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Abstract Consistent interactions that can be added to a
free, Abelian gauge theory comprising a BF model and a
finite set of massless real scalar fields are constructed from
the deformation of the solution to the master equation based
on specific cohomological techniques. Under the hypotheses
of analyticity in the coupling constant, Lorentz covariance,
spacetime locality, and Poincaré invariance, supplemented
with the requirement of the preservation of the number of
derivatives on each field with respect to the free theory, we
see that the deformation procedure leads to two classes of
gauge-invariant interacting theories with a mass term for the
BF vector field Aμ with U (1) gauge invariance. In order to
derive this result we have not used the Higgs mechanism
based on spontaneous symmetry breaking.

1 Introduction

Topological BF theories [1] are important due to the fact
that some interacting, non-Abelian versions are related to a
Poisson structure algebra [2] characteristic to Poisson sigma
models, which, in turn, are useful tools at the study of two-
dimensional gravity. It is well known that pure gravity in
D = 3 is just a BF theory. Moreover, higher-dimensional
general relativity and supergravity in the Ashtekar formalism
may also be formulated as topological BF theories in the
presence of some extra constraints [3–6]. In view of these
results, it is relevant to construct the self-interactions in BF
theories [7–9] as well as the couplings between BF models
and other gauge or matter theories [10–13].

The aim of this paper is to investigate the consistent inter-
actions in four spacetime dimensions between an Abelian BF
theory and a set of massless real scalar fields by means of the
deformation of the solution to the master equation [14,15]
with the help of local BRST cohomology [16–18]. The field
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sector of the four-dimensional BF model consists of one
scalar field ϕ, two vector fields {Aμ, Hμ}, and a two-form
Bμν . We work under the hypotheses of analyticity in the cou-
pling constant, Lorentz covariance, spacetime locality, and
Poincaré invariance, supplemented with the requirement of
the preservation of the number of derivatives on each field
with respect to the free theory. As a consequence of our pro-
cedure, we are led to two classes of gauge-invariant interact-
ing theories with a mass term for the BF vector field Aμ with
U (1) gauge invariance. The derivation of the above classes of
gauge-invariant massive theories represents the main result
of this paper. We remark that in order to derive the previ-
ously mentioned massive models we have not used in any
way the Higgs mechanism based on spontaneous symme-
try breaking [19–22]. Thus, our main result reveals a novel
mass generation mechanism that deserves to be further inves-
tigated with respect to a collection of Maxwell vector fields
and a set of real massless scalar fields.

Our strategy goes as follows. Initially, we determine in
Sect. 2 the (antifield) BRST symmetry of the free model,
which splits as the sum between the Koszul–Tate differen-
tial and the longitudinal exterior derivative, s = δ + γ . In
Sect. 3 we briefly present the reformulation of the problem
of constructing consistent interactions in gauge field theo-
ries in terms of the deformation of the solution to the master
equation. Next, in Sect. 4 we determine the first-order defor-
mation of the solution to the master equation for the model
under consideration. The first-order deformation belongs to
the local cohomology H0(s|d), where d is the exterior space-
time derivative. We find that the first-order deformation is
parameterized by five types of smooth functions of the undif-
ferentiated scalar fields form the theory. Section 5 is devoted
to the investigation of higher-order deformations. The consis-
tency of the first-order deformation restricts the above men-
tioned functions to fulfill two kinds of equations (consis-
tency equations). Based on these equations we prove that
the higher-order deformations can be taken to stop at order
three in the coupling constant. The identification of the inter-
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acting model is developed in Sect. 6. Initially, we infer the
general form of the Lagrangian action and its gauge symme-
tries. Next, we emphasize two types of solutions to the con-
sistency equations, which lead to the previously mentioned
gauge-invariant massive theories. Section 7 closes the paper
with the main conclusions and some comments. The present
paper contains also two appendices, in which the concrete
form of the first-order deformation used in the main body
of the paper as well as some formulas concerning the gauge
structure of the interacting model are derived.

2 Starting model

We start from a free model in D = 4 spacetime dimen-
sions describing a topological BF theory with a maximal
field spectrum (a scalar ϕ, two sorts of vector fields denoted
by {Aμ, Hμ}, and a two-form Bμν) plus a finite set of mass-
less real scalar fields φA (A = 1, N ). For notational ease we
designate the entire collection of massless real scalar fields
by φ and the full field spectrum by �α0 ,

φ ≡ {
φA}

A=1,N , �α0 ≡ {ϕ, Aμ, Hμ, Bμν, φ}. (1)

The Lagrangian action underlying this model reads

SL[�α0 ] =
∫

d4x
[
Hμ∂μϕ + 1

2 B
μν∂[μAν ]

+ 1
2kAB

(
∂μφA)(

∂μφB)]

≡ SL,BF[ϕ, Aμ, Hμ, Bμν] + SL,scalar[φ]. (2)

We work with a mostly negative metric in a (flat) Minkowski
spacetime of dimension D = 4, σμν = σμν = (+−−−) and
a metric tensor kAB with respect to the matter field indices
(i.e., constant, symmetric, invertible, and positively defined),
φA = kABφB . In this context, the elements of its inverse will
be symbolized by kAB . Everywhere in this paper the notation
[μ . . . ν] signifies complete antisymmetry with respect to the
(Lorentz) indices between brackets, with the conventions that
the minimum number of terms is always used and the result
is never divided by the number of terms. For instance, the
expression ∂[μAν] from action (2) means ∂μAν − ∂ν Aμ.

The BF action is invariant under the nontrivial (infinitesi-
mal) gauge transformations

δ�α1 ϕ = 0, δ�α1 Aμ = ∂με, (3)

δ�α1 Hμ = −2∂λξ
λμ, δ�α1 Bμν = −3∂λε

λμν, (4)

while the action of the matter fields possesses no nontrivial
gauge symmetries of its own,

δ�α1 φ
A = 0, A = 1, N , (5)

such that (3)–(5) actually represent a generating set of
(infinitesimal) gauge transformations with respect to the
overall free action (2). The notation �α1 collects all the gauge
parameters,

�α1 ≡ {ε, ξλμ, ελμν}, (6)

which are bosonic, completely antisymmetric (where appro-
priate), and otherwise arbitrary tensors of definite orders
defined on the spacetime manifold. The above gauge transfor-
mations, written in a compact form as δ�α1 �α0 , are off-shell
reducible of order two. Indeed, if we transform the gauge
parameters like

�α1 = �α1(�α2) ⇔
⎧
⎨

⎩

ε(�α2) = 0,

ξμν(�α2) = −3∂λξ
λμν,

εμνρ(�α2) = −4∂λε
λμνρ,

(7)

in terms of the first-order reducibility parameters

�α2 ≡ {ξλμν, ελμνρ}, (8)

that are bosonic, completely antisymmetric, and otherwise
arbitrary tensors on the spacetime, then the gauge transfor-
mations of all fields vanish everywhere on the space of field
histories (off-shell),

δ�α1 (�α2 )�
α0 = 0. (9)

