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Abstract
Energy efficiency is a key challenge for building sustainable societies. Due to growing
populations, increasing incomes and the industrialization of developing countries,
the world primary energy consumption is expected to increase annually by 1.6%. This
scenario raises issues related to the increasing scarcity of natural resources, the
accelerating pollution of the environment, and the looming threat of global climate
change.
In this paper we introduce a new and original approach to predict next week

energy consumption based on human dynamics analysis derived out of the
anonymized and aggregated telecom data, which is processed from GSM network call
data records (CDRs). We introduce an original problem statement, analyze regularities
of the source data, provide insight on the original feature extraction method and
discuss peculiarities of the regression models applicable for this big data problem.
The proposed solution could act on energy producers/distributors as an essential

aid to smart meters data for making better decisions in reducing total primary energy
consumption by limiting energy production when the demand is not predicted,
reducing energy distribution costs by efficient buy-side planning in time and
providing insights for peak load planning in geographic space.

Keywords: energy consumption prediction; mobile phone data; human dynamics;
machine learning

1 Introduction
Energy efficiency is a key challenge for building sustainable societies. Due to growing pop-
ulations, increasing incomes and the industrialization of developing countries, the world
primary energy consumption is expected to increase annually by .%. This scenario raises
issues related to the increasing scarcity of natural resources, the accelerating pollution of
the environment, and the looming threat of global climate change.

In order to improve the efficiency of the supply systems and thus to reduce the amount of
energy consumption, a critical step is to understand energy needs at relatively high spatial
and temporal resolution. An accurate prediction of energy demands could provide useful
information to make decisions on energy generation and purchase. Furthermore, an ac-
curate prediction would have a significant impact on preventing overloading and allowing
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an efficient energy storage. Hence, several computational works have started developing
machine learning models to predict the energy consumption of residential and commer-
cial buildings using features such as weather and energy bills []. For example, Kolter and
Ferreira [] used monthly electricity and gas bills and buildings’ characteristics to model
energy consumption. Other studies investigated the relationship between the human oc-
cupancy of buildings and the consumption patterns, using WiFi connections as a proxy
for human occupancy [].

Nowadays, the almost universal adoption of mobile phones is generating an enormous
amount of data about human behaviors with a breadth and depth that was previously in-
conceivable []. In , there was . billion of mobile phone subscribers worldwide,
with millions of new subscribers every day,a and several studies have shown that the mo-
bile phone data, specifically the Call Detail Records (CDRs) needed by the mobile phone
operators for billing purposes, can be exploited to model individuals’ mobility patterns
[–] and to map the distribution of the population in space and time []. Not surpris-
ingly, a couple of works have proposed to use mobile phone data for the design and the
planning of energy systems and infrastructures [, ]. However, with the exception of a
very recent work by [] using ‘Data for Development’ (DD) data from Senegal [], no
quantitative studies have investigated the potential of mobile phone data to understand
energy consumption.

In the current paper, we propose and evaluate the usage of anonymized and aggregated
people dynamics features, derived from the mobile phone network activity, to predict en-
ergy consumption. Specifically, we target two different tasks of paramount importance to
increase the efficiency of energy producers and distributors and to meet consumers’ peak
demands: (i) predicting the daily average energy consumption and (ii) predicting the peak
daily energy consumption. It is worth to notice that none of the anonymized and aggre-
gated people dynamics features can be traced back to make inferences about individuals
and hence there are minimal - if any - privacy concerns.

To validate our approach we use mobile phone records from a territory in the Northern
Italy, the province of Trentino. The data, released for the Telecom Italia Big Data Challenge
, were collected from November ,  to December ,  [].

Our results prove that people dynamics, extracted from aggregated and anonymized
mobile phone data, are good proxies for modeling energy consumption.

