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A new class of generalized functions (d-ρ-η-θ)-type I univex is introduced for a nonsmooth mul-
tiobjective programming problem. Based upon these generalized functions, sufficient optimality
conditions are established. Weak, strong, converse, and strict converse duality theorems are also
derived for Mond-Weir-type multiobjective dual program.

1. Introduction

Generalizations of convexity related to optimality conditions and duality for nonlinear single
objective or multiobjective optimization problems have been of much interest in the recent
past and thus explored the extent of optimality conditions and duality applicability in
mathematical programming problems. Invexity theory was originated by Hanson [1]. Many
authors have then contributed in this direction.

For a nondifferentiable multiobjective programming problem, there exists a gener-
alisation of invexity to locally Lipschitz functions with gradients replaced by the Clarke
generalized gradient. Zhao [2] extended optimality conditions and duality in nonsmooth
scalar programming assuming Clarke generalized subgradients under type I functions.
However, Antczak [3] used directional derivative in association with a hypothesis of an invex
kind following Ye [4]. On the other hand, Bector et al. [5] generalized the notion of convexity
to univex functions. Rueda et al. [6] obtained optimality and duality results for several
mathematical programs by combining the concepts of type I and univex functions. Mishra
[7] obtained optimality results and saddle point results for multiobjective programs under
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generalized type I univex functions which were further generalized to univex type I-vector-
valued functions by Mishra et al. [8]. Jayswal [9] introduced new classes of generalized
α-univex type I vector valued functions and established sufficient optimality conditions
and various duality results for Mond-Weir type dual program. Generalizing the work of
Antczak [3], recently Nahak and Mohapatra [10] obtained duality results for multiobjective
programming problem under (d-ρ-η-θ) invexity assumptions.

In this paper, by combining the concepts ofMishra et al. [8] andNahak andMohapatra
[10], we introduce a new generalized class of (d-ρ-η-θ)-type I univex functions and establish
weak, strong, converse, and strict converse duality results for Mond-Weir type dual.

2. Preliminaries and Definitions

The following convention of vectors in Rn will be followed throughout this paper: x � y ⇔
xi � yi, i = 1, 2, . . . , n; x ≥ y ⇔ x � y, x /=y; x > y ⇔ xi > yi, i = 1, 2, . . . , n. Let D be a
nonempty subset of Rn, η : D × D → Rn, xo be an arbitrary point of D and h : D → R, φ :
R → R, b : D ×D → R+. Also, we denote Rp

≥ = {y : y ∈ Rp and y ≥ 0} and Rk
� = {y : y ∈ Rk

and y � 0}.

Definition 2.1 (Ben-Israel and Mond [11]). Let D ⊆ Rn be an invex set. A function h is called
preinvex on D with respect to η, if for all x, xo ∈ D,

λh(x) + (1 − λ)h(xo) � h
(
xo + λη(x, xo)

)
, ∀λ ∈ [0, 1]. (2.1)

Definition 2.2 (Clarke [12]). The function h is said to be locally Lipschitz at xo ∈ D, if there
exists a neighbourhood v(xo) of xo and a constant k > 0 such that

∣∣h
(
y
) − h(x)

∣∣ � k
∥∥y − x

∥∥ ∀x, y ∈ v(xo), (2.2)

where ‖ · ‖ denotes the euclidean norm. Also, we say that h is locally Lipschitz on D if it is
locally Lipschitz at every point of D.