The last identities cover all the first-order reducibility rela-
tions of the set (3)–(5) of gauge transformations. Next, if we
transform the first-order reducibility parameters by

�α2 = �α2(�α3) ⇔
{

ξμνρ(�α3) = −4∂λξ
λμνρ,

ελμνρ(�α3) = 0,
(10)

in terms of the second-order reducibility parameters,

�α3 ≡ {ξλμνρ}, (11)

with ξλμνρ a bosonic, completely antisymmetric, and other-
wise arbitrary tensor, then all the transformed gauge param-
eters (7) vanish also off-shell,

�α1(�α2(�α3)) = 0. (12)

The above identities stand for all the second-order reducibil-
ity relations corresponding to the gauge transformations of
the action (2). The reducibility order of this gauge theory
in D = 4 is equal to two since the transformed first-order
reducibility parameters (10) vanish if and only if the second-
order reducibility parameters also vanish (actually if they are
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constant, but, due to their explicit dependence on the space-
time coordinates, these constants can be taken to vanish),

�α2(�α3) = 0 ⇔ �α3 ≡ ξλμνρ = 0. (13)

Actually, the BF sector, given its topological character, car-
ries no physical degrees of freedom, and hence all the phys-
ical degrees of freedom of this free model are provided by
the presence of the matter scalars. As an issue of terminol-
ogy, if we write the transformations (3)–(5), (7), and (10)
in condensed De Witt notations (where any discrete index is
understood to contain a continuous, spacetime one as well,
say α0 ≡ (α0, x), and a sum taken over any such index auto-
matically includes a spacetime integral with respect to the
corresponding continuous one) like

δ�α1 �
α0 = Zα0

α1�
α1 ,

�α1(�α2) = Zα1
α2�

α2 ,

�α2(�α3) = Zα2
α3�

α3 ,

then Zα0
α1 are known as gauge generators, while Zα1

α2 and
Zα2

α3 are called first-order and second-order reducibility
functions, respectively.

Moreover, all the commutators among the gauge transfor-
mations of the fields vanish off-shell, [δ�α1 , δ�′α1 ]�α0 = 0,
such the associated gauge algebra is Abelian. The previous
properties combined with the linearity of the field equations
following from the action (2) in all fields allow us to con-
clude that the overall free model under consideration is a
linear gauge theory with a definite Cauchy order, equal to
four.

Next, we construct the BRST differential algebra for the
free model we study in the context of the antifield-BRST
formalism [23–32]. Related to the BF sector, we use the
notations and results exposed in [33]. We introduce the
BRST generators as the original fields �α0 from Eq. (1), the
ghosts as dynamical variables respectively associated with
both gauge and reducibility parameters displayed in Eqs.
(6), (8), and (11), together with their corresponding antifields
(denoted by star variables),

�α0 ≡ {
ϕ, Aμ, Hμ, Bμν, φA}

,

�∗
α0

≡ {ϕ∗, A∗μ, H∗
μ, B∗

μν, φ
∗
A}, (14)

�α1 → ηα1 ≡ {η,Cμν, ημνρ},
η∗

α1
≡ {η∗,C∗

μν, η
∗
μνρ}, (15)

�α2 → ηα2 ≡ {Cμνρ, ηλμνρ},
η∗

α2
≡ {C∗

μνρ, η∗
λμνρ}, (16)

�α3 → ηα3 ≡ {Cλμνρ}, η∗
α3

≡ {C∗
λμνρ}. (17)

For notational ease, it is convenient to organize the fields and
ghosts and the antifields into

χ� ≡ {�α0 , ηα1 , ηα2 , ηα3},
χ∗

� ≡ {�∗
α0

, η∗
α1

, η∗
α2

, η∗
α3

}. (18)

The Z2 grading of the BRST algebra in terms of the Grass-
mann parity (ε) is inferred from the observation that all the
original fields together with the accompanying gauge and
reducibility parameters are bosonic, so, according to the gen-
eral rules of the antifield formalism, we take

ε(ηαk ) = k mod 2, k = 1, 2, 3,

ε(χ∗
�) = (ε(χ�) + 1) mod 2. (19)

The Grassmann parity is then lifted to the BRST algebra by
means of its additive action modulo 2 against multiplica-
tion. In agreement with the usual prescriptions of the BRST
method, the BRST algebra is endowed with three more grad-
ings (correlated with the main derivatives/differentials acting
on this algebra): two N-gradings along the antifield number
agh and the pure ghost number pgh and a total Z-grading in
terms of the ghost number gh. These are instated by setting
the values of the corresponding degrees at the level of the
BRST generators,

agh(χ�) = 0, agh(�∗
α0

) = 1, agh(η∗
αk

) = k + 1, (20)

pgh(χ∗
�) = 0, pgh(�α0) = 0, pgh(ηαk ) = k, (21)

(with k = 1, 2, 3) and by further using their additive actions
with respect to the multiplication. Finally, the (total) ghost
number of any object with definite pure ghost and antifield
numbers is defined like gh(a) = pgh(a) − agh(a).

Due to the fact that the right-hand sides of both gauge
transformations (3)–(5) and relations (7) and (10) do not
depend on the fields �α0 (or, in other words, all gauge
generators and reducibility functions—of order one and
two, respectively—are field independent), it follows that the
BRST differential s reduces to a sum of two fermionic deriva-
tions,

s = δ + γ, (22)

with δ the Koszul–Tate differential, graded in terms of agh
(agh(δ) = −1), and γ the longitudinal exterior derivative (in
this case a true differential), graded by pgh (pgh(γ ) = 1).
These two degrees do not interfere (agh(γ ) = 0, pgh(δ) =
0), such that the total degree of the BRST differential (and
of each of its components), namely gh, becomes equal to 1:
gh(s) = gh(δ) = gh(γ ) = 1. One of the major requirements
of the BRST setting, namely the second-order nilpotency of
s, becomes equivalent to three separate equations,

s2 = 0 ⇔ (δ2 = 0, δγ + γ δ = 0, γ 2 = 0), (23)
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which confirms that γ can indeed be constructed as a true
differential in the case of the free model we study. The actions
of δ and γ on the BRST generators that enforce Eq. (23) as
well as the fundamental cohomological requirements of the
antifield BRST theory [27–32] are given by

δχ� = 0, δϕ∗ = ∂λH
λ, δA∗μ = ∂λB

λμ, (24)

δH∗
μ = −∂μϕ, δB∗

μν = − 1
2∂[μAν], δφ∗

A = kAB�φB,

(25)

δη∗ = −∂λA
∗λ, δC∗

μν = ∂[μH∗
ν], δη∗

μνρ = ∂[μB∗
νρ],

(26)

δC∗
μνρ = −∂[μC∗

νρ], δη∗
λμνρ = −∂[λη∗

μνρ], (27)

δC∗
λμνρ = ∂[λC∗

μνρ], (28)

γχ∗
� = 0, γ ϕ = 0, γ Aμ = ∂μη, (29)

γ Hμ = −2∂λC
λμ, γ Bμν = −3∂λη

λμν, γ φA = 0,

(30)

γ η = 0, γCμν = −3∂λC
λμν, γ ημνρ = −4∂λη

λμνρ,

(31)

γCμνρ = −4∂λC
λμνρ, γ ηλμνρ = 0, γCλμνρ = 0,

(32)

where both operators are assumed to act like right derivations
and � ≡ ∂μ∂μ symbolizes the d’Alembertian. We notice
that the actions of γ on all fields/ghosts can be obtained
in this particular situation simply by replacing all gauge or
reducibility parameters from the right-hand sides of relations
(3)–(5), (7), (10), and (13) with the related ghosts introduced
in (15)–(17).

