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Radiative Corrections to Low-Energy
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Abstract. The one-loop QED and electroweak radiative corrections to neutrino-deuteron scattering
induced by the neutral current are reexamined, paying a particular attention to the constant term
which has never been treated properly in literature. This problem is closely related to the definition
of the axial-vector coupling constantgA and requires thorough calculations of the constant terms
in the charged current processes, too. We find that the radiative corrections to the neutral current
induced reactions amount to 1.7 (1.5) per cent enhancement,if the Higgs boson mass ismH =
1.5mZ(mH = 5.0mZ) This number happens to be close to that given by Kurylov et al., but we argue
that this is accidental.

This talk is based on the collaboration with Masataka Fukugita [1] (see also [2, 3]),
and is concerned with radiative corrections to the reactions occurring at the Sudbury
Neutrino Observatory (SNO). The observation of the solar neutrinos at SNO has been
playing important roles to resolve the solar neutrino problem [4]. The measurement of
neutrino-deuteron scattering

νe +d −→ e−+ p+ p, (1)
νe +d −→ νe + p+n (2)

has now reached the level that radiative corrections shouldbe included in the analyses
[5]. The first step toward evaluation of the radiative corrections to (1) and (2) was
taken by Towner [6]. Some subtle problems associated with soft photon emission were
pointed out [7] and have been solved [8] by giving due consideration to the energy-
dependence of the wave function overlap between initial andfinal states. There has
remained, however, the problem as to the constant terms of the radiative correction, as
remarked by the authors of [8]. They have evaluated the corrections to (1) by assuming
implicitly that the inner correction to the Gamow-Teller part is the same as that to the
Fermi transition.

The transition amplitudes squared of the charged current processes such as (1) are
expressed in general on theO(α) level as

A(β ) = (1+δout(β ))
[

f 2
V

(

1+δ F
in

)

〈1〉2+g2
A

(

1+δ GT
in

)

〈σ〉2]
, (3)

where fV (≡ 1) andgA are the vector and axial-vector coupling constants. The Fermi
and Gamow-Teller matrix elements are denoted by〈1〉 and〈σ〉, respectively. The outer
correctionδout(β ) is a function of the electron velocityβ and is process-dependent [9].
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(See also ref. [10] for an approach based on effective field theory.) The inner corrections
δ F

in andδ GT
in are in contrast independent of charged current processes considered and are

universal constants [11, 2]. The Fermi part inner correction δ F
in has been known for long

time [12], while the Gamow-Teller partδ GT
in was calculated only recently [2].

The axial-vector coupling constant ˜gA usually quoted in literature is extracted from
the neutron beta decay using the formula

A(β ) = (1+δout(β ))
(

1+δ F
in

)[

〈1〉2 f 2
V + 〈σ〉2g̃2

A

]

. (4)

The polarized neutron beta decay is also used to extract ˜gA instead ofgA [3]. The relation
betweengA andg̃A is obviously given by

g2
A =

(

1+δ F
in

1+δ GT
in

)

g̃2
A , (5)

and this indicatesgA 6= g̃A, because ofδ F
in 6= δ GT

in as was shown by explicit computation in
[2]. This, however, does not cause any practical problem, since the relation between the
“bare"gA and the “redefined " ˜gA is universal, so far as we consider only charged current
processes [11, 13]. Thus the analysis of (1) in [5] need not becorrected essentially.

If we consider neutral current processes such as (2), however, we have to be more
careful about the finite radiative corrections to the axial-vector coupling constant. The
reaction (2) is purely of the Gamow-Teller type and its amplitude squared is written as

B(β ) = (1+∆GT
in )g2

A〈σ〉2
, (6)

where∆GT
in is theO(α) radiative corrections. Using the relation (5), we see that (6) is

expressed in terms of ˜gA as

B(β ) = (1+∆GT
in )

(

1+δ F
in

1+δ GT
in

)

g̃2
A〈σ〉2

. (7)

In [1], we have extracted∆GT
in on the bases of the work of Marciano and Sirlin [14]

and have found

∆GT
in = 0.0192 formH = 1.5mZ, (8)

∆GT
in = 0.0173 formH = 5.0mZ. (9)

Combining these results with the previous calculation of the inner corrections [2]

δ F
in = 0.0237, δ GT

in = 0.0262, (10)

we find that the cross section of (2) is enhanced by the factor

(

1+∆GT
in

)

(

1+δ F
in

1+δ GT
in

)

= 1.017 formH = 1.5mZ,

(

1+∆GT
in

)

(

1+δ F
in

1+δ GT
in

)

= 1.015 formH = 5.0mZ . (11)



Note that this is rather close to the number given in [8] and that the analysis of (2) in [5]
using [8] need not be altered basically. We should, however,like to emphasize that the
approximate agreement of our results (11) with that of [8] issimply due to an accidental
cancellation of errors of the latter, between those caused by putative identification of
constant terms for the Fermi and Gamow-Teller transitions for the charged current
reactions and minor errors in their treatment of the constant terms for neutral current
induced reactions.

Throughout the present work, the so-called one-body impulse approximation is used
and the effect of the spectator nucleon is not included. See ref. [15] in this connection
for an approach based on heavy-baryon chiral perturbation theory. We note as a final
remark that the constant term for the radiative correction to the ratio of neutral to charged
current reaction (after the usual outer correction [8, 9] for the charged current reaction )
is−0.6%, which may be compared with the claimed error (0.5%) of nuclear calculations
for the ratio of tree level cross sections [16].
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