
computer programs

J. Appl. Cryst. (2014). 47, 1459–1465 doi:10.1107/S1600576714011996 1459

Journal of

Applied
Crystallography

ISSN 1600-5767

Received 21 February 2014

Accepted 22 May 2014

dxtbx: the diffraction experiment toolbox

James M. Parkhurst,a Aaron S. Brewster,b Luis Fuentes-Montero,a David G.

Waterman,c,d Johan Hattne,b‡ Alun W. Ashton,a Nathaniel Echols,b Gwyndaf

Evans,a Nicholas K. Sauterb and Graeme Wintera*

aDiamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK, bLawrence

Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA, cSTFC Rutherford Appleton

Laboratory, Didcot OX11 0FA, UK, and dCCP4, Research Complex at Harwell, Rutherford Appleton Laboratory,

Didcot OX11 0FA, UK. Correspondence e-mail: graeme.winter@diamond.ac.uk

Data formats for recording X-ray diffraction data continue to evolve rapidly to

accommodate new detector technologies developed in response to more intense

light sources. Processing the data from single-crystal X-ray diffraction

experiments therefore requires the ability to read, and correctly interpret,

image data and metadata from a variety of instruments employing different

experimental representations. Tools that have previously been developed to

address this problem have been limited either by a lack of extensibility or by

inconsistent treatment of image metadata. The dxtbx software package provides

a consistent interface to both image data and experimental models, while

supporting a completely generic user-extensible approach to reading the data

files. The library is written in a mixture of C++ and Python and is distributed as

part of the cctbx under an open-source licence at http://cctbx.sourceforge.net.

1. Introduction

Effective processing of X-ray diffraction data from single-crystal

diffraction experiments relies on an accurate model of the experi-

mental geometry, which in turn depends on the ability to read, with

no loss of information, the wide variety of data formats used for

X-ray diffraction experiments. While many experiments for macro-

molecular crystallography employ a simple geometry (rotation axis

perpendicular to the direct beam, coincident with one detector axis

and in which the ‘beam centre’ is somewhere near the middle of the

detector), the general diffraction experiment may employ a much

more complex geometry, allowing for arbitrary positioning of a

complex detector and the sample rotation axis. For example, the

experiment may employ multi-axis goniometry or have a complex

detector composed of multiple noncoplanar sensor panels (such as

the Pilatus 12M-DLS used on Diamond beamline I23). Reliable

reproduction of this geometry from a range of different descriptions

requires both a standardized representation and the ability to import

the experimental geometry from a variety of instruments. This is

complicated by the possibility of storing the information in different

ways, e.g. expressing the beam centre in pixels or millimetres, or with

different coordinate system conventions. While universal adoption of

standards such as imgCIF (Bernstein & Hammersley, 2005) for the

recording of X-ray diffraction data could resolve these challenges,

historical precedent indicates that this is unlikely.

The task of developing a tool to uniformly read diffraction image

headers and data has been addressed more than once. The CCP4

DiffractionImage library (Remacle & Winter, 2007) was developed to

support the DNA (Leslie et al., 2002) and xia2 (Winter, 2010) projects,

as it was realized early on that reliable access to a range of image

headers was vital. This was, however, limited by a lack of extensibility

and by assumptions made early in the design that the experimental

geometry would correspond to the simple layout described above.

The Computational Crystallography Toolbox (cctbx) (Grosse-

Kunstleve et al., 2002) includes a package, iotbx.detectors, providing

data access for the indexing program LABELIT (Sauter et al., 2004)

and the X-ray free-electron laser (XFEL) data analysis program

cctbx.xfel (Sauter et al., 2013), yet it suffers similar limitations. More

recent efforts, such as FabIO (Knudsen et al., 2013), help to allow

general access to the data but have less emphasis on the metadata so

critical for crystallographic data and their analysis.