A striking feature of the antifield approach, in spite of its
essentially Lagrangian origins, resides in the (anti)canonical
action of the BRST differential [23–32], s· = (·, S), where its
(anti)canonical generator S is a bosonic functional of ghost
number equal to 0 (ε(S) = 0, gh(S) = 0) that is solution to
the classical master equation (S, S) = 0, where (, ) symbol-
izes the antibracket. This (anti)canonical structure is obtained
by postulating that each antifield is respectively conjugated to
the corresponding field/ghost, (χ�, χ∗

�′) = δ�
�′ , and is shown

to display properties that are fully complementary to the gen-
eralized Poisson bracket from the Hamiltonian formalism for
theories with both bosonic and fermionic degrees of freedom.
The classical master equation is completely equivalent to
the second-order nilpotency of s and its solution also imple-
ments the main cohomological requirements at the level of
the BRST differential. In the case of the free gauge theory
we study, the solution to the classical master equation takes
a simple form, expressed by

S =
∫

d4x
[
Hμ∂μϕ + 1

2 B
μν∂[μAν] + 1

2kAB
(
∂μφA)(

∂μφB)

+ A∗μ∂μη − 2H∗
μ∂λC

λμ − 3B∗
μν∂λη

λμν

− 3C∗
μν∂λC

λμν − 4η∗
μνρ∂λη

λμνρ

− 4C∗
μνρ∂λC

λμνρ
]
. (33)

The solution to the classical master equation is constructed
in such a way to encode the entire gauge structure of a given
theory. Relation (33) (and also Eq. (22)) must be viewed like a
decomposition of the canonical generator of the BRST differ-
ential (or respectively of the BRST differential itself) along
the antifield number agh. Thus, its component of agh equal
to 0 is nothing but the Lagrangian action of the starting gauge
model, while its projection on agh equal to 1 is written as the
antifields of the original fields times the gauge transforma-
tions of the corresponding fields with the gauge parameters
�α1 replaced by the ghosts ηα1 (of pure ghost number 1).
The structure of the remaining terms, of antifield numbers
strictly greater than 1, reveals all the remaining tensor prop-
erties of the gauge algebra and reducibility of the chosen
generating set of gauge transformations. In our case there
appear only terms of agh equal to 2 and 3, respectively, that
are linear in both antifields and ghosts, whose origin is due to
the first- and second-order reducibility of the gauge transfor-
mations (3)–(5), respectively. The absence of terms at least
quadratic in ghosts or respectively in antifields is directly
correlated with the abelianity of the associated gauge algebra
and the off-shell behavior of the accompanying reducibility
relations. Moreover, we observe that all the properties of the
Lagrangian formulation of the free model (2), such as space-
time locality [34], Lorentz covariance, Poincaré invariance,
and so on, are preserved by the solution to the classical master
equation.

3 Deformation procedure

The long standing problem of constructing consistent inter-
actions in gauge field theories has been solved in an ele-
gant and yet economic fashion by reformulating it as a prob-
lem of deforming the classical solution to the master equa-
tion [14,15] in the framework of the local BRST cohomol-
ogy [16–18]. Thus, if consistent interactions can be con-
structed for a given “free” gauge theory, then the associ-
ated solution to the classical master equation, S, can be
deformed along a coupling constant (deformation parame-
ter) g to another functional S̄, which is precisely the solution
to the master equation for the interacting gauge theory,

S → S̄ = S + gS1 + g2S2 + g3S3 + g4S4 + · · · ,

(S̄, S̄) = 0. (34)

The consistency of deformations requires that the deformed
gauge theory preserves the number of physical degrees of
freedom of the starting “free” system (the field content and
the number of independent gauge symmetries are the same
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via keeping the maximum reducibility order and also the
number of independent reducibility relations at each order for
both theories), and hence the field/ghost and antifield spectra
are unchanged. It is understood that S̄ should satisfy all the
other standard properties required by the BRST-antifield for-
malism (and already assumed to be verified by S), namely,
to be a bosonic functional of ghost number 0 (ε(S̄) = 0,
gh(S̄) = 0) of fields, ghosts, and antifields. From the expan-
sion of S̄ we find that the main equation of the deformation
procedure, (S̄, S̄) = 0, becomes equivalent to the follow-
ing chain of equations obtained by projection on the various
powers in the coupling constant (and also accounting for the
canonical action of the BRST differential of the initial gauge
theory, s· = (·, S)):

g0 : (S, S) = 0, (35)

g1 : sS1 = 0, (36)

g2 : 1
2 (S1, S1) + sS2 = 0, (37)

g3 : (S1, S2) + sS3 = 0, (38)

g4 : 1
2 (S2, S2) + (S1, S3) + sS4 = 0, (39)

...

It is clear that Eq. (35) is satisfied by assumption (since S is
the generator of the BRST symmetry for the “free” gauge the-
ory). The remaining ones are to be solved recursively, from
lower to higher orders, such that each equation correspond-
ing to a given order of perturbation theory, say i (i ≥ 1),
contains a single unknown functional, namely, the deforma-
tion of order i , Si . Thus, Eq. (36) demands that the first-order
deformation is s-closed. Nevertheless, we discard the class
of s-exact solutions since these can be shown to correspond
to trivial gauge interactions of the Lagrangian action [14,15]
and can be eliminated by some (possibly nonlinear) field
redefinitions. In view of this, it follows that the nontrivial
first-order deformations of the solution to the classical mas-
ter equation are constrained by Eq. (36) to be the (nontrivial)
equivalence classes of the cohomology of the BRST differ-
ential s in ghost number 0 computed in the space of all (local
and nonlocal) functionals of fields, ghosts, and antifields.
This specific cohomology is nonempty since it contains all
Lagrangian physical observables of the initial “free” gauge
theory, so we can admit that Eq. (36) possesses nontrivial
solutions. The existence of solutions to the remaining higher-
order equations is shown by means of the triviality of the
antibracket map in the BRST cohomology computed in the
space of all functionals [14]. Unfortunately, this procedure
does not guarantee the spacetime locality of the deformed
solution S̄, and thus neither the locality of the interacting
Lagrangian action.

