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ABSTRACT
Security and reliability in processor based systems are concerns re-
quiring adroit solutions. Security is often compromised by code in-
jection attacks, jeopardizing even ‘trusted software’. Reliability is
of concern where unintended code is executed in modern processors
with ever smaller feature sizes and low voltage swings causing bit
flips. Countermeasures by software-only approaches increase code
size by large amounts and therefore significantly reduce performance.
Hardware assisted approaches add extensive amounts of hardware
monitors and thus incur unacceptably high hardware cost. This pa-
per presents a novel hardware/software technique at the granularity
of micro-instructions to reduce overheads considerably. Experiments
show that our technique incurs an additional hardware overhead of
0.91% and clock period increase of 0.06%. Average clock cycle and
code size overheads are just 11.9% and 10.6% for five industry stan-
dard application benchmarks. These overheads are far smaller than
have been previously encountered.
Categories and Subject Descriptors: B.8.1 [Performance and Reli-
ability]: Reliability, Testing, and Fault-Tolerance
General Terms: Design, Performance, Reliability, Security
Keywords: Detecting Code Injection Attacks, Basic Block Check-
summing, Checksum Encryption, Bit Flips Detection

1. INTRODUCTION
Reliability and security of processors have been the subject of ex-

tensive research in connection to computing and communications
systems. Outcome of reliability and security research includes the-
oretical improvements in cryptography and security protocols. In ad-
dition to theoretical improvements are essential in the area of security,
secure implementations are important since security attacks also take
advantage of weaknesses in system implementations [1].

Most of the recent security attacks result in demolishing code in-
tegrity of an application program by dynamically changing instruc-
tions with the intention of gaining access to the program flow. At-
tacks violating code integrity are called code injection attacks as they
insert harmful instructions into the dynamic program stream. A de-
tailed survey on code injection attacks is presented in [20]. Guaran-
teeing code integrity will also provide reliable implementation which
detects bit flips, when the hardware is exposed to error-prone envi-
ronments.

This paper presents a novel hardware integrated technique to deal
with code injection attacks and bit flips caused by transient faults.
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For the first time, we use a technique called the Integrated Monitor-
ing for Processor REliability and Security (IMPRES) to deal with this
and show that by handling this problem at the granularity of micro-
instructions (MIs) we will be able to reduce the overheads to a con-
siderable minimum. Additionally, we use fault injection experiments
to show that IMPRES has full fault detection coverage for bit flips in
instruction memory.

The IMPRES framework detects code injection attacks and bit flips
in instruction memory. IMPRES will neither detect other security
threats, such as second order code injection attacks nor reliability
problems, such as bit flips in data memory. A solution for second
order code injection attack is described in [5].

The remainder of this paper is organized as follows. A survey
on related work is presented in Section 2. Section 3 presents the
proposed basic block integrity architecture and admissible program
behavior. Section 4 describes a systematic methodology to design
the proposed solution for a given application. Results are presented
in Section 5 and conclusions in Section 6.

2. RELATED WORK
A wide range of techniques have been suggested in the past to

counter code injection attacks. They could broadly be categorized
into software based and hardware assisted techniques. Software based
techniques use software tools and methods to overcome these attacks
without changing the processor architecture. Hardware assisted tech-
niques use architectural support to detect code injection attacks.

Software based techniques could be further categorized into two:
one static and the other dynamic. Static techniques try to detect vul-
nerabilities at compile time. Wagner et al. propose an automated
static code analysis tool to detect code that might invite buffer over-
flow attacks [17], but this produces a relatively large number of false
positives. Another static technique uses a language that has only the
safe constructs of another language, for example Cyclone [7]. Dy-
namic software based techniques avoid or considerably reduce code
injection attacks at runtime and they either use formal methods to
prove a program behaves as expected or use software constructs to
monitor proper program behavior at runtime. Proof-Carring Code
[10] is an example for the former and Stack Guard [3] is for the later.

Most of the research on hardware assisted techniques concentrate
on implementing tamper-resistance and cryptography. In [4], Dyer
et al. introduce an IBM co-processor that provides physical tamper-
resistance, and hardware support for cryptography. In [14], Ravi et
al. investigated the effect of using an embedded processor for similar
support. However, hardware assisted techniques are mainly attack-
specific. A number of researchers ([8, 9, 19] propose architectural
detection support against buffer overflow attack which is one of the
code injection attacks.