Definition 2.3 (Bector et al. [5]). A differentiable function h is said to be univex at xo if for all
x ∈ D, we have

b(x, xo)φ(h(x) − h(xo)) � [�h(xo)]
Tη(x, xo). (2.3)

We consider the following nonlinear multiobjective programming problem:

Minimize f(x) =
(
f1(x), f2(x), . . . , fp(x)

)

subject to g(x) � 0,
(MP)



Advances in Operations Research 3

where x ∈ D and the functions f : D → Rp, g : D → Rk. Let X = {x ∈ D : g(x) � 0} be a set
of feasible solutions of (MP) . For xo ∈ D, if we denote by

J(xo) =
{
j ∈ {1, 2, . . . , k} : gj(xo) = 0

}
,

J̃(xo) =
{
j ∈ {1, 2, . . . , k} : gj(xo) < 0

}
,

J(xo) =
{
j ∈ {1, 2, . . . , k} : gj(xo) > 0

}
,

(2.4)

then

J(xo) ∪ J̃(xo) ∪ J(xo) = {1, 2, . . . , k}. (2.5)

Since the objectives in multiobjective programming problems generally conflict with
one another, an optimal solution is chosen from the set of efficient or weak efficient solution
in the following sense by Miettinen [13].

Definition 2.4. A point xo ∈ X is said to be an efficient solution of (MP) , if there exists no
x ∈ X such that

f(x) ≤ f(xo). (2.6)

Definition 2.5. A point xo ∈ X is said to be a weak efficient solution of (MP) , if there exists no
x ∈ X such that

f(x) < f(xo). (2.7)

Now we define a new class of (d-ρ-η-θ)-type I univex functions which generalize the
work of Mishra et al. [8] and Nahak andMohapatra [10]. Let functions f = (f1, . . . , fp) : D →
Rp and g = (g1, . . . , gk) : D → Rk are directionally differentiable at xo ∈ X, η : X ×D → Rn,
bo and b1 are nonnegative functions defined onX×D, φo : Rp → Rp and φ1 : Rk → Rk, while
ρ ∈ Rp+k and θ(·, ·) : X ×D → Rn be vector-valued functions.

Definition 2.6. (f, g) is said to be (d-ρ-η-θ)-type I univex at xo ∈ D if for all x ∈ X

bo(x, xo)φo

(
f(x) − f(xo)

)
� f ′(xo;η(x, xo)

)
+ ρ1‖θ(x, xo)‖2,

−b1(x, xo)φ1
(
g(xo)

)
� g ′(xo;η(x, xo)

)
+ ρ2‖θ(x, xo)‖2.

(2.8)

If the inequalities in f are strict (whenever x /=xo), then (f, g) is said to be semistrictly
(d-ρ-η-θ)-type I univex at xo.

Remark 2.7. (i) If ρ1, ρ2 = 0, bo(x, xo) = b1(x, xo) = 1, φo(t) = t, φ1(t) = t, then above definition
becomes that of d-type I function [14].
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(ii) If in the above definition, the functions f and g are differentiable functions such
that f ′(xo;η(x, xo)) = [�f(xo)]

Tη(x, xo), g ′(xo;η(x, xo)) = [�g(xo)]
Tη(x, xo); ρ1, ρ2 = 0;

bo(x, xo) = b1(x, xo) = 1, φo(t) = t, φ1(t) = t, then we obtain the definition of type I function
[15].

Definition 2.8. (f, g) is said to be a weak strictly pseudo-quasi (d-ρ-η-θ)-type I univex at xo ∈
D if for all x ∈ X

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0 =⇒ f ′(xo;η(x, xo)
)
< −ρ1‖θ(x, xo)‖2,

b1(x, xo)φ1
(
g(xo)

)
� 0 =⇒ g ′(xo;η(x, xo)

)
� −ρ2‖θ(x, xo)‖2.

(2.9)

Definition 2.9. (f, g) is said to be strong pseudo-quasi (d-ρ-η-θ)-type I univex at xo ∈ D if for
all x ∈ X

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0 =⇒ f ′(xo;η(x, xo)
) ≤ −ρ1‖θ(x, xo)‖2,

b1(x, xo)φ1
(
g(xo)

)
� 0 =⇒ g ′(xo;η(x, xo)

)
� −ρ2‖θ(x, xo)‖2.

(2.10)

Definition 2.10. (f, g) is said to be weak strictly-pseudo (d-ρ-η-θ)-type I univex at xo ∈ D if
for all x ∈ X

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0 =⇒ f ′(xo;η(x, xo)
)
< −ρ1‖θ(x, xo)‖2,

b1(x, xo)φ1
(
g(xo)

)
� 0 =⇒ g ′(xo;η(x, xo)

)
< −ρ2‖θ(x, xo)‖2.