Under the hypothesis of spacetime locality of deforma-
tions, if we choose the notations

S1 =
∫

a dDx, S2 =
∫

b dDx,

S3 =
∫

c dDx, S4 =
∫

d dDx, (40)

1

2
(S1, S1) =

∫
� dDx, (S1, S2) =

∫
� dDx, (41)

1

2
(S2, S2) + (S1, S3) =

∫
� dDx, · · · (42)

where the nonintegrated densities of the deformations of var-
ious orders, a, b, c, d, and so on, are all bosonic and of ghost
number equal to 0 (such that �, �, �, etc. become fermionic
and of total ghost number equal to 1), then Eqs. (36)–(39)
etc. take the local form (in dual language)

g1 : sa = ∂μ jμ, (43)

g2 : sb = −� + ∂μk
μ, (44)

g3 : sc = −� + ∂μl
μ, (45)

g4 : sd = −� + ∂μm
μ, (46)

...

where all the currents ( jμ, kμ, etc.) are local, fermionic, and
of ghost number 1. The above chain of equations should be
solved recursively, starting from lower to higher orders of
perturbation theory. Thus, Eq. (43) stipulates that the non-
integrated density of the first-order deformation is a local
BRST co-cycle of ghost number 0. Its solution is unique up
to addition of trivial quantities, i.e., of s-exact terms modulo
divergences at the level of a and of s acting on the corre-
sponding currents modulo the divergence of a two-form in
relation with jμ,

a → a′ = a + sā + ∂μ j̄μ,

jμ → j ′μ = jμ + s j̄μ + ∂νk
νμ, (47)

(with ā local, fermionic, and of ghost number −1, the cur-
rent j̄μ also local, but bosonic and of ghost number 0, and
the two-tensor kνμ local, fermionic, of gh equal to 1, and
antisymmetric, kνμ = −kμν) in the sense that

sa − ∂μ jμ ≡ sa′ − ∂μ j ′μ = 0. (48)

In other words, a is constrained now to belong to a nontriv-
ial class of the local BRST cohomology (cohomology of s
modulo d—with d the exterior differential in spacetime) in
gh = 0 computed in the algebra of (local) nonintegrated den-
sities, H0(s|d). In this context, there is no warranty that there
exist nontrivial solutions to the first-order deformation equa-
tion in this algebra. Moreover, assuming one actually finds
such solutions, a, it is possible that there are still no local
solutions with respect to the second- or higher-order defor-
mations. Indeed, � introduced in the former relation from
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(41) is local now due to the previous assumption ona since the
antibracket of two local functionals is always local. Neverthe-
less, it may not read as an s-exact object modulo a divergence,
with both the object and the corresponding current some local
quantities, in which case the second-order deformation equa-
tion, (44), possesses no solutions with respect to b in the alge-
bra of local nonintegrated densities. If one imposes further
restrictions on the deformations of the solution to the clas-
sical master equation, such as Poincaré invariance, Lorentz
covariance, etc., then Eqs. (43)–(46), etc. remain valid, but
the first-order deformation a should be regarded as a non-
trivial element of H0(s|d) computed now in an even more
restricted algebra, of nonintegrated densities that are also
Poincaré invariant, Lorentz covariant, etc.

4 Setting the problem: first-order deformation

In the sequel we apply the deformation procedure exposed
previously with the purpose of generating consistent inter-
acting gauge theories in D = 4 whose free limit is precisely
the gauge theory described by relations (2)–(5). We are inter-
ested only in (nontrivial) deformations that comply with the
standard hypotheses of field theory: analyticity in the cou-
pling constant, Lorentz covariance, spacetime locality, and
Poincaré invariance. By analyticity in the coupling constant
we mean that the deformed solution to the classical master
equation, S̄ as in (34), is an analytic function of g and reduces
to the canonical BRST generator (33) of the starting model in
the free limit (g = 0). The other requirements are translated
at the level of its nonintegrated densities at all orders of per-
turbation theory to be expressed by (nontrivial) bosonic func-
tions of ghost number 0 that are: (a) (background) Lorentz
scalars; (b) smooth functions of the undifferentiated origi-
nal fields �α0 (see the notation (1)); (c) polynomials in the
derivatives of the original fields up to a finite order; (d) poly-
nomials in the ghosts, antifields, and their spacetime deriva-
tives up to a finite order (items (b), (c), and (d) ensure the
spacetime locality); (e) without an explicit dependence of
the spacetime coordinates (Poincaré invariance). In addition,
we impose the conservation of the number of derivatives on
each field with respect to the free limit and call it the deriva-
tive order assumption. This means that: (1) the interacting
Lagrangian density may contain at most two derivatives of
the fields at each order in the coupling constant; (2) all the
vertices containing two derivatives are limited to terms that
are quadratic in the first-order derivatives of the matter fields;
(3) the other vertices, with one or no derivatives, are not
restricted. In this way, the derivative order of the equations
of motion for each field is the same in the free and interacting
theory. We recall that the interacting Lagrangian densities in
various perturbative orders are obtained by projecting the cor-
responding nonintegrated densities of the deformed solution

to the master equation on antifield number 0. Actually, we
show that it is possible to relax the derivative-order assump-
tion, work with the weaker requirement that the maximum
number of derivatives allowed to enter each Lagrangian den-
sity is equal to two (without limiting the fields on which the
derivatives may act), and then recover precisely the initial,
stronger condition at the level of each nontrivial deformation.

By virtue of the discussion from the previous section,
the nonintegrated density of the first-order deformation, a,
should be a nontrivial element of the local BRST cohomol-
ogy in ghost number equal to 0, H0(s|d). In addition, all such
solutions for a will be selected such as to comply with the
working hypotheses mentioned in the above. The noninte-
grated density of the first-order deformation splits naturally
into two components,

a = aBF + aint, (49)

where aBF is responsible for the self-interactions among the
BF fields and aint governs the couplings between the BF
field spectrum and the matter scalar fields as well as the self-
interactions among the scalar fields. The two components
display different contents of BRST generators (aBF involves
only the BF fields, ghosts, and antifields, while aint mixes
the BF and matter sectors), such that equation sa = ∂μ jμ

becomes equivalent to two equations, one for each piece,

saBF = ∂μ jμBF, (50)

saint = ∂μ jμint. (51)

Related to the BF sector, Eq. (50) was addressed in [33]
under some equivalent working hypotheses and in the frame-
work of the same deformation approach. Employing all the
results, notations, and conventions therein, it follows that aBF

can be taken to decompose as a sum between pieces with the
antifield number ranging from 0 to 4,

aBF =
4∑

j=0

aBF
j ,

ε(aBF
j ) = 0, gh(aBF

j ) = 0, agh(aBF
j ) = j, (52)

where the expressions of its components take the form

aBF
0 = −W (ϕ)HμAμ, (53)

aBF
1 =

(
ϕ∗W − H∗

μH
μ dW

dϕ

)
η

+
(
dW

dϕ
H∗[μAν] + 2WB∗

μν

)
Cμν, (54)

aBF
2 = −

[(
dW

dϕ
C∗[μν + d2W

dϕ2 H∗[μH∗
ν

)
Aρ]