Here we present the diffraction experiment toolbox (dxtbx), a

software toolkit within the cctbx for writing new diffraction data

visualization and analysis applications, which has the aim of allowing

a completely general and user-extensible approach to the reading and

interpretation of diffraction image data and metadata. The dxtbx

follows the principle that the interpretation and analysis of X-ray

diffraction data should be distinct and separable. This design allows

the dxtbx to be generally applicable to the reading of X-ray diffrac-

tion data and metadata and will help to liberate developers of data

processing software from the often tedious task of supporting

multiple file formats and data representations within their applica-

tions. The dxtbx is written in a mixture of C++ and Python and is

distributed as part of the cctbx under an open-source licence at http://

cctbx.sourceforge.net.

2. Method of operation

Early in the development of the dxtbx, it was recognized that, in order

to be generally applicable, a library for reading diffraction image

headers and data must satisfy the following requirements.

(1) It must have the ability to read image data and metadata from a

wide variety of detectors employing different file formats and

experimental conventions.
‡ Present address: Janelia Farm Research Campus, 19700 Helix Drive,
Ashburn, VA 20147, USA.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/192336178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576714011996&domain=pdf&date_stamp=2014-07-19


(2) The image data and metadata must be accessible via a single

unified interface.

(3) The library must be user-extensible without requiring modifi-

cation of the library source code.

(4) Finally, the models used to represent the experiment must be

able to accurately capture the detector physics (e.g. distortion

corrections) while being sufficiently general to encompass a wide

variety of diffraction measurement setups.

To achieve these aims, the dxtbx implements an extensible plugin

framework, where beamline scientists and developers can add their

own modules to handle input from different file formats with

different file representations. At the cost of writing a small amount of

Python code (see examples in Appendices A and B), the user may

extend the library to support any bespoke file format and transform

the metadata therein to correspond to the standard representation

that is used within the dxtbx experimental models, which has been

adopted from the imgCIF standard. A simple high-level interface that

enables access to data from an entire sequence of images is also

provided.

Following the methodology of the cctbx, the library is a hybrid

system written in C++ and Python (Abrahams & Grosse-Kunstleve,

2003). Python lends itself well to rapid development, with an

emphasis on clean portable code, and has an extensive standard

library. Various language features facilitate the easy implementation

of generic code with interchangeable components. There is, however,

a performance overhead with the use of Python, owing to the inter-

preted nature of the language, so the experimental models were

implemented in C++ to allow them to be used directly within

compiled code, thereby avoiding this overhead. This means that,

while only Python applications can take full advantage of the power

of the dxtbx, compiled C++ applications and libraries can still employ

the generic experimental models. The boost.python language binding

framework is used to export the C++ interface for use in Python.

The diffraction experiment toolbox consists of four distinct

components: the experimental models, the high-level DataBlock and

ImageSet interfaces, and the Format plugin system (x2.4). These

components are described in more detail below and their interaction

is illustrated in Fig. 1.

2.1. Experimental models

The dxtbx uses the concept of experimental models to encapsulate

certain aspects of the experimental description that are separable

with respect to one another. The experimental models are encoded in

four container classes: the beam, goniometer, detector and scan.

These contain information about the source wavelength and direc-

tion, the axis about which the crystal is rotated (for rotation data), the

instrument performing the measurements, and the relationship

between the image frames and any rotation, respectively. In the

context of single-crystal X-ray diffraction, the models are completely

general with respect to experimental technique and beamline hard-

ware. This is achieved by employing a fully vectorial description that

expresses only the abstract geometry of the experiment and not other

properties. No assumptions are made about the geometry besides the

intersection of the beam with the crystal and the rotation axis. In

particular, the rotation axis is not assumed to be orthogonal to the

direction of the beam in the representation of a rotation method scan.