The ultimate goal of security attacks is to gain control of the sys-
tem and destroy system integrity by altering information which is in
the form of software and data. Embedded Micro Monitoring (EMM)
[13] is an architectural framework that uses MI routines to perform
in-line security monitoring. EMM performs checking without mod-
ifying the application program, and only changing the MIs for se-
lected machine instructions. EMM provides support for reliability at
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a cost of doubling the memory [12], and partial support for software
integrity attacks [13].

Arora et al. [1] use an additional co-processor and hardware tables
to perform software integrity checks. They identify program proper-
ties at different levels of granularity and store multiple control flow
levels of data and checksums to perform software integrity monitor-
ing. Their method produces code which is not relocatable. Our work
uses technique similar to [1] in finding program properties for mon-
itoring. However, we have also added one new instruction which
contains the checksum of the following basic block. In comparison
to [1], our method only needs to check at the basic blocks level, and
needs neither additional tables (which may overflow for certain pro-
grams) nor complex program analysis.

Thus our contributions are: [i] For the first time we have shown
a simple hardware/software method for monitoring code injection at-
tacks which requires only a rudimentary software analysis; [ii] This
monitor is also capable of picking up transient faults such as bit flips.
We have used a fault injection engine to show the fault coverage of
this technique; and [iii] Produces code which is relocatable allowing
the use of this technique with an operating system.

IMPRES for the first time is a generic, scalable, low overhead
method to both improve reliability and protect against code injection
attacks. Software methods only detect bit flips and are susceptible
to code injection attacks [18]. Hardware methods use tables [1] or
watchdog processor’s memory which are neither scalable nor relo-
catable. Ours overcomes these shortcomings. Additionally, by the
use of encryption, we protect against an attacker changing a whole
basic block with the checksum, to gain access to the executable. We
believe that our contributions will make practical the deployment of
software integrity checkers for real applications.

3. ARCHITECTURE
In this section, we give an overview of the monitoring architecture

and discuss the admissible application behavior when this monitor
is present in a processor. We argue that the runtime code integrity
could be fully preserved if we ensure that all the basic blocks of an
application program are intact. Thus performing only basic block
integrity checks is sufficient to ensure software integrity.

3.1 Basic Block Integrity Architecture
The proposed basic block integrity checker incorporates the fol-

lowing three tasks: (1) identifying basic blocks and calculating and
assigning checksums for each basic block at compile time; (2) en-
crypting the checksums with a secret hardware key at load time; and
(3) re-calculating the encrypted checksums at runtime and comparing
the encrypted checksums with loaded values.
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Figure 1: Compile time instrumentation of the application
Figure 1 illustrates the compile time instrumentation for a given

code segment. A code segment grouped into basic blocks based on
the control flow is depicted in Figure 1(a). Then, each basic block
is processed separately to calculate a checksum based on the instruc-
tions of that block. The calculated checksum is then inserted at the
beginning of each basic block using a special instruction (chk instruc-
tion) as in Figure 1(b).

Figure 2 depicts how a basic block with a checksum is securely
loaded into memory, and how a hardware integrated monitor is used
to detect code integrity violations at runtime. A basic block with
calculated checksum is loaded using a secure loader. While loading
instructions, the loader will use a hardware key (which is randomly

generated for each loading) to encrypt the calculated checksum into
an encrypted checksum.

Right half of Figure 2 depicts how a code integrity violation is cap-
tured at runtime. The first instruction of a loaded basic block is a chk
instruction that carries the encrypted checksum for the corresponding
basic block. When an instruction of this kind is fetched, the encrypted
checksum is loaded into a special register (eChkSum). Checksum for
each basic block is incrementally re-calculated at runtime while in-
structions belonging to the basic block are executed and is stored in
another special register (iChkSum). The incremental re-calculation
is achieved using MIs integrated into each machine instruction. Last
instruction of each basic block is a control flow instruction (CFI) and
if not, one is inserted (if it is not present at the end of a basic block).
MIs for CFIs are altered such that they will (a) encrypt the incre-
mentally stored checksum with the same hardware key used during
loading and (b) compare the result against the one loaded from chk
instruction. A mismatch in the comparison will indicate a code in-
tegrity violation and generate a SIGCKSM signal.