+ 2

(
dW

dϕ
H∗[μB∗

νρ] + Wη∗
μνρ

)]
Cμνρ
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+
(
dW

dϕ
C∗

μν + d2W

dϕ2 H∗
μH

∗
ν

)
ηCμν, (55)

aBF
3 =

{(
dW

dϕ
C∗[μνρ+d2W

dϕ2 H∗[μC∗
νρ+d3W

dϕ3 H∗[μH∗
ν H

∗
ρ

)
Aλ]

+ 2

[(
dW

dϕ
C∗[μν + d2W

dϕ2 H∗[μH∗
ν

)
B∗

ρλ]

+ dW

dϕ
H∗[μη∗

νρλ] + Wη∗
μνρλ

]}
Cμνρλ

−
(
dW

dϕ
C∗

μνρ + d2W

dϕ2 H∗[μC∗
νρ]

+ d3W

dϕ3 H∗
μH

∗
ν H

∗
ρ

)
ηCμνρ, (56)

aBF
4 =

[
dW

dϕ
C∗

μνρλ + d2W

dϕ2

(
H∗[μC∗

νρλ] + C∗[μνC
∗
ρλ]

)

+ d3W

dϕ3 H∗[μH∗
ν C

∗
ρλ]

+ d4W

dϕ4 H∗
μH

∗
ν H

∗
ρ H

∗
λ

]
ηCμνρλ. (57)

Everywhere in the sequel the lower numeric index of any
quantity serves as the value of its antifield number (like, for
instance, the lower index j in aBF

j ). In the above W = W (ϕ)

is a smooth function depending only on the undifferenti-
ated BF scalar field ϕ. In [33] one considered a second
possible solution to Eq. (50), which decomposes again in
pieces of antifield number ranging between 0 and 4 and pro-
duces a Lagrangian at order one in the coupling constant
which is quadratic in the components of the two-form Bμν ,
M(ϕ)εμνρλBμνBρλ, with M(ϕ) another smooth function of
ϕ. Here, we discard this last solution, although it is nontrivial
and verifies all the working hypotheses, for a simple reason.
The consistency of the first-order deformation [i.e., the exis-
tence of b as solution to Eq. (44)] constrains the two func-
tions W and M to satisfy the equation W (ϕ)M(ϕ) = 0, so
the associated BF self-interactions cannot coexist in D = 4.
Therefore, one should analyze separately the complemen-
tary cases where a single function is nonvanishing. The case
W = 0 and M arbitrary has been shown in [33] to produce
purely trivial couplings between the BF and an arbitrary set
of matter fields and therefore we avoid it since our aim is
to unveil all nontrivial couplings between the BF fields and
a collection of real massless scalars. This argues the choice
(53)–(57) with respect to the first-order deformation in the
BF sector.

Our next task is to infer the general form of the cross-
coupling first-order deformation as solution to Eq. (51).
Although the Cauchy order of the overall model is equal to 4,
it is the BF sector alone, governed by the Lagrangian action
SL,BF[ϕ, Aμ, Hμ, Bμν] from (2) and gauge transformations
(3) and (4), which is a linear gauge theory of Cauchy order

four. The massless real scalar fields are separately described
by a linear theory with the Lagrangian action SL,scalar[φ]
from (2) and without (nontrivial) gauge symmetries (see (5)),
so its Cauchy order is equal to one. On these grounds, the mat-
ter sector can be shown to be able to contribute nontrivially
to the first-order deformation aint earliest in antifield number
1 (see [33] for a more detailed argument). Consequently, it
is enough to expand aint and jμint along the antifield number
like

aint = aint
1 + aint

0 , jμint = jμint,1 + jμint,0, (58)

agh(aint
1 ) = agh( jμint,1) = 1,

agh(aint
0 ) = agh( jμint,0) = 0, (59)

being understood that in addition both components of aint

should be bosonic and of ghost number 0, while both currents
should be fermionic and of ghost number 1. Of course, since
the two degrees gh and agh are now fixed, the third one (pgh)
is also completely known,

pgh(aint
0 ) = 0, pgh(aint

1 ) = 1,

pgh( jμint,0) = 1, pgh( jμint,1) = 2. (60)

Taking into account Eq. (58) and the decomposition (22) of
the BRST differential, Eq. (51) becomes equivalent to two
separate equations,

γ aint
1 = ∂μ jμint,1,

δaint
1 + γ aint

0 = ∂μ jμint,0. (61)

Since the antifield number of both hand sides of Eq. (61)
is strictly positive (equal to 1), it can be safely replaced by
its homogeneous version without loss of nontrivial terms,
namely, one can always take jμint,1 = 0 in (58). The proof of
this result is done in a standard manner (for instance, see [17,
35–40]) and enables the equivalence between (51) and the
simpler equations

γ aint
1 = 0, (62)

δaint
1 + γ aint

0 = ∂μ jμint,0. (63)

Equation (62) shows that aint
1 can be taken as a γ -closed

object of pure ghost number 1 (see (60)). All γ -exact quanti-
ties may be factored out from aint

1 as they eventually provoke
trivial terms in aint, which is translated into the fact that aint

1
is a nontrivial element of the cohomology of γ in pgh = 1
computed in the algebra of local nonintegrated densities in
the framework of the above hypotheses, H1(γ ). According to
the detailed analysis from Appendix A, we conclude that the
general, nontrivial expression of the nonintegrated density of
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the first-order deformation that mixes the BF and the matter
sectors and, essentially, meets all the imposed requirements,
can be written as

aint = aint
0 + aint

1 , (64)

aint
0 = −kAB

(
∂μφA)

n̄B(ϕ, φ)Aμ − V(ϕ, φ)

+ 1
2μAB(ϕ, φ)

(
∂μφA)(

∂μφB)
, (65)

aint
1 =

[
− H∗

μkAB
(
∂μφA)∂ n̄B(ϕ, φ)

∂ϕ
+ φ∗

An̄
A(ϕ, φ)

]
η,

(66)

where

n̄ A(ϕ, φ) = nA(ϕ) + T AB(ϕ)kBCφC ,

T AB(ϕ) = −T BA(ϕ), (67)

μAB(ϕ, φ) = μBA(ϕ, φ),

μAB(ϕ, φ) �= ∂uA(ϕ, φ)

∂φB
+ ∂uB(ϕ, φ)

∂φA
. (68)

We remark that the nonintegrated density corresponding to
the first-order deformation is parameterized by three kinds
of arbitrary smooth functions depending only on the undif-
ferentiated BF scalar field ϕ (a scalar W , an N -dimensional
vector of components nA, and a skew-symmetric quadratic
matrix of order N of elements T AB) and by two types of arbi-
trary smooth functions of all the undifferentiated scalar fields
from the theory {ϕ, φ} (a scalarV and a symmetric, nontrivial
quadratic matrix of order N of elements μAB). It is easy to see
that aint contains also nontrivial self-interactions among the
matter fields, as it has been permitted from the start (see the
discussion following Eq. (49)). They follow from (65) allow-
ing the functions V and μAB to include terms that depend
solely on φ.