2 Datasets description
In this section we introduce the datasets that have been used to evaluate our approach:
(i) an energy consumption dataset and (ii) a mobile phone records dataset. The datasets
were collected from November ,  to December ,  over a territory of ,
square kilometers in the Northern Italy, the province of Trento. The datasets contain
 thousand records for energy consumption and  million data records concerning
telecommunication events respectively []. The two datasets have also the same spatio-
temporal aggregation. The temporal aggregation is of ten minute intervals, while the spa-
tial one results by partitioning the territory using a regular square grid. Each square of the
grid measures approximately  square kilometer. In our paper, we refer to this grid as the
partitioning grid.
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2.1 Energy consumption dataset
The energy consumption dataset is provided by the local energy company, SET, that man-
ages almost the entire electrical network over the Trentino territory. SET uses around 
primary (medium voltage) distribution lines to bring energy from the national grid (high
voltage) to Trentino’s consumers. To ensure the privacy of SET’s customers, their locations
and the geometry of the  primary distribution lines is not explicitly exposed.

Consequently, the Customer site dataset shows the number of customer sites of each
power line per grid square, while the Line measurement dataset indicates the amount of
flowing energy through the lines at time t. Customer sites provide energy to different types
of customers (e.g. houses, condominiums, business activities, industries etc.), which re-
quire different amount of electricity. For privacy reasons this information is hidden, mean-
ing that in the dataset the energy flowing is uniformly distributed among the various types
of customers.

In Figure  we show the process done by the organizers of the Telecom Italia Big Data
Challenge  to transform the original dataset to the one we had access. In the first layer
there is the exact position of each customer site (e.g. some of them are industries, others
are small houses) and the precise geometry of each line. In the second layer we lose the
exact geometries of customer sites and power lines. However, this information is summa-
rized in the Customer site dataset where for each square grid the number of customer sites
is recorded along with the information about the power line they are connected to. In the
third layer we know how the customer sites of a power line are distributed over the grid
and the energy flowing through each power-line (from the Line measurement dataset). It
is then possible to distribute the energy flowing through a powerline p over the grid in or-

Figure 1 The SET customers are spatially aggregated into the grid squares and the energy
consumption is uniformly divided among the customers, hiding their different type (e.g. houses,
condominiums, business activities, industries).
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der to build a choropleth map of the energy consumption in each partitioning grid square
(last layer in Figure ).

In sum, the structure of the Customer site dataset is the following:
• Square id: identification string of a given square of the partitioning grid;
• Line id: identification string of the distribution power line, which is grouped with the

partitioning grid square;
• Number of customer sites: number of customer sites present in a given square of the

partitioning grid, connected to the grid powerline (Line id).
Instead, the Line measurement dataset is composed by:
• Line id: identification string of the distribution power line;
• Timestamp: timestamp relative to the instant when the measurement of the current

passing through the power line is done. Date in the format YYYY-MM-DD HH24:MI;
• Value: the ampere value of the current passing through a given powerline (Line id) at a

given Timestamp. This quantity is positive if the direction of the current goes from the
national grid into the local line, negative otherwise.

2.2 Call Detail Records
The Call Details Records dataset contains anonymized and aggregated incoming and out-
going calls, received and sent SMSs, and Internet connection events, generated from
November ,  to December ,  by the cellular network of Telecom Italia Mo-
bile, the largest mobile operator in Italy with % of the entire market share.

The dataset is composed by three sub-datasets: (i) the Telecommunications Activity
dataset providing the activity of Trentino, showing all the mentioned telecommunication
events which took place within this area. The data provides information of Telecom Italia’s
customers interacting with the network and of other people using it on roaming. For each
square of the partitioning grid the dataset provides every ten minutes the activity in terms
of sent and received SMSs, issued calls, received calls and Internet traffic related events.
The information is aggregated using the country code, which has a different semantic for
each kind of activity (e.g. the country of the person receiving/sending the message, the
country of the person receiving/issuing the call, the country of the person connected to
Internet), (ii) the Telecommunications - Square to Counties dataset providing the level of
interaction between each square of the partitioning grid and the national counties. The
level of interaction between a square A and a county B is given as a pair of decimal num-
bers. The first number is proportional to the number of calls issued from the square A to
the county B, the second one is proportional to the number of calls from the county B to
the square A. The temporal aggregation is done in timeslots of ten minutes, and (iii) the
Telecommunications - Square to Square dataset providing information regarding the di-
rectional interaction strength between each pair of squares of the partitioning grid. The
directional interaction strength between the square A and the square B is proportional to
the number of calls issued from the square A to the square B. Again, the temporal aggre-
gation is done in timeslots of ten minutes.