Apart from encrypted checksums, a special single bit flag (fBB) is
used to capture code integrity violations those escape the encrypted
checksum technique. When a program is loaded or a CFI is executed,
fBB is set. When a non CFI is executed fBB is cleared. When a chk
instruction is executed and if fBB is not set (this occurs when the
CFI of the last basic block is not executed) then a ‘no CFI’ error is
signaled (SIGNCFI).

Our technique hugely differs from other checksum- or hash-based
software integrity checking techniques, where hashing is performed
at the beginning or end of basic blocks and therefore accumulates
the workload to particular points in the program flow. IMPRES dis-
tributes the overhead to all the instructions, thus the total hardware
related overhead is reduced to an amount that is negligible. Encryp-
tion algorithms are complex and incur high latency, while calculating
checksums are less complex. Therefore we have used checksumming
together with encryption to perform just a few encryptions while en-
suring that the technique is still secure.

3.2 Admissible Application Behavior
A number of determinants could be considered when choosing pro-

gram properties to be monitored. Importantly the properties chosen
should clearly indicate when a violation of behavior occurs. As we
have already discussed, we will only be ensuring integrity of basic
blocks.

After compile time instrumentation, each basic block (BB) will
start with a chk instruction and end with a CFI. We will call these
two instructions boundary instructions (BI) and all other instructions
in a basic block - non boundary instructions (non-BI). If we can as-
sure that each and every basic block in an application is intact, then
we can safely assume that the code integrity is enforced for the whole
application. We classify the possible code integrity violations due to
code corruption or code injection attack under different categories as
shown in Table 1. The first column in Table 1 names different types
of code integrity violations. Column two, represents the original in-
structions and three the corrupted/injected instructions for a BB. The
forth column in Table 1 shows the error signals related to each code
integrity violations.

Type Original Changed Error Signals
T1 a non-BI another non-BI SIGCKSM
T2 a non-BI a chk instruction SIGNCFI
T3 a non-BI a CFI SIGCKSM
T4 chk instruction change checksum SIGCKSM
T5 chk instruction a CFI SIGCKSM
T6 chk instruction a non-BI SIGCKSM
T7 CFI another CFI SIGCKSM
T8 CFI changed target SIGCKSM
T9 CFI a non-BI SIGNCFI
T10 the whole BB another BB SIGCKSM/SIGNCFI
Table 1: Different Types of Code Integrity Violations

As shown in Table 1, types T1, T3, T4, T5, T6, T7 and T8 viola-
tions generate SIGCKSM signals. In T1, the runtime checksum is go-
ing to be in error and therefore will not match the loaded value. This
will be detected when the CFI at the end of the BB is executed and a
SIGCKSM signal is raised. In a violation of type T3, the checksum
comparison is going to be performed by the corrupted instruction and
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Figure 2: Secure Loading and Execution
this will result in a comparison mismatch and therefore a SIGCKSM
signal. When the loaded checksum of the chk instruction is changed
(as in T4), the checksum comparison at the end of the BB will gen-
erate a mismatch and SIGCKSM signal. When a chk instruction is
converted into a CFI (as in T5) a checksum mismatch will occur
and this will result in a SIGCKSM signal. When a chk instruction is
changed into a non-BI instruction (as in type T6), the following CFI
will raise a SIGCKSM signal. A violation of type T7 will result in
a faulty runtime checksum as the checksumming includes CFI. This
will again result in a checksum mismatch and therefore will gener-
ate SIGCKSM signal. When the target of the CFI is changed (as in
T8), the runtime checksum is going to be in fault and therefore will
generate a SIGCKSM signal.

Code integrity violations of type T2 and T9 are going to generate
SIGNCFI signals. When a non-BI is changed into a chk instruction
(as in T2) there are going to be two consecutive chk instructions in
the program flow and this is going to generate a SIGNCFI signal. A
violation of type T9 will result in an execution of a chk instruction
(from the next BB) without the last CFI being executed in the current
BB. Therefore, a SIGNCFI signal will be generated.

