplitude will be less
than the response compared to case 2.
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Figure 6: Slosh response and associated phase-plane plot for case 2.

Figures 9(a) and 9(b) show the slosh response for case 5.
Case 5 lies in stable region just outside the instability region.
As expected, a stable response is obtained.

Figures 10(a) and 10(b) show the slosh response for case
6. The parameters for case 6 are close to the parameters of
case 5, but it lies just inside the instability region. Although
the parameters of case 5 and case 6 are close, as expected
the response of the free surface is unstable. For this case
the excitation amplitude is high compared to cases 2 and 4
and thus a rapid increase in the slosh response can be found
compared to Figures 6 and 8.

5.3. Horizontally and Vertically Excited Tanks. In this section
the sloshing response when the tank is subjected to combined
horizontal and vertical excitations is considered. The tank is
assumed to be excited periodically with 𝑧

𝑡
(𝑡) = 𝑎V cos(𝜔V𝑡),

along vertical direction, and 𝑟
𝑡
(𝑡) = 𝑎

ℎ
cos(𝜔

ℎ
𝑡), along the

horizontal direction. The initial conditions required for this
simulation are

𝜙 (𝑟, 0, 0) = 0,

𝜉 (𝑟, 0) = 0.
(42)

No initial perturbation is required as needed in pure ver-
tical excitation; the horizontal harmonic excitation creates
the perturbation needed for slosh response under vertical
excitations. The equation for the free surface obtained from
(16) for pure vertical excitations differs in the case of com-
bined excitations; a forcing term appears on the right side
due to horizontal excitation. Equation (16) under combined
excitation of tank can be written as

𝑑
2𝑧
𝑛
(𝑇)

𝑑𝑇2
+ Ω
2

𝑛
(1 − 𝑘V cos (2𝑇)) 𝑧𝑛 (𝑇) =

𝑑2𝑟
𝑡

𝑑𝑡2
. (43)
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Figure 7: Slosh response and associated phase-plane plot for case 3.
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Figure 8: Slosh response for case 4.
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Figure 9: Slosh response for case 5.
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Figure 10: Slosh response for case 6.
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Figure 11: Slosh response for horizontal excitation alone; 𝜔
ℎ
= 𝜔
𝑛
(1), 𝑎
ℎ
= 0.002m.
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Figure 12: Slosh response for the main resonance with horizontal excitation 𝜔
ℎ
/𝜔
1
= 0.98, 𝑎

ℎ
= 0.002m with vertical excitation parameters

of case 1.
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Figure 13: Slosh response for the first resonance with horizontal excitation 𝜔
ℎ
/𝜔
1
= 0.18, 𝑎

ℎ
= 0.002mwith vertical excitation parameters of

case 1.

Equation (43) is a nonhomogenous Mathieu Hill equation.
It should be noted that the stability chart of the Mathieu-
Hill equation is independent of the term on right-hand side.
The stability chart shown in Figure 2 is still valid, but the
response of the free surface is affected by the presence of
horizontal loading. This horizontal term can produce reso-
nance, which is recognized by the linear growth of amplitude
in time. It is known that, under horizontal excitation alone,
when external excitation frequency is equal to fundamental
sloshing frequency the free surface undergoes resonance.
To verify this, response of the free surface is simulated
under horizontal excitation alone with external horizontal
frequency equal to fundamental sloshing frequency. Figures
11(a) and 11(b) show free-surface response for cylindrical

and annular container, respectively, under pure horizontal
excitation when excitation frequency is equal to fundamental
frequency. As expected the response of the free surface shows
resonance phenomenon.

In case of pure horizontal motion the system has only
one resonance frequency; but under combined motion,
system has infinite resonance frequencies. When the hori-
zontal excitation frequency 𝜔

ℎ
is close to fundamental slosh

frequency and when sum or difference of horizontal and
vertical frequencies 𝜔

ℎ
, 𝜔V is closer to fundamental slosh

frequency system undergoes resonance. This resonance is
characterized by linear growth in the amplitude if the vertical
excitation parameters are in stable region. If the vertical
excitation parameters are in unstable region, system grows
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Figure 14: Slosh response for the second resonance with horizontal excitation 𝜔
ℎ
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1
= 1.78, 𝑎
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= 0.002mwith vertical excitation parameters

of case 1.
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Figure 15: Slosh response under combined excitation with vertical excitation parameters of case 2.

exponentially in time. Figures 12–14 show the slosh response
of free surface in cylindrical and annular containers for three
main resonant frequencies of the horizontalmotion (𝜔

ℎ
/𝜔
1
=

0.98, 0.18, 1.78) and under vertical excitation parameters lying
in a stable region test for case 1 as shown in Figure 4.