(2.11)

Definition 2.11. (f, g) is said to be a weak quasistrictly-pseudo (d-ρ-η-θ)-type I univex at xo ∈
D if for all x ∈ X

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0 =⇒ f ′(xo;η(x, xo)
)

� −ρ1‖θ(x, xo)‖2,

b1(x, xo)φ1
(
g(xo)

)
� 0 =⇒ g ′(xo;η(x, xo)

) ≤ −ρ2‖θ(x, xo)‖2.
(2.12)

Remark 2.12. In the above definitions, if f and g are differentiable functions such that
f ′(xo;η(x, xo)) = [�f(xo)]

Tη(x, xo); g ′(xo;η(x, xo)) = [�g(xo)]
Tη(x, xo); ρ1 = ρ2 = 0, then

we obtain the functions given in Mishra et al. [8].

3. Sufficient Optimality Conditions

In this section, we discuss sufficient optimality conditions for a point to be an efficient
solution of (MP) under generalized (d-ρ-η-θ)-type I univex assumptions. In the following
theorems, μ = (μ1, . . . , μp) ∈ Rp and λ = (λ1, . . . , λJ(xo)) ∈ J(xo).
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Theorem 3.1. Suppose there exists a feasible solution xo for (MP), vector functions η : X×D → Rn

and vectors μ > 0 and λ � 0, such that

(i)
∑p

i=1 μif
′
i(xo;η(x, xo)) +

∑
j∈J(xo) λjg

′
j(xo;η(x, xo)) � 0,

(ii) (f, gJ(xo)) is a strong pseudo-quasi (d-ρ-η-θ)-type I univex at xo,

(iii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ RJ(xo), v � 0 ⇒ φ1(v) � 0; bo(x, xo) > 0,
b1(x, xo) � 0,

(iv)
∑p

i=1 μiρ
1
i +

∑
j∈J(xo) λjρ

2
j � 0,

then xo is an efficient solution of (MP).

Proof. Suppose xo is not an efficient solution of (MP), then there exists x ∈ X such that
f(x) ≤ f(xo).

Since gj(xo) = 0, j ∈ J(xo), therefore by hypothesis (iii), we get

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0,

b1(x, xo)φ1
(
gJ(xo)(xo)

)
� 0.

(3.1)

which using hypothesis (ii) yields

f ′(xo;η(x, xo)
) ≤ −ρ1‖θ(x, xo)‖2,

g ′
J(xo)

(
xo;η(x, xo)

)
� −ρ2J(xo)‖θ(x, xo)‖2.

(3.2)

Also μ > 0 and λ � 0, so, we get

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
< −

p∑

i=1

μiρ
1
i ‖θ(x, xo)‖2,

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
� −

∑

j∈J(xo)

λjρ
2
j ‖θ(x, xo)‖2.

(3.3)

Adding the above inequalities, we obtain

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
+

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
< −

⎛

⎝
p∑

i=1

μiρ
1
i +

∑

j∈J(xo)

λjρ
2
j

⎞

⎠‖θ(x, xo)‖2

� 0
(
By hypothesis (iv)

)
,

(3.4)

which contradicts hypothesis (i). Hence the proof.
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Theorem 3.2. Suppose there exists a feasible solution xo for (MP), vector functions η : X×D → Rn

and vectors μ ≥ 0 and λ � 0, such that

(i)
∑p

i=1 μif
′
i(xo;η(x, xo)) +

∑
j∈J(xo) λjg

′
j(xo;η(x, xo)) � 0,

(ii) (f, gJ(xo)) is a weak strictly-pseudo-quasi (d-ρ-η-θ)-type I univex at xo,

(iii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ RJ(xo), v � 0 ⇒ φ1(v) � 0; bo(x, xo) > 0,
b1(x, xo) � 0,

(iv)
∑p

i=1 μiρ
1
i +

∑
j∈J(xo) λjρ

2
j � 0,

then xo is an efficient solution of (MP).