As the models consist of vector descriptions, in principle, their

components may be expressed in any chosen coordinate system;

however, within the dxtbx, the geometry is expressed using the

standard imgCIF conventions (Bernstein & Hammersley, 2005). We

take many ideas from the proposals described in the EEC Coop-

erative Programming Workshop on Position-Sensitive Detector

Software (Bricogne, 1987). In particular, we adopt the scheme for

‘virtualization’ discussed therein, which involves forming an abstract

and general definition for every component of the diffraction

computer programs

1460 James M. Parkhurst et al. � dxtbx J. Appl. Cryst. (2014). 47, 1459–1465

Figure 1
The dxtbx data model for a complex set of input images. The image files (1) are fed into the data block factory (2). The data block factory then uses the format registry (3) to
interrogate each image to find the Format class (4) that best understands it. Note that the dxtbx supports more Format classes than are shown in the figure. If all the images
use the same Format class, then a single data block (5) is returned; otherwise, multiple data blocks are created. The data block analyses the image metadata to group the
images together on the basis of the set of experimental models that are shared between them. These groups can be accessed from the datablock as either sweeps or sets (6). A
sweep must contain a beam, detector, goniometer and scan (7), and is thus appropriate for rotation photography; an imageset must have a beam and detector model for each
image, as for a set of still shots.



experiment. The dxtbx forms the basis of the ‘instrument definition

language’ outlined at that workshop, by which actual beamline

hardware is mapped to its abstract model representation for any

particular experiment.

Of the core experimental models, the detector model is necessarily

the most complex and requires further explanation. The basic unit of

our abstraction is a panel, which represents a rectangular detector

plane,1 oriented in laboratory space. Even the simple case where the

detector is a container of one or more such panels, none of which

need to be coplanar, can accurately capture the half-barrel-shaped

Pilatus 12M-DLS constructed for Diamond beamline I23 (Fig. 2). For

more exotic detectors, the dxtbx supports a general hierarchical

model, allowing panels to be organized into logically related groups

and subgroups. This is necessary for the CSPAD (Hart et al., 2012),

used on the LCLS CXI beamline (Fig. 2), where subsets of panels

may move with respect to each other.

In determining a position on the detector, the dxtbx uses the

concept of a virtual detector plane. A position on the virtual plane is

given by the panel identifier and a coordinate in the two-dimensional

Cartesian frame attached to that panel. This point corresponds to the

position at which photons impinge on the surface of the detector and

is independent of the actual detector hardware in use. Behind the

virtual plane interface, the hardware-specific mapping between panel

position and pixel location is encapsulated within a millimetre-to-

pixel function (and its inverse), which must be supplied by code

specific to the actual detector hardware. This will, for example, take

into account detectors with thick sensors, where the interaction point

within the sensor may alter the pixel position of the measurement. In

the dxtbx, this is realized by pairing the abstract detector model with a

‘strategy’ class (Gamma et al., 1994), which allows the behaviour of

the detector model to be modified without changing the model itself.

This class is the natural place for all hardware-specific distortions

from the simple mapping, including parallax and geometrical distor-

tion effects, for example caused by an optical fibre taper.

The geometry of a single panel k is conveniently expressed by the

matrix, dk ¼ ðdkx dky dk0 Þ. For panel k, the columns of the matrix are

the panel basis vectors dkx and dky , augmented by the translation

vector dk0 , locating the origin of the panel frame in laboratory space

(Fig. 3). The use of matrix dk conveniently simplifies the equation for

reflection prediction to a projection along a scattered direction to the

detector plane, completely avoiding trigonometric functions in favour

of matrix operations (Thomas, 1992). In general, all algorithms that

use the dxtbx models do so via the vectorial representations

summarized in Fig. 3. This ensures that the choice of coordinate

frame is independent of the working of those algorithms, with the

caveat that the origin of the laboratory frame is located at the

intersection of the primary beam and the sample.

2.2. High-level DataBlock and ImageSet interfaces

Access to the image data is provided through the high-level

DataBlock interface. The data block inspects the image file metadata

computer programs

J. Appl. Cryst. (2014). 47, 1459–1465 James M. Parkhurst et al. � dxtbx 1461

Figure 2
The CSPAD detector at the LCLS CXI beamline (a) (courtesy of Philip Hart) and
the Pilatus 12M-DLS at Diamond Beamline I23 (b) (courtesy of DECTRIS Ltd).