This completes the problem of obtaining the general
expression of the nontrivial nonintegrated density of the first-
order deformation a as solution to Eq. (43) under some spe-
cific assumptions. It splits like in (49), with aBF and aint

governed by relations (52)–(57) and respectively (64)–(68).

5 Higher-order deformations

Next, we pass to inferring the nonintegrated density of the
second-order deformation b as solution to Eq. (44) or, in
other words, to the consistency of the first-order deformation
at order two in the coupling constant. By direct computation,
from (49) where we use (52)–(57) and (64)–(66), we find that

� = −
(
kAC

∂ n̄C (ϕ, φ)

∂φB
+ kBC

∂ n̄C (ϕ, φ)

∂φA

)
(
∂μφA)

n̄B Aμη

+
[

1
2

(
μAC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φB
+ μBC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φA

+ ∂μAB(ϕ, φ)

∂φC
n̄C (ϕ, φ)

+ ∂μAB(ϕ, φ)

∂ϕ
W (ϕ)

)
(
∂μφA)(

∂μφB)

−
(

∂V(ϕ, φ)

∂φA
n̄A(ϕ, φ) + ∂V(ϕ, φ)

∂ϕ
W (ϕ)

)]
η

+ s

{
H∗

μ

[
μAB(ϕ, φ)

(
∂μφA)

− kAB A
μn̄ A(ϕ, φ)

]∂ n̄B(ϕ, φ)

∂ϕ
η

+ [
μAB(ϕ, φ)

(
∂μφA)

− 1
2kAB A

μn̄ A(ϕ, φ)
]
n̄B(ϕ, φ)Aμ

}
. (69)

The quantities appearing on the first line from the right-hand
side of (69) are identically vanishing because n̄ A of the form
(67) are by construction solutions to Eq. (219) (see the para-
graph containing Eq. (232) from Appendix A). With this
observation at hand and making the supplementary notations

∂V(ϕ, φ)

∂φA
n̄A(ϕ, φ) + ∂V(ϕ, φ)

∂ϕ
W (ϕ) ≡ V ′(ϕ, φ), (70)

μAC (ϕ, φ)
∂ n̄C (ϕ, φ)

∂φB
+ μBC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φA

+ ∂μAB(ϕ, φ)

∂φC
n̄C (ϕ, φ) + ∂μAB(ϕ, φ)

∂ϕ
W (ϕ)

≡ μ′
AB(ϕ, φ), μ′

AB(ϕ, φ) = μ′
BA(ϕ, φ), (71)

from (69) and (44) we further deduce that the existence of
a local b as solution to Eq. (44) is equivalent to the (consis-
tency) condition

[ 1
2μ′

AB(ϕ, φ)
(
∂μφA)(

∂μφB) − V ′(ϕ, φ)
]
η

= −sb′ + ∂μk
′μ, (72)

with b′ a bosonic, local nonintegrated density of ghost num-
ber 0 and k′μ a local fermionic current of ghost number 1.
Due to the fact that η is s-closed and s Aμ = ∂μη, we find
that (72) implies the necessary requirement

1
2μ′

AB(ϕ, φ)
(
∂μφA)(

∂μφB)−V ′(ϕ, φ) = sā′+∂μ j̄ ′μ, (73)

where ā′ denotes a fermionic, local nonintegrated density of
ghost number −1 and j̄ ′μ a local, bosonic current of ghost
number 0. Inspecting Eq. (73), on the one hand we remark
that its left-hand side is a bosonic, local nonintegrated density
of ghost number 0, which is, s-closed since it depends only
on the scalar fields from the theory (and on their spacetime
derivatives), so an element of H0(s|d). On the other hand,
(73) asks that it is precisely in a trivial class from H0(s|d).
As it has been argued in Appendix A (see the discussion

123



Eur. Phys. J. C (2016) 76 :65 Page 9 of 28 65

following Eq. (255)), Eq. (73) is satisfied if and only if V ′ is
vanishing and μ′

AB is trivial, i.e. of the form (256),

V ′(ϕ, φ) = 0,

μ′
AB(ϕ, φ) = ∂λA(ϕ, φ)

∂φB
+ ∂λB(ϕ, φ)

∂φA
, (74)

with {λA, A = 1, N } some smooth functions of the undif-
ferentiated scalar fields from the theory. It is easy to see that
Eq. (73) is also sufficient for the existence of b in the sense
that its solutions ensure that (72) displays at least one local
solution with respect to b′. Indeed, by means of (74) and
using Eq. (257), we obtain

[ 1
2μ′

AB(ϕ, φ)
(
∂μφA)(

∂μφB) − V ′(ϕ, φ)
]
η

= s

{
− (

∂μφA)
λA(ϕ, φ)Aμ

+
[
kABφ∗

AλB(ϕ, φ) − H∗
μ

(
∂μφA)∂λA(ϕ, φ)

∂ϕ

]
η

}

+ ∂μ

[
λA(ϕ, φ)

(
∂μφA)

η
]
, (75)

so comparing (72) with (75) it follows that we can take, for
instance,

b′ = (
∂μφA)

λA(ϕ, φ)Aμ

+
[
H∗

μ

(
∂μφA)∂λA(ϕ, φ)

∂ϕ
− kABφ∗

AλB(ϕ, φ)

]
η. (76)

Until now we emphasized that the existence of local solu-
tions to Eq. (44), which controls the nonintegrated density
of the second-order deformation, is equivalent to the fact the
functions that parameterize the first-order deformation are
no longer arbitrary, but subject to conditions (74). Indeed,
by means of (70) and (71) and recalling (67), it is clear that
(74) constrain precisely the parameterizing functions W (ϕ),
nA(ϕ), T AB(ϕ), V(ϕ, φ), and μAB(ϕ, φ).

Next, we point out that we can still simplify the second
set of relations from (74) without loss of nontrivial terms at
the level of the nonintegrated density of the first-order defor-
mation, (49). To this aim we act as mentioned in Appendix
A at the end of the paragraph containing Eq. (257), namely,
we add to (49) some specific purely trivial terms and choose
to work with

a → a + s

[
H∗

μ

(
∂μφA)∂vA(ϕ, φ)

∂ϕ
− kABφ∗

AvB(ϕ, φ)

]

+ ∂μ

(
vA(ϕ, φ)∂μφA)

, (77)

which is the same (due to (257)) with adding to μAB from
(65) a trivial part, of the form (256),

μAB(ϕ, φ) → μAB(ϕ, φ) + ∂vA(ϕ, φ)

∂φB
+ ∂vB(ϕ, φ)

∂φA
. (78)

Consequently, the functions μ′
AB(ϕ, φ) introduced in (71)

transform like

μ′
AB(ϕ, φ) → μ′

AB(ϕ, φ)+ ∂�A(ϕ, φ)

∂φB
+ ∂�B(ϕ, φ)

∂φA
, (79)

with

�A(ϕ, φ) ≡ ∂vA(ϕ, φ)

∂φC
n̄C (ϕ, φ) + vC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φA

+ ∂vA(ϕ, φ)

∂ϕ
W (ϕ). (80)