Proof. Suppose xo is not an efficient solution of (MP), then there exists x ∈ X such that f(x) ≤
f(xo).

As gj(xo) = 0, j ∈ J(xo), so, hypothesis (iii) yields

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0,

b1(x, xo)φ1
(
gJ(xo)(xo)

)
� 0.

(3.5)

By hypothesis (ii), the above inequalities imply

f ′(xo;η(x, xo)
)
< −ρ1‖θ(x, xo)‖2,

g ′
J(xo)

(
xo;η(x, xo)

)
� −ρ2J(xo)

‖θ(x, xo)‖2.
(3.6)

Since μ ≥ 0 and λ � 0, we get

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
< −

p∑

i=1

μiρ
1
i ‖θ(x, xo)‖2,

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
� −

∑

j∈J(xo)

λjρ
2
j ‖θ(x, xo)‖2.

(3.7)

Adding the above inequalities, we obtain

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
+

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
< −

⎛

⎝
p∑

i=1

μiρ
1
i +

∑

j∈J(xo)

λjρ
2
j

⎞

⎠‖θ(x, xo)‖2

� 0
(
using hypothesis (iv)

)
,

(3.8)

which contradicts hypothesis (i). Hence the proof.
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Theorem 3.3. Suppose there exists a feasible solution xo for (MP), vector functions η : X×D → Rn

and vectors μ ≥ 0 and λ � 0, such that

(i)
∑p

i=1 μif
′
i(xo;η(x, xo)) +

∑
j∈J(xo) λjg

′
j(xo;η(x, xo)) � 0,

(ii) (f, gJ(xo)) is a weak strictly-pseudo (d-ρ-η-θ)-type I univex at xo,

(iii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ RJ(xo), v � 0 ⇒ φ1(v) � 0; bo(x, xo) > 0,
b1(x, xo) � 0,

(iv)
∑p

i=1 μiρ
1
i +

∑
j∈J(xo) λjρ

2
j � 0,

then xo is an efficient solution of (MP).

Proof. Suppose xo is not an efficient solution of (MP), then there exists x ∈ X such that
f(x) ≤ f(xo).

As gj(xo) = 0, j ∈ J(xo), so hypothesis (iii) implies

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0,

b1(x, xo)φ1
(
gJ(xo)(xo)

)
� 0.

(3.9)

Since hypothesis (ii) holds, above inequalities imply

f ′(xo;η(x, xo)
)
< −ρ1

∥∥∥θ(x, xo)
2
∥∥∥,

g ′
J(xo)

(
xo;η(x, xo)

)
< −ρ2J(xo)‖θ(x, xo)‖2.

(3.10)

Also μ ≥ 0 and λ � 0, so we obtain

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
< −

p∑

i=1

μiρ
1
i ‖θ(x, xo)‖2,

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
� −

∑

j∈J(xo)

λjρ
2
j ‖θ(x, xo)‖2.

(3.11)

On adding and using hypothesis (iv), above inequalities yield

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
+

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
< −

⎛

⎝
p∑

i=1

μiρ
1
i +

∑

j∈J(xo)

λjρ
2
j

⎞

⎠‖θ(x, xo)‖2 � 0

(3.12)

which contradicts hypothesis (i). Hence the proof.
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Theorem 3.4. Suppose there exists a feasible solution xo for (MP), vector functions η : X×D → Rn

and vectors μ � 0 and λ > 0, such that

(i)
∑p

i=1 μif
′
i(xo;η(x, xo)) +

∑
j∈J(xo) λjg

′
j(xo;η(x, xo)) � 0,

(ii) (f, gJ(xo)) is weak quasi-strictly-pseudo (d-ρ-η-θ)-type I univex at xo,

(iii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ RJ(xo), v � 0 ⇒ φ1(v) � 0; bo(x, xo) >
0, b1(x, xo) � 0,

(iv)
∑p

i=1 μiρ
1
i +

∑
j∈J(xo) λjρ

2
j � 0,

then xo is an efficient solution of (MP).