3 Methodology
We formulate the problem of predicting the electric energy consumption of a given geo-
graphical area as a nonlinear regression task. More specifically, we deal with two different
prediction tasks: (i) average daily energy consumption and (ii) peak daily energy consump-
tion. Each task is solved for the next  days interval for each electric line ID. This setting
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is justified by the economic and managerial value of the expected output - it is easy to
plan energy supply for the next week, given we have the predicted energy consumption
demand.

Electric energy consumption is measured in W · h (Watt × Hour). In terms of electro-
magnetism, one Watt is the rate at which work is done when one Ampere (A) of current
flows through an electrical potential difference of one Volt (V). Assuming that electrical
potential, measured in V is standardized in Trentino province (thus is equal for all line IDs)
and given the same timeframes for the analysis, the electric energy consumption predic-
tion task reduces to predicting electric current measured in Ampere per each time frame
per each line ID. The values in Ampere of the current passing through the given power
line are given by the electric energy distribution company.

Forecasting model training and prediction is done for daily intervals in high order
Hilbert space, derived from the anonymized and aggregated mobile network activity in
Trentino. The features which are extracted from the source data characterize diversity,
regularity and general human dynamics in each small part of the Trentino territory spa-
tially separated by square grid.

In sum, the proposed technical solution includes the following main steps:
. An highly parallelized feature extraction algorithm, which characterizes diversity,

regularity and general human dynamics, derived from telecommunication data and
aggregated by the square grid areas, including innovative second-order features in
time and frequency domains;

. A feature selection algorithm ( features for the final models are selected out of
>, features), thus reducing the computational complexity of the model;

. A non-linear regression modeling and prediction based on ensemble of decision
trees, which are bootstrapped and aggregated;

. A model generalization strategy, as opposed to data overfitting, including strict
separation of the test set from the training set (the test set is the next week after the
training set with the dependent variables taken with -days shift to the future),
random splits, bootstrapping and bagging techniques.

In the next subsections we provide further details of the experimental setup we followed
(preliminary data analysis, feature extraction, feature selection, and model building).

3.1 Preliminary data analysis
As preliminary analysis we performed a spectrogram of the temporal current line (see
Figure ) in order to visually justify the feature extraction approach described in the next
section. In Figure , the horizontal axis represent days (the temporal scaling was done
starting from the  milliseconds initial resolution), while the vertical axis represents
frequency. The amplitude of a particular frequency at a given time is given by the intensity
and the color of each point in the plot.

As expected, we found that the response variable - the measure of the amount of electric
current passing a point in an electric circuit per unit of time for each power line - has a
number of cyclic characteristics and trends. Cyclic characteristic of a time series in data
analysis is called seasonality - a property of a signal, experiencing regular changes, which
recur every observed time frame, e.g. daily, weekly, yearly. We found predictable changes
of the pattern in a response variable time series, that repeat over daily and weekly periods.
Interestingly, these temporal regularities were characteristics of different locations of the
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Figure 2 Spectral characteristics of typical energy consumption response variables. The units reported
in the temporal x-axis are days (the temporal scaling was done starting from the 100 milliseconds initial
resolution), while the vertical axis represents frequency. The amplitude of a particular frequency at a given
time is given by the intensity and the color of each point in the plot.

Province of Trento. Hence, we were able to identify three possible clusters roughly corre-
sponding to (i) the residential areas, (ii) the touristic areas and (iii) the city center areas
and/or industrial areas (see Figure ).

Specifically, we separated the energy consumption signal into three major components:
daily seasonality, trend and a remainder component applying seasonal-trend decompo-
sition procedure based on loess []. An interesting result for each power consumption
cluster type is presented in Figures ,  and .