Figure 3
The description of diffraction geometry for the rotation method using dxtbx
models. A monochromatic X-ray beam is represented by the wavevector s0, which
intersects a sample rotation axis, given by the unit vector e, at the origin of the
reciprocal laboratory coordinate system. An abstract detector plane k is described
in the real space laboratory coordinate system with an origin vector dk0 and a pair
of orthogonal basis vectors fdkx ; dky g. The detector model provides a pair of limits,
limx and limy, forming a bounded rectangular panel within the plane. A crystal
model complements the dxtbx geometry models, with its setting expressed in a ’-
axis frame (aligned to the reciprocal laboratory frame at a rotation angle of ’ = 0�)
by the setting matrix UB, following the Protein Data Bank (http://www.pdb.org/
pdb/home/home.do) convention. Diffraction is represented by the wavevector s,
which may be extended to the point ðX;YÞ at which it meets the detector panel, in
the panel’s coordinate frame.

1 Currently the dxtbx supports only detectors made of a collection of flat
rectangular sensors; support for truly curved instruments could, however, be
added when the need arises.



header information to determine the relationship between consecu-

tive images in the list it has been provided. This enables images to be

accessed as blocks of related images, such as those which share a

particular set of experimental models. Blocks of images are organized

according to this scheme as image sweeps and image sets. The

ImageSweep class represents a series of images that have a well

defined geometric relationship between adjacent pixels in three

dimensions, e.g. a series of images taken using the rotation method.

The ImageSet class is used where this relationship does not exist, e.g.

for still image data resulting from serial femtosecond crystallography,

but the images are nonetheless part of a single data collection. The

ImageSweep class is derived from the ImageSet class. Both classes

provide convenient access to image data through a Python list-style

interface, where images in the set can be iterated over and subsets can

be selected and used. The ImageSweep class provides additional

methods to operate over a range of geometrically related images. The

DataBlock class can then contain multiple instances of the ImageSet

and ImageSweep classes.

Internally, the ImageSweep and ImageSet classes retain a refer-

ence to either a single- or a multi-file reader class that handles the

reading of a sequence of images from a single file, such as an HDF5

file (The HDF Group, 2010), or multiple files, such as a collection of

image files. Both reader classes implement a single interface, allowing

the image sweep and image set to interact with different data storage

representations in a generic way. Support for subsets of images is

implemented using the ‘flyweight’ pattern (Gamma et al., 1994),

whereby multiple subsets accessed through the lightweight high-level

interface retain a reference to a single reader that performs the

reading and interpretation. This has the advantage of reducing

memory usage when accessing multiple subsets of images in parallel.

2.3. Image metadata storage

A module is provided to enable straightforward storage of modi-

fied image set metadata. An image set may then be created from the

file representation, allowing the refined experimental geometry to be

saved for later use. The data are saved using the JavaScript object

notation (JSON) format (Crockford, 2006); this format was chosen as

it is human readable, is an open standard and is natively supported in

many programming languages. In particular, the Python standard

library contains a module for reading and writing arbitrary Python

structures to JSON format, making it convenient for use within the

dxtbx.

2.4. The Format plugin system

The dxtbx provides a plugin mechanism to handle input from

multiple file formats with alternative descriptions of the experimental

geometry. Each Format class is used to interpret a particular image

file and metadata format, and a collection of Format classes for

common detectors and data representations are included as part of

the dxtbx. Users may add their own to handle bespoke image formats

or local variants (see Appendices A and B). A registry maintains a

tree structure of these Format classes, such that the most specialized

formats lie furthest from the root. Further details on the plugin

mechanism can be found in Appendix D. This model for handling

different data representations has two advantages: no external site

file is required for operation; furthermore, complex corrections (e.g.

tile position corrections for a Pilatus detector) can be encoded in a

self-contained way.