Proof. Suppose xo is not an efficient solution of (MP), then there exists x ∈ X such that f(x) ≤
f(xo).

Since gj(xo) = 0, j ∈ J(xo), therefore hypothesis (iii) yields

bo(x, xo)φo

(
f(x) − f(xo)

) ≤ 0,

b1(x, xo)φ1
(
gJ(xo)(xo)

)
� 0.

(3.13)

By hypothesis (ii), we get

f ′(xo;η(x, xo)
)

� −ρ1‖θ(x, xo)‖2,

g ′
J(xo)

(
xo;η(x, xo)

) ≤ −ρ2J(xo)‖θ(x, xo)‖2.
(3.14)

Also μ � 0 and λ > 0, so, we obtain

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
� −

p∑

i=1

μiρ
1
i ‖θ(x, xo)‖2, (3.15)

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
< −

∑

j∈J(xo)

λjρ
2
j ‖θ(x, xo)‖2. (3.16)

On adding and using hypothesis (iv), above inequalities yield

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
+

∑

j∈J(xo)

λjg
′
j

(
xo;η(x, xo)

)
< −

⎛

⎝
p∑

i=1

μiρ
1
i +

∑

j∈J(xo)

λjρ
2
j

⎞

⎠‖θ(x, xo)‖2

� 0,

(3.17)

which contradicts hypothesis (i). Hence the proof.

Now, following Antczak [3], we state following necessary optimality conditions.
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Theorem 3.5 (Karush-Kuhn-Tucker type necessary optimality conditions). If

(i) xo is a weakly efficient solution of (MP),

(ii) gj is continuous at xo for j ∈ J̃(xo),

(iii) there exists a vector functions η : X ×D → Rn,

(iv) for all i = 1, p and j ∈ J(xo), fi and gj are directionally differentiable at xo and the
functions f ′

i(xo;η(x, xo)), i = 1, p and g ′
j(xo;η(x, xo)), j ∈ J(xo) are preinvex functions

of x on X,

(v) the function g satisfies the generalized Slater’s constraint qualification at xo,

then there exists μ ∈ R
p

� and λ ∈ Rk
� such that

p∑

i=1

μif
′
i

(
xo;η(x, xo)

)
+

k∑

j=1

λjg
′
j

(
xo;η(x, xo)

)
� 0 ∀x ∈ X,

λjgj(xo) = 0, j = 1, k.

(3.18)

4. Mond-Weir Type Duality

In this section, we consider Mond-Weir type dual of (MP) and establish weak, strong, con-
verse, and strict converse duality theorems. In this section, we denote gλ = (λ1g1, . . . , λkgk).

Max f
(
y
)

subject to
p∑

i=1

μif
′
i

(
y, η

(
x, y

))
+

k∑

j=1

λjg
′
j

(
y, η

(
x, y

))
� 0 ∀x ∈ X,

λjgj
(
y
)

� 0, j = 1, k,

(MWD)

where y ∈ D, μ ∈ R
p

�, λ ∈ Rk
�, η : X ×D → Rn. LetW be the set of feasible points of (MWD).

Theorem 4.1 (Weak Duality). Let x and (y, μ, λ, η) be the feasible solutions for (MP) and (MWD)
respectively. If

(i) (f, gλ) is a weak strictly-pseudo-quasi (d-ρ-η-θ)-type I univex at y,

(ii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ Rk, v � 0 ⇒ φ1(v) � 0; bo(x, y) >
0, b1(x, y) � 0,

(iii)
∑p

i=1 μiρ
1
i +

∑k
j=1 ρ

2
j � 0,

then

f(x) � f
(
y
)
. (4.1)

Proof. Suppose to the contrary that

f(x) ≤ f
(
y
)
. (4.2)
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Since λjgj(y) � 0, j = 1, k, hypothesis (ii) yields

bo
(
x, y

)
φo

(
f(x) − f

(
y
)) ≤ 0,

b1
(
x, y

)
φ1

(
gλ
(
y
))