As shown in Figure , the typical energy consumption behavior of a residential area
shows uneven seasonality on weekly scale, varying seasonality during day and night, vari-
able consumption during the weekdays, low consumption during holidays, and low noise
of measurements.

Turning our attention to the typical energy consumption behavior of a touristic area (e.g.
Cavalese, a small village and very famous ski resort in Fiemme Valley), we observed un-
even seasonality on a weekly scale, varying seasonality during day and night, variable con-
sumption during the weekdays, upward sloping trend toward holidays, abnormally high
load during holidays, and noisy values, which are probable effects of solar energy produc-
tion. In particular, the significant increase in energy consumption during weekends and
holidays is justified in Northern Italy, where a large amount of people leaves the major
cities to reach mountain touristic locations.

Interestingly, no significant differences were found for city center areas and industrial ar-
eas. They both show stationary seasonality on weekly scale, stationary seasonality during
day/night, stable consumption during the weekdays, low consumption during weekends,
and low noise of measurements.

The discovered seasonalities were explicitly coded into the feature space by using a num-
ber for the hour of the day and a number for the weekday for each data source being pro-
cessed.

3.2 Feature extraction
To solve the problem of computational complexity due to the huge amount of data samples
(> millions of Call Data Records) we moved from the time domain of communication
patterns to the frequency domain, applying the Fast Fourier Transform algorithm to each
group of daily time series. Also we found that only a small set of harmonics in Fourier
domain explains the response variable variance for each type of first-order feature space
time series, which reduces the computational complexity by a number of orders. The usage
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Figure 3 Energy consumption time series decomposition for a residential area. The x-axis shows the
temporally sampled electric current flowing through the distribution lines recorded every 10 minutes. The
y-axis reports the electric current passing through a given power line measured in Ampère at a given time.
Monday is the first day of the week.

of a limited number of harmonics in Fourier domain is a known method of compression,
which is frequently applied in the field of digital signal processing []. For example, some
lossy image and sound compression methods employ discrete Fourier transforms. In our
experiments, we used from  to  Fourier coefficients, which are enough to represent
the temporal properties of the communication data.

Diversity and regularity have been shown to be important in the characterization of
different facets of human behavior and, in particular, the concept of entropy has been ap-
plied to assess the predictability of mobility [] and spending patterns [, ], the socio-
economic characteristics [] and the crime levels [, ] of cities and some individual
traits such as personality []. Hence, for each variable from CDRs we computed the math-
ematical functions, which characterize the distributions and measure the information the-
oretic and statistical properties of such variables, e.g. mean, median, standard deviation,
min and max values and Shannon entropy.

In order to be able to also account for temporal relationships, the same computations as
above were repeated on sliding windows of variable length (-hour, -hour and  day), pro-
ducing second-order features that capture spatio-temporal relationships, thus preserving
useful source data properties.
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Figure 4 Energy consumption time series decomposition for a touristic area. The x-axis shows the
temporally sampled electric current flowing through the distribution lines recorded every 10 minutes. The
y-axis reports the electric current passing through a given power line measured in Ampère at a given time.
Monday is the first day of the week.

It is worth noticing that in the computation of the distributions’ properties in frequency
domain we do not limit the higher-order functions to metrics with an intuitive explana-
tion from physics. For example, the ‘variance of real numbers part of Fourier transform of
area codes’ represents, for each spatial square, a measure of diversity of the area codes of
telecommunication activity.

3.3 Feature selection
In order to reduce model complexity and enhance generalization properties by reducing
the risk of overfitting [], a feature selection step was performed before the model build-
ing. The feature selection was done on a reduced sample of the training data, which was
one week long. The metric used to rank the features was the total decrease in node impu-
rities, which is the impurity measure of a decision tree node derived from relative entropy
metric []. This choice was motivated because it outperformed other metrics such as
mutual information, information gain, and chi-square statistic [, ]. We reduced the
feature space only to  dimensions for each of the two models without loosing much ac-
curacy. The  dimensions were chosen because the addition of other features increased
the computational complexity without improving significantly the performance. The fi-
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Figure 5 Energy consumption time series decomposition for a city center/industrial. The x-axis shows
the temporally sampled electric current flowing through the distribution lines recorded every 10 minutes. The
y-axis reports the electric current passing through a given power line measured in Ampère at a given time.
Monday is the first day of the week.

nal feature sets are provided in Tables  and . In these tables the mean decrease in node
impurity is presented in non-normalized form.