Comparing the second set of relations appearing in (74) with
(79), we conclude that we can absorb the terms depending
on λA into μAB by an appropriate trivial transformation (78).
Therefore, from now on we work with the purely homoge-
neous conditions

V ′(ϕ, φ) = 0, μ′
AB(ϕ, φ) = 0, (81)

written in explicit form (with the help of (70) and (71)), thus:

∂V(ϕ, φ)

∂φA
n̄A(ϕ, φ) + ∂V(ϕ, φ)

∂ϕ
W (ϕ) = 0, (82)

μAC (ϕ, φ)
∂ n̄C (ϕ, φ)

∂φB
+ μBC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φA

+ ∂μAB(ϕ, φ)

∂φC
n̄C (ϕ, φ) + ∂μAB(ϕ, φ)

∂ϕ
W (ϕ) = 0, (83)

with n̄ A given in (67). We call (82) and (83) consistency
equations since, in agreement with the analysis from the pre-
vious paragraph, they ensure the existence of solutions b to
the second-order deformation equation in local form, (44),
and thus the consistency of the nonintegrated density of the
overall deformation of the solution to the master equation at
order two of perturbation theory.

Assuming there exist nonvanishing and nontrivial solu-
tions to the consistency conditions with respect to the param-
eterizing functions, where nontrivial refers strictly to the fact
that the functions μAB are subject to the latter requirement
from (68), it follows from (69) that Eq. (44) takes the form

s

{
b + H∗

μ

[
μAB(ϕ, φ)

(
∂μφA)

− kAB A
μn̄ A(ϕ, φ)

]∂ n̄B(ϕ, φ)

∂ϕ
η + [

μAB(ϕ, φ)
(
∂μφA)

− 1
2kAB A

μn̄ A(ϕ, φ)
]
n̄B(ϕ, φ)Aμ

}
= ∂μk

μ. (84)
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In consequence, we find that

b = −H∗
μ

[
μAB(ϕ, φ)

(
∂μφA)

− kAB A
μn̄ A(ϕ, φ)

]∂ n̄B(ϕ, φ)

∂ϕ
η − [

μAB(ϕ, φ)
(
∂μφA)

− 1
2kAB A

μn̄ A(ϕ, φ)
]
n̄B(ϕ, φ)Aμ, (85)

and therefore the nonintegrated density of the second-order
deformation splits into a sum of components with the antifield
number equal to 0 and 1,

b = b0 + b1, (86)

b0 = −μAB(ϕ, φ)
(
∂μφA)

n̄B(ϕ, φ)Aμ

+ 1
2kABn̄

A(ϕ, φ)n̄B(ϕ, φ)AμAμ, (87)

b1 = H∗
μ

[
− μAB(ϕ, φ)

(
∂μφA)∂ n̄B(ϕ, φ)

∂ϕ

+ 1
2kAB

∂
(
n̄ A(ϕ, φ)n̄B(ϕ, φ)

)

∂ϕ
Aμ

]
η. (88)

From the previous expressions it follows that the second order
of perturbation theory contributes only to the deformation
of the gauge transformations corresponding to the one-form
Hμ from the BF sector and adds two kinds of vertices, which
couple the BF to the matter fields and, essentially, meet all
the requirements, including the derivative-order assumption.

Next, we solve Eq. (45), responsible for the nonintegrated
density of the third-order deformation, c. In terms of nota-
tions (40)–(42) and employing the results contained in Eqs.
(49), (52)–(57), (64)–(66), and (86)–(88), by direct compu-
tation we arrive at

� = 1
2

(
kAC

∂ n̄C (ϕ, φ)

∂φB

+ kBC
∂ n̄C (ϕ, φ)

∂φA

)
n̄ A(ϕ, φ)n̄B(ϕ, φ)AμAμη

−
(

μAC (ϕ, φ)
∂ n̄C (ϕ, φ)

∂φB
+ μBC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φA

+ ∂μAB(ϕ, φ)

∂φC
n̄C (ϕ, φ)

+ ∂μAB(ϕ, φ)

∂ϕ
W (ϕ)

)
(
∂μφA)

n̄B(ϕ, φ)Aμη

+ s

{

− 1
2μAB(ϕ, φ)Aμ

[
H∗

μ

∂
(
n̄ A(ϕ, φ)n̄B(ϕ, φ)

)

∂ϕ
η

+ n̄ A(ϕ, φ)n̄B(ϕ, φ)Aμ

]}

. (89)

The terms contained in the first two lines and in the next
three lines from the right-hand side of (89) are identically

vanishing on account of Eqs. (67) and respectively (83), such
that Eq. (45) becomes equivalent to

s

{
c − 1

2μAB(ϕ, φ)Aμ

[
H∗

μ

∂
(
n̄ A(ϕ, φ)n̄B(ϕ, φ)

)

∂ϕ
η

+ n̄ A(ϕ, φ)n̄B(ϕ, φ)Aμ

]}
= ∂μl

μ, (90)

from which we arrive at

c = 1
2μAB(ϕ, φ)Aμ

[
H∗

μ

∂
(
n̄ A(ϕ, φ)n̄B(ϕ, φ)

)

∂ϕ
η

+ n̄ A(ϕ, φ)n̄B(ϕ, φ)Aμ

]
. (91)

In conclusion, the nonintegrated density of the third-order
deformation decomposes, according to the distinct values of
the antifield number, into a sum between two pieces,

c = c0 + c1, (92)

c0 = 1
2μAB(ϕ, φ)n̄ A(ϕ, φ)n̄B(ϕ, φ)AμAμ, (93)

c1 = 1
2 H

∗
μA

μμAB(ϕ, φ)
∂
(
n̄ A(ϕ, φ)n̄B(ϕ, φ)

)

∂ϕ
η, (94)

where the functions n̄ A of the form (67) together with μAB

are assumed to satisfy the consistency conditions (82) and
(83). Analyzing (92)–(94), we notice that the third order of
perturbation theory deforms again only the gauge transfor-
mations of the BF one-form Hμ and produces a single kind
of cross-coupling vertices, while respecting all the working
hypotheses.