Type T10 of code integrity violation occurs when a whole BB be-
ing replaced by a fake BB. A fake BB might contain: [case1] one
or more CFIs; [case2] one or more chk instructions; and [case3]
only non-BIs. CFIs in a fake BB (as in case1) will cause checksum
mismatch at the first CFI and generate SIGCKSM signal. When the
fake BB has one or more chk instructions (as in case2), if the pro-
gram flow reaches the fake BB via a non-CFI then a SIGNCFI signal
will be raised at the first chk instruction, otherwise based on the next
BI either a SIGCKSM or a SIGNCFI signal will be raised. When
there are no BIs in the fake BB, depends on the next BI, either a
SIGCKSM signal or a SIGNCFI signal will be generated. A fake BB
to act as a genuine BB it should contain proper BIs. But generating
a valid chk instruction is prevented by the encryption technique de-
scribed in Figure 2. Since it is impossible for an intruder to get hold
of the randomly generated secret hardware key, the attacker will not
be able to generate a valid BB from injected or malicious code. In the
worst case, if an attacker has managed to crack the hardware key for
a particular process, it is impossible to perform a mass attack as each
processor will have random hardware keys, which cannot be guessed.

4. DESIGN FLOW
In this section, an overview of the proposed design flow for the

checking architecture is provided. First, the design of a software in-
terface that allows the applications to interact with the architectural
enhancement is described, and then the design of the architectural
enhancement itself is discussed.

4.1 Software Design
Left half of Figure 3 describes the implementation details of the

interface between an application program and monitoring hardware.
It is worth noting that check instructions inserted at the beginning
of BBs and MIs embedded into machine instructions serve as the in-
terface between software and hardware. In software instrumentation
process, the source code of an application is compiled by the front
end of a compiler and the assembly code for the target Instruction
Set Architecture (ISA) is produced. Then a software parser is used
to instrument the assembly code. Tasks performed by this parser are:
[i] identifying basic blocks; [ii] calculating checksums for each ba-
sic block based on the instruction sequence of each basic block; [iii]
forming check instructions by inserting the checksums calculated in
tasks 2 above; and [iv] inserting the chk instructions into the assembly
instruction stream at the beginning of each basic block.
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Figure 3: Design flow for the monitoring architecture

An instrumented version of the assembly program is then assem-
bled and linked using the back-end of the same compiler to generate
the instrumented binary (indicated by iBinary in Figure 3) for the tar-
get architecture. The loader of the same compiler tool kit is modified
to integrate secure loading as described in Figure 2.

4.2 Architectural Design
Without losing generality of our technique, we use an automatic

processor design tool to implement it in hardware. This automatic
design tool is used to design Application Specific Instruction-set Pro-
cessors (ASIPs). Right half of Figure 3 describes this design process.
The ASIP design tool allows us to write MIs for each machine in-
struction and to add new machine instructions. We used this feature
to add the new machine instruction called chk. We amend all CFIs
to perform encryption and comparison as illustrated in Figure 2. We
also modify MIs for non-BI instructions so that they will perform in-
struction checksumming. The reader may refer to [13] for the details
on writing MIs in the design tool that we used.

The final task in the architectural design process is to generate the
hardware model in a hardware description language for simulation
[behavioral model] and synthesis [gate level model]. The same hard-
ware monitoring is re-implemented in a cycle accurate instruction set
simulator for performance evaluation and fault injection analysis.

5. EXPERIMENTAL RESULTS
In this section, we present the hardware overhead incurred by the

proposed architecture, as well as the impact of the technique on per-
formance. For the purpose of experiments, we have used PISA in-
struction set (as implemented in SimpleScalar tool set [2]) for build-
ing a secure processor from the one in [11]. Applications from MiBench
[6] benchmark suite are used in the experiments. We have also per-
formed fault injection analysis for single instruction corruption.

5.1 Evaluating the Overheads
To evaluate the methodology, applications are compiled with the

GNU/GCC R© cross compiler for PISA instruction set as described in
Section 4.1. An automatic ASIP design tool, ASIP Meister [15] is
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Figure 4: Testing and Evaluation

used to generate the VHDL description of the target processor as de-
scribed in Section 4.2. The outputs of ASIP Meister are the VHDL
models for simulation and synthesis of the secure processor. The
synthesis model is used with Synopsys Design Compiler R© (DC) [16]
(as shown in Figure 4) to obtain the area, clock period (CP) and the
leakage power (LP). TSMC’s 90nm core library is used for synthesis
with typical conditions enabled. ModelSim R© hardware simulator is
used with the instrumented binary (iBinary) to verify the correctness
of the monitoring hardware.