3.4 Model building
We formulated two separate problems - () predicting mean daily consumption and
() predicting peak daily consumption. To this end, we built  regression models. For each
of the regression models and for each sample we have a scalar outcome variable, Y ∈ R

and a vector of explanatory variables in the selected feature space �X ∈ R
d .

Our goal was to estimate the regression function

r̄(x) = E[Y | �X = x] ()

for any x ∈ the space R, by generating decision trees at random and combining them to
form the aggregated regression estimate

r̄(�X,�n) = E�

(
rn(�X,�,�n)

)
, ()

where E� is the regression expectation with respect to a random parameter which is con-
ditional on the vector �X and data set �n.
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A random forest is a collection of tree predictors, such as RF(�x, �T ,�k), k = , , . . . , K ,
where the �k are random vectors. The random forest prediction for our regression prob-
lem is an unweighted average over the forest. The keys to convergence and superior met-
rics are low correlation and low bias of the model. Hence, in order to keep bias low the
trees are grown to their maximum depth. At the same time, to keep correlation low when
trees are grown we use randomization, such as each tree is grown on a bootstrap sample
of the training set and the number of predictors in each specified tree is much smaller
than the total number of total variables in the training set. At each node, variables are se-
lected at random out of all variables, and the split is fitted as the best split on this subset
of variables.

The choice of Leo Breiman’s Random Forest algorithm [] is justified because it yields
one of the best performances among ensemble models and it is still very simple and not de-
pendent on multiple hyperparameters optimization, which is a good way to demonstrate
the properties of the functional relationships we are modeling. Random Forest approach
is also known obtaining excellent performances in terms of accuracy and scaling up due
to the ability of parallelizing tree growth, to the ability of handling thousands of variables,
to the robustness for badly unbalanced data, and finally to the ability of providing internal
unbiased estimates of the error as trees are added to the ensemble.

Specifically, Random Forest consists of a collection of randomized primary regression
trees rn(�x,�m,�n), m ≥ , where �,�, . . . are outputs of a randomizing variable �. These
random trees are combined to form the aggregated regression estimate r̄(�X,�n). At each
node, a coordinate of �X = (X, . . . , Xd) is selected, with the jth feature having a probability
pnj ∈ (, ) of being selected. At each node, once the coordinate is selected, the split is
done at the midpoint of the chosen side. The splits are traversed to the terminal node
(leaf ), minimizing the mean squared error.

Thus, our model regression estimate is:

r̄(�X) = E�

(
rn(�X,�)

)
. ()

For each model we used a random selection of features to split each node, growing binary
trees and averaging them [], which has computationally efficient outstanding properties
exploited by machine learning community. We also took advantage of the well-known per-
formance improvements that are obtained by growing an ensemble of trees and averaging.
Random vectors were sampled before the growth of each tree in the ensemble, and a ran-
dom selection without replacement was performed [].

4 Experimental results and discussion
The main outcome of our approach is an ensemble machine learning algorithm that pre-
dicts energy consumption as a non-linear time series regression problem on a daily scale
for each electrical line id.

Several metrics to compare our models with baselines are provided in Tables  and . In
particular, we report the Mean Absolute Error (MAE), the Mean Squared Error (MSE), the
Root Mean Squared Error (RMSE), the Relative Squared Error (RSE), the Relative Absolute
Error (RAE), and R.