Extensibility of beamline descriptions was a key requirement in the

development of the dxtbx: in particular, the ability for a beamline

scientist to write a Format module (possibly extending a more

general example for the detector) that describes how the values in the

image header are to be used. Custom Format modules can be placed

in a designated directory and are then automatically registered for

use within the dxtbx on application startup. The ability to extend the

library is primarily useful either where an unusual piece of experi-

mental hardware is present or if the beamline has some idiosyn-

crasies, for example a left-handed rotation axis. Two examples will be

used to demonstrate the ease with which the library may be extended.

2.4.1. Example 1: reversed rotation axis. The MX1 beamline at the

Australian Synchrotron has a goniometer with left-handed rotation –

the reverse of the conventional right-handed axis – but is an other-

wise conventional beamline including an ADSC Quantum 210r

detector, simply meaning that the direction of the rotation axis needs

to be reversed. Within the dxtbx this is achieved by creating the

Python file in Appendix A, which takes as a basis the standard

Format class for the ADSC detector and replaces the definition of the

rotation axis, after ensuring (based on the detector serial number)

that this is appropriate for these data.

2.4.2. Example 2: ADSC Q315 on a 2h arm. The majority of ADSC

CCD detectors are mounted on simple translation stages: given the

size and weight of these devices there are rarely circumstances where

more complex axes are needed. However, at ALS beamline 8.3.1 the

Quantum 315 detector is mounted on a 2� arm, which must be taken

into consideration when processing the data. Here the beam centre

recorded in the image header corresponds to the 2� offset value

rather than the position where the 2� angle is 0� (James Holton,

private communication). The Format class to support this, included in

Appendix B, replaces the detector definition to account for the shift

in the detector origin and the changes in the vectors defining the

detector plane resulting from the offset in 2�. It is important to note

that the changes are limited to the detector geometry, simplifying

implementation for a beamline scientist, and will only affect detectors

with a particular serial number (shown in the source code).

3. Applications

The dxtbx aims to be generally applicable to the reading of image

data and metadata for programs processing X-ray diffraction data. It

has already found utility within established projects, such as the cctbx

image viewer and xia2, as well as forming a key component in new

projects, such as the Diffraction Integration for Advanced Light

Sources (DIALS) project (Waterman et al., 2013). Some examples

showing simple usage of the dxtbx can be seen in Appendix C.

3.1. The cctbx image viewer

The cctbx image viewer was designed to display diffraction images

from a variety of diverse sources (Sauter et al., 2013). It has been

updated to utilize the dxtbx, showcasing the power of the Format,

ImageSet and ImageSweep classes. When run from the command

line, the viewer uses the dxtbx ImageSet factory to create either a set

or a sweep. It loads the first image in the set, displays it, and provides

easy access to the rest of the files in the set by retaining a reference to

the ImageSet or ImageSweep object. The dxtbx has allowed the

application to quickly add support for several new file formats, most

importantly newly defined HDF5 files.

HDF5 (The HDF Group, 2010) is a file container format currently

being utilized in the context of large data sets such as those from

XFEL beamlines or finely sliced synchrotron experiments. New

generation detectors are currently supporting frame rates of the

order of 120 Hz, and detectors on the horizon will be supporting

frame rates of 1000 Hz or more. Depositing these data sets on the file

computer programs

1462 James M. Parkhurst et al. � dxtbx J. Appl. Cryst. (2014). 47, 1459–1465



system using a single file per image is not practical, making container

technologies like HDF5 preferable. The dxtbx provides a plugin

interface that allows the wrapping of an HDF5 data set in a

MultiFileReader class, providing easy access to its contained

images and metadata. As HDF5 formats evolve, new dxtbx plugins

can be written or adapted to support their metadata formats

(Brewster et al., 2014). The plugins will seamlessly tie the new format

to existing systems, allowing image display and processing.

3.2. xia2

As mentioned in the Introduction, xia2 initially used the Diffrac-

tionImage library from the CCP4 suite to read the headers from

X-ray diffraction images. While this was effective for the initial range

of experimental setups supported by the program, it increasingly

became a limitation as more complex experimental geometries were

supported, for example the use of � goniometers and 2� detector

arms.