� 0.
(4.3)

As hypothesis (i) holds, therefore the above inequalities imply

f ′(y;η
(
x, y

))
< −ρ1∥∥θ(x, y)∥∥2

,

g ′
λ

(
y;η

(
x, y

))
� −ρ2∥∥θ(x, y)∥∥2

.
(4.4)

Also μ ∈ R
p

�, so, we obtain

p∑

i=1

μif
′
i

(
y;η

(
x, y

))
< −

p∑

i=1

μiρ
1
i

∥∥θ(x, y)
∥∥2

,

k∑

j=1

λjg
′
j

(
y;η

(
x, y

))
� −

k∑

j=1

ρ2j
∥∥θ

(
x, y

)∥∥2
.

(4.5)

On adding above inequalities and using hypothesis (iii), we get

p∑

i=1

μif
′
i

(
y;η

(
x, y

))
+

k∑

j=1

λjg
′
j

(
y;η

(
x, y

))
< −

⎛

⎝
p∑

i=1

μiρ
1
i +

k∑

j=1

ρ2j

⎞

⎠
∥∥θ(x, y)

∥∥2 � 0, (4.6)

which is a contradiction to the dual constraint. Hence the proof.

The proofs of the following weak duality theorems are similar to Theorem 4.1 and
hence are omitted.

Theorem 4.2 (Weak Duality). Let x and (y, μ, λ, η) be the feasible solutions for (MP) and (MWD),
respectively, with μi > 0, i = 1, p. If

(i) (f, gλ) is a strong pseudo-quasi (d-ρ-η-θ)-type I univex at y,

(ii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ Rk, v � 0 ⇒ φ1(v) � 0; bo(x, y) >
0, b1(x, y) � 0,

(iii)
∑p

i=1 μiρ
1
i +

∑k
j=1 ρ

2
j � 0,

then f(x) � f(y).

Theorem 4.3 (Weak Duality). Let x and (y, μ, λ, η) be the feasible solutions for (MP) and (MWD),
respectively. If

(i) (f, gλ) is weak strictly-pseudo (d-ρ-η-θ)-type I univex at y,

(ii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ Rk, v � 0 ⇒ φ1(v) � 0; bo(x, y) >
0, b1(x, y) � 0,
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(iii)
∑p

i=1 μiρ
1
i +

∑k
j=1 ρ

2
j � 0,

then f(x) � f(y).

Corollary 4.4. Let xo and (yo, μ, λ, η) be the feasible solutions for (MP) and (MWD), respectively,
such that f(xo) = f(yo). If the weak duality holds between (MP) and (MWD) for all feasible solutions
of two problems, then xo is efficient for (MP) and (yo, μ, λ, η) is efficient for (MWD).

Proof. Suppose that xo is not efficient for (MP), then for some x ∈ X

f(x) ≤ f(xo) = f
(
yo

)
. (4.7)

which contradicts weak duality theorems as (yo, μ, λ, η) is feasible for (MWD) and x is
feasible for (MP). So, xo is efficient for (MP). Similarly (yo, μ, λ, η) is efficient for (MWD).

Theorem 4.5 (Strong Duality). Let xo be a weakly efficient solution of (MP), gj is continuous at xo

for j ∈ J̃(xo), f, g are directionally differentiable at xo with f ′
i(xo, η(x, xo)), and g ′

j(xo, η(x, xo)) as
preinvex functions on X. Also if g satisfies the generalized Slater’s constraint qualification at xo, then
∃ μ ∈ R

p

�, λ ∈ Rk
� such that (xo, μ, λ, η) is feasible for (MWD) and the objective function values of

(MP) and (MWD) are equal. Moreover, if any of weak duality theorem holds, then (xo, μ, λ, η) is an
efficient solution of (MWD).