Turning our attention to the MSE, the prediction performance for daily average energy
consumption for the next  days prediction interval is . times better than the base-
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Table 1 Mean daily consumption model metrics: Mean Absolute Error (MAE), the Mean
Squared Error (MSE), the Root Mean Squared Error (RMSE), the Relative Squared Error (RSE),
the Relative Absolute Error (RAE), R2

Metric Baseline Model

MAE 20.8468 12.3683
RAE 98.9169 58.6869
MSE 790.6041 325.2679
RMSE 28.1177 18.0352
RSE 100.9551 41.5346
R2 –0.0096 0.5847

Table 2 Peak daily consumption model metrics: Mean Absolute Error (MAE), the Mean
Squared Error (MSE), the Root Mean Squared Error (RMSE), the Relative Squared Error (RSE),
the Relative Absolute Error (RAE), R2

Metric Baseline Model

MAE 186.1440 17.3112
RAE 621.7292 57.8201
MSE 36,062.7851 601.7531
RMSE 189.9020 24.5307
RSE 2,551.8602 42.5810
R2 –24.5186 0.5742

line, MSE = . compared to the baseline MSE = . (training set arithmetic
mean).

Interestingly, the prediction performance for daily peak energy consumption for the next
 days prediction interval is . times better than the baseline (MSE = . vs base-
line MSE = ,., which is the training set maximum value). The choice of this
baseline is based on existing practice of energy companies to meet the maximum energy
demand they experience in the past.

As shown in Tables  and , we got a negative R metric for our non-linear regression
problem baseline. Usually, R is defined as the proportion of variance explained by the
regression model fit. If the fit is actually worse than just fitting a horizontal line, then R

could be negative.
Tables  and  show the feature space used for the two final prediction models. The most

powerful feature for both the prediction tasks is the number of consumers per electric
power line - a feature from the energy consumption dataset. This feature provides a static
characterization of a specific geographical area. Our machine learning algorithm uses this
feature to build different energy consumption models for each range of consumers and
power lines on each square of the partitioning grid. Then, the algorithm combines a num-
ber of these models into an ensemble model leveraging the decision tree regression prop-
erties. In sum, the number of consumers per power line is an efficient way to connect
spatio-temporal human dynamics characteristics, detected by telecommunication data,
with the static property of the geographic area.

As shown in Tables  and , the other relevant predictors describe human mobility pat-
terns in a geographical space, which are found to be a good proxy for predicting daily
electric energy consumption.

In sum, we found that together with static properties of the places, i.e. number of con-
sumers per grid powerline, the spatial and temporal distribution properties of the mobile
network data, such as Internet communications activity, are good predictors of near-term
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Table 3 Mean daily energy consumption features

Rank Feature Decrease
in MSE

Decrease
in node
impurity

1 Number of consumers per grid powerline 19.64 69,109.19
2 Variance of real numbers part of Fourier transform of area codes 4.43 6,534.18
3 Variance of real numbers part of Fourier transform of outgoing SMS activity 3.89 6,811.37
4 Variance of calling direction area codes 3.56 7,964.44
5 Variance of entropy of outgoing call activity in time domain 3.47 11,568.62
6 Entropy of first harmonic of outgoing calls 3.47 3,671.82
7 Entropy of Internet activity summed in time domain 3.21 2,750.14
8 Kurtosis of entropy distribution of outgoing calls 3.14 1,472.87
9 Variance of skewness of temporal distribution of outgoing calls 3.10 2,111.95
10 Entropy of fundamental frequency (first harmonic) of Internet activity 3.03 1,668.04
11 Standard deviation of frequencies distribution skewness of incoming SMS 3.03 2,848.24
12 Entropy of sum in time domain of outgoing calls 2.98 3,651.77
13 Variance of the kurtosis of outgoing calls in time domain 2.98 2,136.39
14 Kurtosis of time entropy of mobile Internet activity 2.96 4,409.30
15 Median of outgoing calls variance in frequency domain 2.92 1,317.35
16 Sum of 4 harmonic of incoming calls 2.88 5,035.26
17 Sum of outgoing calls skewness in frequency domain 2.88 825.13
18 Median of outgoing SMS temporal distribution kurtosis 2.88 1,260.23
19 Kurtosis of outgoing calls 32 harmonic 2.81 947.15
20 Median of 11 harmonic of Internet activity 2.72 185.14
21 Variance of 29 harmonic of outgoing SMS 2.71 1,243.93
22 Variance of outgoing SMS fundamental frequency 2.69 5,418.83
23 Sum of intertemporal mean of outgoing SMS 2.67 182.93
24 Sum of calling direction area codes 2.63 4,075.28
25 Kurtosis of skewness of Internet activity frequencies 2.62 2,290.58
26 Median of temporal distribution kurtosis of Internet activity 2.61 1,510.62
27 Sum of 5 harmonic of outgoing calls 2.60 4,752.84
28 Sum of incoming calls temporal entropy 2.59 2,494.76
29 Variance of Internet activity temporal entropy 2.58 3,569.25
30 Sum of 7 harmonic of outgoing calls 2.58 201.58
31 Skewness of 13 harmonic of incoming calls 2.55 751.57
32 Sum of 11 harmonic of incoming calls 2.55 1,431.18