Initially this was addressed by providing alternative methods to

read specific image types, which were tested in sequence after the

DiffractionImage-based methods had failed; however, this approach

quickly led to very complex code and scaled very poorly. Since the

development and incorporation of the dxtbx into xia2, however, it has

become much more straightforward to support analysis of arbitrary

experimental geometries, allowing xia2 to be used for the analysis of,

for example, small molecule data (where more complex geometries

are common) in addition to the macromolecular crystallography

experiments it was designed for. In the future it is envisaged that this

trend will continue, and that scientists developing new beamlines for

crystallographic diffraction experiments will be able to add specific

support for their beamlines themselves.

3.3. The DIALS framework

The DIALS project aims to deliver an extensible framework and

software package for the processing of diffraction data. It is intended

for users of advanced light sources worldwide and, as such, is required

to access image data and experimental geometries from a variety of

data sources. To simplify the implementation and maintain generality,

the experimental geometry and image data must be exposed in a

uniform manner, independent of the underlying data representation.

In the context of DIALS, the dxtbx provides a solution to these

challenges.

4. Discussion

The principle behind the dxtbx is to separate the interpretation of

X-ray diffraction data from its analysis. Details of the experimental

setup are encapsulated and exposed using a common interface and

reference frame for all data types, ensuring that the client analysis

code need not be aware of any file format specifics. The models

produced by the dxtbx describe the key experimental components

and may be used directly, with no further transformation. The dxtbx is

also extensible in that a new experimental setup may be supported by

the addition of a single Python file that describes the local environ-

ment: once this has taken place no changes should be needed within

the dxtbx or the analysis code for the data to be correctly interpreted.

Together these allow the developers of analysis code to focus on

improving algorithms rather than the support of numerous detector

data formats. Finally, the use of a completely general vectorial

description of the experimental geometry allows for the propagation

of detailed calibration information into the analysis code and may

also encourage analysis software to support a similarly general

approach to the processing of X-ray diffraction data.

APPENDIX A
Implementation: reversed rotation axis

Full implementation of a dxtbx Format object, customized for

Australian Synchrotron beamline MX1 with a reversed rotation axis.

APPENDIX B
Implementation: ADSC Q315 on a 2h arm

Full implementation of a dxtbx Format object for ALS beamline

8.3.1, where the ADSC Quantum 315 detector is mounted on a 2�
arm.

computer programs

J. Appl. Cryst. (2014). 47, 1459–1465 James M. Parkhurst et al. � dxtbx 1463



APPENDIX C
Simple examples

We briefly show some simple examples using the dxtbx. Full source

code for these examples can also be found within the dxtbx source

distribution under ./dxtbx/examples/.

C1. Detector corner resolutions

A straightforward example that demonstrates the usefulness of the

dxtbx is to compute the corner resolutions for a detector in an

arbitrary position. Simply put, this example computes the 2� angles

between the beam and the position of each corner of the detector and

converts them to the corresponding d spacing.

C2. ImageSet interface

The code fragment below shows how the high-level ImageSet

interface operates in a simple example. The ImageSet object,

instantiated through a factory function, provides access to the

experimental models and subsets of the ImageSet, and allows simple

indexing of images from the set or subset. Finally, an image volume

can be easily extracted from the sequence of images contained in the

ImageSet.

C3. Storage

The dxtbx provides a module to write a sweep or imageset to a

JSON file. Either reading or writing an imageset from/to a file can be

achieved in a single line of code. It should be noted that these

functions do not read and write the image data directly; they read and

write a representation that the dxtbx can use to understand the image

data and metadata. The JSON format also loads any models that have

been overridden in the imageset, allowing refined geometry for a

sweep to be saved and loaded as necessary.

C4. Detector-ray intersection

The detector model provides methods to calculate the point at

which a ray intersects with the virtual detector plane described by its

internal geometric representation as shown in the code fragment

below. This point is returned in millimetres from the zeroth pixel in

both the fast and slow direction. The detector model also provides a

millimetre-to-pixel (and pixel-to-millimetre) function, allowing arbi-

trarily complex mappings.