Proof. Since xo is a weakly efficient solution of (MP), therefore by Theorem 3.5, there exists
μ ∈ R

p

�, λ ∈ Rk
� such that

p∑

i=1

μif
′
i

(
xo, η(x, xo)

)
+

k∑

j=1

λjg
′
j

(
xo, η(x, xo)

)
� 0 ∀x ∈ X,

λjgj(xo) = 0, j = 1, k.

(4.8)

It follows that (xo, μ, λ, η) ∈ W and therefore feasible for (MWD). Clearly objective
function values of (MP) and (MWD) are equal at optimal points.

Suppose (xo, μ, λ, η) is not an efficient solution for (MWD). Then ∃ (ỹ, μ̃, λ̃, η̃) ∈ W
such that f(xo) ≤ f(ỹ), which contradicts weak duality theorems. Therefore (xo, μ, λ, η) is an
efficient solution of (MWD). Hence the proof.

Theorem 4.6 (Converse Duality). Let (yo, μ, λ, η) be a feasible solution of (MWD). If

(i) (f, gλ) is a weak strictly-pseudo-quasi (d-ρ-η-θ)-type I univex at yo,

(ii) for any u ∈ Rp, u ≤ 0 ⇒ φo(u) ≤ 0 and v ∈ Rk, v � 0 ⇒ φ1(v) � 0; bo(xo, yo) >
0, b1(xo, yo) � 0,

(iii)
∑p

i=1 μiρ
1
i +

∑k
j=1 ρ

2
j � 0,

then yo is an efficient solution of (MP).

Proof. Suppose that yo is not an efficient solution of (MP). Then ∃ xo ∈ X such that

f(xo) ≤ f
(
y0
)
. (4.9)
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Now proceeding as in Theorem 4.1 (Weak Duality), we obtain a contradiction. Hence yo is an
efficient solution of (MP).

Theorem 4.7 (Strict Converse Duality). Let xo and (yo, μ, λ, η) be the feasible solutions of (MP)
and (MWD), respectively. If

(i) f(xo) � f(yo),

(ii) (f, gλ) is a weak quasi-strictly-pseudo (d-ρ-η-θ)-type I univex at yo,

(iii) for any u ∈ Rp, u � 0 ⇒ φo(u) ≤ 0 and v ∈ Rk, v � 0 ⇒ φ1(v) � 0; bo(xo, yo) >
0, b1(xo, yo) � 0,

(iv)
∑p

i=1 μiρ
1
i +

∑k
j=1 ρ

2
j � 0,

then xo = yo.

Proof. Suppose xo /=yo.
Since yo is a feasible solution of (MWD), therefore by hypothesis (i) and hypothesis

(iii), we get

bo
(
xo, yo

)
φo

(
f(xo) − f

(
yo

)) ≤ 0,

b1
(
xo, yo

)
φ1

(
gλ
(
yo

))
� 0.

(4.10)

By hypothesis (ii), we obtain

f ′(yo;η
(
xo, yo

))
� −ρ1∥∥θ(xo, yo)

∥∥2
,

g ′
λ

(
yo;η

(
xo, yo

)) ≤ −ρ2∥∥θ(xo, yo

)∥∥2
.

(4.11)

Since μ ∈ R
p

�, therefore the above inequalities yield

p∑

i=1

μif
′
i

(
yo;η

(
xo, yo

))
� −

p∑

i=1

μiρ
1
i

∥∥θ(xo, yo)
∥∥2
, (4.12)

k∑

j=1

λjg
′
j

(
yo;η

(
xo, yo

))
< −

k∑

j=1

ρ2j
∥∥θ

(
xo, yo

)∥∥2
, (4.13)

which on adding gives

p∑

i=1

μif
′
i

(
yo;η

(
xo, yo

))
+

k∑

j=1

λjg
′
j

(
yo;η

(
xo, yo

))
< −

⎛

⎝
p∑

i=1

μiρ
1
i +

k∑

j=1

ρ2j

⎞

⎠
∥∥θ(xo, yo)

∥∥2

� 0
(
using hypothesis (iv)

)
,

(4.14)

which is a contradiction to feasibility of yo. Hence xo = yo.
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