For each variable from CDRs we computed the mathematical functions, which characterize the distributions and measure
the information theoretic and statistical properties of such variables, e.g. mean, median, standard deviation, min and max
values and Shannon entropy. Moreover, the same computations were repeated on sliding windows of variable length
(1-hour, 4-hour and 1 day), producing second-order features that capture temporal relationships.

energy consumption. Also voice calls and SMS activity add some value to the prediction
metrics; specifically, the spectral statistics of these activities and the cross-temporal en-
tropy.

We also found that among second- and higher-order statistics, skewness and kurtosis of
harmonics in frequency domain and entropy of cross-temporal communication patterns
are the best predictors for maximum energy consumption prediction task, which is inline
with the intuition of extreme value theory [].

The full analysis of best predictors is provided in Table  for the average energy con-
sumption prediction task, and in Table  for the maximum energy consumption prediction
task.

For a commercial application it is possible to improve prediction metrics by creating a
separate model for each power line, increasing the feature space during feature selection
process and adding additional information to the feature space, such as the historical en-
ergy consumption properties and the weather forecast. These multimodal data sources
are out of the scope of this research result, but in fact improve the model metrics. The
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Table 4 Peak daily energy consumption features. Mean daily energy consumption features

Rank Feature Decrease
in MSE

Decrease in
node impurity

1 Number of consumers per grid powerline 21.22 132,035.53
2 Entropy of temporal sum of outgoing calls 5.86 24,013.99
3 Kurtosis of temporal entropy of Internet activity 4.33 15,479.71
4 Entropy outgoing calls fundamental frequency 4.10 14,650.13
5 Sum of 4 harmonic of incoming calls 3.96 11,449.25
6 Skewness of 5 harmonic of incoming calls 3.66 9,595.91
7 Skewness of temporal entropy of Internet activity 3.51 9,498.52
8 Sum of spectral distribution skewness of outgoing calls 3.47 2,108.19
9 Sum of temporal distribution kurtosis of Internet activity 3.35 2,267.17
10 Spatial variance of spectral variance of incoming SMS 3.30 3,971.29
11 Sum of 5 harmonic of incoming calls 3.27 9,468.86
12 Sum of calling direction area codes 3.25 6,815.90
13 Spectral variance of outgoing SMS activity total in time 3.20 13,899.48
14 Spatial skewness spectral skewness distribution of Internet activity 3.19 3,512.42
15 Kurtosis of temporal mean distribution of outgoing SMS 3.17 27,704.10
16 Spectral variance of temporal median distribution of outgoing SMS 3.02 15,366.03
17 Spatial median of incoming temporal sum 2.99 2,642.34
18 Spectral variance of outgoing SMS fundamental frequency 2.96 11,624.28
19 Skewness of incoming calls temporal entropy 2.92 4,174.09
20 Sum of outgoing calls 5 harmonic 2.89 10,251.36
21 Variance of Internet activity temporal entropy 2.86 5,382.14
22 Median of calling direction area codes 2.85 3,591.92
23 Sum of outgoing calls 4 harmonic 2.84 4,440.13
24 Median of incoming calls 16 harmonic 2.74 943.98
25 Spatial standard deviation of outgoing call temporal skewness 2.73 2,502.05
26 Spatial standard deviation of outgoing call temporal kurtosis 2.72 2,888.08
27 Skewness of incoming calls 4 harmonic 2.71 8,041.38
28 Spectral distribution skewness of mean Internet activity 2.69 1,759.88
29 Spatial standard deviation of temporal Internet activity entropy 2.68 4,233.89
30 Variance of outgoing calls temporal distribution kurtosis 2.67 3,283.40
31 Kurtosis of spectral distribution skewness. 2.67 5,160.36
32 Sum of Internet activity 4 harmonic 2.65 1,695.49