APPENDIX D
Plugin mechanism

Given an image file, the registry calls the understandðÞ function of

the classes directly derived from the base class, Format. If a format

claims to understand the image, the image is passed to the

understandðÞ function of its subclasses. The procedure continues recur-

sively until the most deeply nested compatible format is returned. If

at any level of the hierarchy more than one subclass understands an

image, an exception is raised, thereby ensuring a unique result.

The registry tree is established automatically using a Python

metaclass, which allows control over class creation. When a Format

class is first discovered, the metaclass recursively ensures that it is

registered with the list of direct descendants of its base class. Because

the metaclass is tied to the Format base class it is implemented only

once, and all of its subclasses will benefit from the auto-registration it

provides.

JMP and LFM were supported by the European Community’s

Seventh Framework Programme (FP7/2007–2013) under BioStruct-X

(grant agreement No. 283570). ASB, JH and NKS were supported by

the US National Institutes of Health/National Institute of General

Medical Sciences grant R01GM095887. NE was supported by the

National Institutes of Health/National Institute of General Medical

Sciences grant 1P01GM063210 to Paul Adams (LBNL), which also

supports the broad development of the cctbx.

References

Abrahams, D. & Grosse-Kunstleve, R. W. (2003). C/C++ Users J. 21(7), 29–36.
Bernstein, H. J. & Hammersley, A. P. (2005). International Tables for

Crystallography, Vol. G, Definition and Exchange of Crystallographic Data,
edited by S. R. Hall & B. McMahon, pp. 37–43. Heidelberg: Springer.

computer programs

1464 James M. Parkhurst et al. � dxtbx J. Appl. Cryst. (2014). 47, 1459–1465

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB2


Brewster, A. S., Hattne, J., Parkhurst, J. M., Waterman, D. G., Bernstein, H. J.,
Winter, G. & Sauter, N. (2014). Comput. Cryst. Newsl. 5(1), 19–24.

Bricogne, G. (1987). Proceedings of the CCP4 Daresbury Study Weekend,
pp. 120–145. Warrington: Science and Engineering Research Council.

Crockford, D., (2006). The application/json Media Type for JavaScript Object
Notation (JSON), http://tools.ietf.org/html/rfc4627.txt.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Indianapolis:
Addison-Wesley Professional.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. (2002).
J. Appl. Cryst. 35, 126–136.

Hart, P. et al. (2012). SPIE Optical Engineering and Applications, pp.
85040C–85040C. San Diego: International Society for Optics and
Photonics.

Knudsen, E. B., Sørensen, H. O., Wright, J. P., Goret, G. & Kieffer, J. (2013). J.
Appl. Cryst. 46, 537–539.

Leslie, A. G. W., Powell, H. R., Winter, G., Svensson, O., Spruce, D.,
McSweeney, S., Love, D., Kinder, S., Duke, E. & Nave, C. (2002). Acta Cryst.
D58, 1924–1928.

Remacle, F. & Winter, G. (2007). CCP4 Newsletter on Protein Crystallography,
No. 46, pp. 7–9.

Sauter, N. K., Grosse-Kunstleve, R. W. & Adams, P. D. (2004). J. Appl. Cryst.
37, 399–409.

Sauter, N. K., Hattne, J., Grosse-Kunstleve, R. W. & Echols, N. (2013). Acta
Cryst. D69, 1274–1282.

The HDF Group (2010). Hierarchical Data Format Version 5, http://
www.hdfgroup.org/HDF5.

Thomas, D. J. (1992). Acta Cryst. A48, 134–158.
Waterman, D. G., Winter, G., Parkhurst, J. M., Fuentes-Montero, L., Hattne, J.,

Brewster, A., Sauter, N. K. & Evans, G. (2013). CCP4 Newsletter on Protein
Crystallography, No. 49, pp. 16–19.

Winter, G. (2010). J. Appl. Cryst. 43, 186–190.

computer programs

J. Appl. Cryst. (2014). 47, 1459–1465 James M. Parkhurst et al. � dxtbx 1465

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5001&bbid=BB17