Clock Period Area Leakage Power
(ns) (# of cells) (µW)

Ordinary H/W 16.84 227077 478
IMPRES H/W 16.85 229143 483
Overhead(%) 0.06% 0.91% 1.05%

Table 2: Clock Period, Area and Leakage Power Comparison
Table 2 shows the clock period, area and leakage power overheads

of our processor due to extra monitoring logic implementation. The
clock period has increased a negligible 0.06% and the area increase
is a paltry 0.91%. Leakage power estimation shows an increase of
1.05%.

Applications Clock Cycle (106) Code Size (# of lines)
No With Inc. No With Inc.
chk chk (%) chk chk (%)

adpcm.encode 74.4 89.8 17.2 402 460 14.4
adpcm.decode 57.4 69.8 17.7 397 452 13.9

blowfish.encrypt 58.3 62.6 6.74 2946 3085 4.72
blowfish.decrypt 57.0 63.2 6.66 2946 3085 4.72
crc32.checksum 42.5 48.0 11.4 527 607 15.2
Table 3: Performance and Code Size Overheads

As shown in Figure 4, the binary produced from software design
is used with an instruction set simulator (ISS) to compute the clock
cycle (CC) overhead of our design due to the software instrumenta-
tion. Table 3 shows CC and code size overheads due to additional
chk instructions in the runtime instruction stream. The bigger the ba-
sic blocks in an application, the smaller the percentage of CC and
code size overheads, as each basic block carries an additional chk in-
struction. The blowfish application has bigger basic blocks compared
to others. This explains the lower percentage of CC and code size
overheads of blowfish application. Average clock cycle and code size
overheads over the five applications are 11.9% and 10.6% respec-
tively.

5.2 Fault Injection Analysis
We performed fault injection analysis by altering the SimpleScalar

tool set and adding fault injection scripts to the tool set as shown by
the right side of Figure 4. Note that this fault injection analysis only
checks for reliability and not security.

The fault injection analysis is performed as follows: (1) after an
application is loaded, a random address within the memory address
boundaries is generated; (2) the instruction at this memory address
is changed/corrupted with a randomly generated instruction or bit
flipping; and (3) the application is executed and the output trace is
checked for fault activation and detection.

Table 4 shows the results of the fault injection analysis. It is per-
formed 10000 times for each application and results are tabulated.
The first column of Table 4 names the applications used for this anal-
ysis. Not all the faults injected are activated as some of them may
fall into the non execution path of the program. These faults are
called not activated (Not Act.). Columns 3,4 and 5 of Table 4 in-
dicate the detected faults by System (faults detected by the ISS itself

Applications Not Act. System CKSM NCFI Total
adpcm.encode 2032 434 7396 138 10000
adpcm.decode 1595 414 7857 134 10000

blowfish.encrypt 4460 242 5233 65 10000
blowfish.decrypt 4314 267 5365 54 10000
crc32.checksum 4960 276 4650 114 10000

Table 4: Fault Injection Results

- for example, an invalid opcode is detected by the ISS) SIGCKSM
and SIGNCFI respectively. Most of the activated faults are detected
by our checksumming technique (CHSM) and the system detects the
second largest amount. From Table 4 it is evident that all single in-
struction corruptions or changes are captured either by our monitor
or by the system.

6. CONCLUSIONS
In this paper, we have for the first time presented a simple hardware-

assisted runtime technique to detect code integrity violations. We
have formulated a list of acceptable application behavior and eval-
uated the fault coverage of our system via fault injection analysis.
We have elaborated an automatic technique to design our solution
using an ASIP design tool and software instrumentation. The hard-
ware overhead and clock period change are evaluated and reported.
The results show that these overheads are very small and negligible.
Our study reveals that the proposed IMPRES framework is capable
of handling code injection attacks and transient bits flip via detect-
ing code integrity violations with minimal overheads. We conclude
that our technique is useful in answering the increasing security and
reliability concerns in computer systems.
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