Figure 12 shows the slosh response for the strongest of
the resonant frequencies in cylindrical and annular tanks.The
horizontal forcing frequency is closer to the first slosh natural
frequency (𝜔

ℎ
/𝜔
1
= 0.98). Figures 13 and 14 show the slosh

response for coupled frequencies (𝜔
ℎ
± 𝜔V) closer to first slosh

natural frequency. It can be observed from the figures that
the sloshing response is high in main resonant frequencies
compared to secondary resonances. Influence of vertical
excitation with horizontal excitation on slosh response is that
if the vertical excitations parameters are in stable region and

the horizontal frequency or coupled frequencies are closer
to sloshing natural frequency resonance takes place which is
characterized by linear increase in the response.

Figures 15–18 show the slosh response in the unstable
regions in the presence of horizontal forcing excitation.
The vertical excitation parameters lie in unstable regions,
and a horizontal forcing amplitude 𝑎

ℎ
= 0.002m with a

forcing frequency 𝜔
ℎ
/𝜔
1
= 0.5 is considered. The difference

between the present simulation and simulations carried out
in Section 5.2 is that in the present case tank is also excited
horizontally. This horizontal forcing creates necessary initial
perturbation required for vertical slosh response. Figures
15(a) and 15(b) show the slosh response in cylindrical and
annular tanks with vertical parameters of case 2. This corre-
sponds to the instability of the firstmode in the first instability
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Figure 16: Slosh response under combined excitation with vertical excitation parameters of case 3.
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Figure 17: Slosh response under combined excitation with vertical excitation parameters of case 4.

region. The sloshing response of the combined forced tank
motion, comparedwith slosh response in case of pure vertical
excitation shown in Figure 6, illustrates that the horizontal
forcing excitation delays the occurrence of instability in the
free surface. Figures 16(a) and 16(b) show the slosh response
in cylindrical and annular tanks with vertical excitation
parameters of case 3. This corresponds to the instability
of the first mode in the second instability region and thus
shows a less strong parametric resonance compared with
response in Figure 15. On comparing this combined response
with pure vertical excitation response shown in Figure 7,
one can infer that detuning effect takes place in cylindrical
tank, whereas the present detuning effect is lost in annular
tank displaying instability.Thus the horizontal excitationwith
vertical parameters in unstable region can make free-surface
undergo detuning and can cancel off the existed detuning

effect. Figures 17 and 18 show the slosh response in cylindrical
and annular tanks with vertical excitation parameters of case
4 and case 5, respectively. Figures 8 and 9 show slosh response
in case 4 and case 5 for pure vertical excitation. From the
figures we can infer that, the effect of horizontal excitation
is to delay the occurrence of instability.

6. Conclusion

Sloshing response in axisymmetric tanks under pure vertical
excitations and combined horizontal and vertical excitations
is analyzed. In these cases, free surface boundary condition
reduces to a Mathieu equation; free surface undergoes para-
metric instability for some combinations of vertical excitation
frequencies and amplitudes. Stability chart is plotted for the
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Figure 18: Slosh response under combined excitation with vertical excitation parameters of case 6.

dynamic stability analysis from linear equations. A fully non-
linear finite element numerical model has been developed
based on the potential flow theory for simulating the slosh
response. The slosh response is simulated for different cases
lying in the stability chart. In the stable regions, the free sur-
face response is always bounded. In the unstable regions, the
free-surface undergoes parametric resonance characterized
by an unbounded response of the free-surface. In the unstable
regions, even small excitations can cause the growth of small
initial perturbations, if the tank is excited for a sufficiently
long time. The slosh response obtained is in exact agreement
with the theoretical predictions of the stability chart. The
present numerical model can capture detuning effects as
well. Detuning is due to change of frequencies during the
amplitude growth.

Sloshing response under combined horizontal and ver-
tical base excitations is carried out. Slosh response for
combined excitation is unstable if the vertical excitation
parameters lie in unstable region. For vertical excitation
parameters lying in the stable region, it is found that system
undergoes resonance, when coupled frequencies are equal to
slosh frequencies. In addition to the resonant frequency of
the pure horizontal excitation, there exist an infinite number
of additional resonance frequencies due to the combined
motion of the tank. The horizontal excitation, when the
vertical excitation parameters lie in unstable region, delays
the instability and can introduce detuning or cancel detuning
leading to slow buildup of instability.
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