For each variable from CDRs we computed the mathematical functions, which characterize the distributions and measure
the information theoretic and statistical properties of such variables, e.g. mean, median, standard deviation, min and max
values and Shannon entropy. Moreover, the same computations were repeated on sliding windows of variable length
(1-hour, 4-hour and 1 day), producing second-order features that capture temporal relationships.

cost of this improvement is an increase in computational complexity of each model, that
could be efficiently parallelized in the cloud or by an efficient use of high performance
computing (HPC) infrastructures, which usually exist in telecommunication and energy
companies. All the computations we propose could be done in batch mode and do not
require real-time processing.

5 Implications and limitations
Our results prove that human dynamics, which can be extracted from aggregated and
anonymized mobile phone data, are good proxies for modeling energy consumption. This
contribution has several practical implications for the energy producers and distributors,
the telecom companies and, more in general, for the whole society. For example, our results
could help to optimize the economy of energy producers/distributors value chain, also
acting as an efficient tool for meeting peak electrical energy demands and creating a new
market for telecom data usage. Again, our results could help to reduce the total primary
energy consumption and thus its ecological footprint (e.g. climate change).
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Among the limitations of our approach we consider that rural areas and areas, which
are not equipped with telecom equipment or having small number of telecom activity,
could not be used as proxies for energy consumption prediction in a powergrid. Also, our
approach uses data from a single operator, Telecom Italia, and does not characterizes the
households’ activities. Finally, the introduced models do not account for seasonality on a
yearly scale due to the -months limitation of our dataset. However, given the good hor-
izontal scaling of the learning algorithm, this latter limitation could be solved by training
the model on much more data.

6 Conclusion
Looking at the amount of electric current passing through a point in an electric circuit per
unit of time and for each power line, we found that it has a number of cyclic characteris-
tics and trends. We found predictable changes that repeat over daily and weekly periods.
Based on these regularities we separated all power lines into  clustered areas: residential,
touristic and city center/industrial areas. Then, we hypothesized and proved that cellu-
lar communication patterns, which represent human dynamics in space and time, could
be a good proxy for energy consumption prediction. To this end, we computed, from the
anonymized and aggregated mobile network activity, a number of predictors characteriz-
ing diversity, regularity and general mobile network activity in each part of the territory
spatially aggregated by the square grid.

The prediction tasks, (i) predicting the daily average energy consumption and (ii) pre-
dicting the peak daily energy consumption, are solved for the next  days intervals for
each electric line ID and are formulated as non-linear regression tasks. We used ensemble
learning methods (Random Forest) to solve the optimization problem and avoid overfit-
ting.

To solve the problem of computational complexity of the huge amount of data samples
we moved from time domain to frequency domain. We also found that only a small set
of harmonics in Fourier domain explains the response variable variance for each type of
first-order feature space in time series, which reduces the computational complexity by a
number of orders. The state-of-the-art feature selection pipeline that we apply, reduce the
feature space down to  dimensions without losing significant accuracy.

The obtained results prove that human dynamics, extracted from aggregated and
anonymized mobile phone data, are good proxies for modeling energy consumption. This
contribution could help to optimize the economy of energy producers/distributors value
chain and to reduce the total primary energy consumption, meeting the people’s energy
needs.
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