Now, we pass to the fourth order of perturbation theory
and solve Eq. (46). In agreement with notations (40)–(42)
and by means of Eqs. (49), (52)–(57), (64)–(66), (86)–(88),
and (92)–(94), we infer that

� = 1
2

(
μAC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φB
+ μBC (ϕ, φ)

∂ n̄C (ϕ, φ)

∂φA

+ ∂μAB(ϕ, φ)

∂φC
n̄C (ϕ, φ)

+ ∂μAB(ϕ, φ)

∂ϕ
W (ϕ)

)
n̄ A(ϕ, φ)n̄B(ϕ, φ)AμAμη, (95)

so it is identically vanishing since the parameterizing func-
tions are solutions to the consistency conditions (83) and thus
Eq. (46) takes the simple form

sd = ∂μm
μ, (96)

with mμ a local current. By virtue of (96), the nonintegrated
density of the fourth-order deformation of the solution to
the master equation is spanned by the (nontrivial) elements
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from the cohomology H0(s|d) that comply with all the work-
ing hypotheses, which can be eliminated because they have
already been considered once, at order one in the coupling
constant, so we can choose

d = 0 ⇔ S4 = 0 (97)

without loss of new nontrivial deformations and also without
further consistency conditions on the functions that param-
eterize the first-order deformation. Along the same line and
using the results deduced until now, it is easy to see that all the
remaining higher-order deformations can be taken to vanish,

Sk = 0, k > 4. (98)

Assembling the outcomes deduced so far via expansion
(34), we can state that the most general, nontrivial deforma-
tion of the solution to the master equation describing four-
dimensional interactions among a topological BF theory and
a (finite) set of massless real scalar fields that is consistent to
all orders in the coupling constant and meanwhile displays all
the required properties (analyticity in the deformation param-
eter, Lorentz covariance, spacetime locality, Poincaré invari-
ance, and conservation of the number of derivatives on each
field with respect to the free limit at the level of the deformed
field equations), can be taken to stop at order three in the cou-
pling constant,

S̄ = S +
∫

d4x[g(aBF + aint) + g2b + g3c]. (99)

In the above S is the solution to the master equation in the
absence of interactions, (33), and the nonintegrated densities
aBF, aint, b, and c are expressed by Eqs. (52)–(57), (64)–
(66), (86)–(88), and (92)–(94). The (smooth) functions of
the undifferentiated scalar fields from the theory involved
in the deformation S̄ are solutions of the consistency equa-
tions (82) and (83), being understood that n̄ A read like in
(67) and μAB are not trivial (see conditions (68)). Under
these circumstances, in the sequel from (99) we extract all
the ingredients correlated with the Lagrangian formulation of
the resulting interacting gauge theory and meanwhile empha-
size some interesting solutions to the consistency equations
together with their physical content.

6 Main results: Lagrangian formulation
of the interacting model(s)

6.1 General form of the Lagrangian action and gauge
symmetries

The Lagrangian action of the interacting gauge theory is
recovered via those terms from (99) that are both antifield-
and ghost-independent,

S̄L[�α0 ] = SL[�α0 ]+
∫

d4x[g(aBF
0 +aint

0 )+g2b0 +g3c0],

with SL[�α0 ] the free Lagrangian action (2) and the interact-
ing Lagrangian densities provided by Eqs. (53), (65), (87),
and (93), such that its concrete expression reads

S̄L[�α0 ] =
∫

d4x
{
Hμ∂μϕ + 1

2 B
μν∂[μAν]

+ 1
2kAB

(
∂μφA)(

∂μφB) + g
[ − W (ϕ)HμAμ

− V(ϕ, φ) − kAB
(
∂μφA)

n̄B(ϕ, φ)Aμ

+ 1
2μAB(ϕ, φ)

(
∂μφA)(

∂μφB)]

+ g2[ 1
2kAB A

μn̄ A(ϕ, φ)

− μAB(ϕ, φ)
(
∂μφA)]

n̄B(ϕ, φ)Aμ

+ g3 1
2μAB(ϕ, φ)n̄ A(ϕ, φ)n̄B(ϕ, φ)AμAμ

}
.

(100)

We can alternatively write down the functional S̄L in a more
compact form like

S̄L[�α0 ] =
∫

d4x
[
HμDμϕ + 1

2 B
μν∂[μAν] − gV(ϕ, φ)

+ 1
2 (kAB + gμAB(ϕ, φ))

(
D̂μφA)(

D̂μφB)]
,

(101)

in terms of the “covariant derivatives” of the BF scalar field
and of the matter fields,

Dμϕ ≡ ∂μϕ − gW (ϕ)Aμ, (102)

D̂μφA ≡ ∂μφA − gn̄A(ϕ, φ)Aμ. (103)

They are not standard covariant derivatives in the usual
sense of field theory since they generate more that minimal
couplings. In agreement with (100) or (101), the deformed
Lagrangian contains: (a) a single class of vertices (derivative-
free and of order one in the coupling constant) that describes
self-interactions among the BF fields and is monitored by the
function W (ϕ) and (b) six families of vertices that couple the
BF to the matter scalar fields, among which (b.1) three kinds
without derivatives (one at each of orders one, two, and three
of perturbation theory, respectively, with the last two types
quadratic in the BF one-form Aμ), (b.2) two types with a
single derivative acting on the matter fields and simultane-
ously linear in the BF one-form Aμ (at orders one and two in
g), and (b.3) one class with two derivatives acting only via
terms that are quadratic in the first-order derivatives of the
matter fields (at order one in the deformation parameter). We
remark that the cross-couplings between the BF and matter
fields at the first order of perturbation theory are exhausted
via the function V(ϕ, φ), the nontrivial ‘kinetic’ terms with
respect to the matter fields, (1/2)μAB(ϕ, φ)

(
∂μφA

)(
∂μφB

)
,
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and also by the current-gauge field contribution induced by
the presence of the nontrivial, one-dimensional rigid symme-
try of the free action, −tμ0 Aμ = −kAB

(
∂μφA

)
n̄B(ϕ, φ)Aμ

(see Eq. (238) from Appendix A).
The gauge symmetries of the action S̄L[�α0 ] are also

deformed with respect to those corresponding to its free limit,
SL[�α0 ], due to the fact that functional (99) collects (non-
trivial) terms of antifield number 1 in (all) the nonvanishing
deformations of strictly positive orders, d4x(g(aBF

1 +aint
1 )+

g2b1 + g3c1). Consequently, a generating set of gauge trans-
formations for the coupled Lagrangian action is obtained by
adding to (3)–(5) the contributions resulting from the previ-
ously mentioned terms (see Eqs. (54), (66), (88), and (94)) via
detaching the antifields and reverting the ghosts to the corre-
sponding gauge parameters. Proceeding along this line, we
find that S̄L[�α0 ] is invariant under the nontrivial, infinites-
imal gauge transformations

δ̄�α1 ϕ = gW (ϕ)ε, δ̄�α1 Aμ = ∂με, (104)

δ̄�α1 Hμ = −2∂λξ
λμ − g

dW (ϕ)

dϕ
(2Aλξ

λμ + Hμε)

− g(kAB + gμAB(ϕ, φ))
(
D̂μφA)∂ n̄B(ϕ, φ)

∂ϕ
ε,

(105)

δ̄�α1 Bμν = −3∂λε
λμν + 2gW (ϕ)ξμν, (106)

δ̄�α1 φ
A = gn̄A(ϕ, φ)ε. (107)

The previous gauge transformations exhibit some nice prop-
erties. Thus, only those of the BF vector field Aμ are not
affected by the deformation procedure and reduce to the
original U (1) gauge transformation of parameter ε. Mean-
while, the remaining BF fields, including the original, gauge-
invariant scalar ϕ, gain nontrivial gauge transformations due
to their self-interactions (controlled by the function W (ϕ)

and its first-order derivative) strictly in the first order of
perturbation theory. At the same time, the cross-couplings
add nontrivial contributions (only via the gauge parameter
ε) to the gauge transformations of the BF vector field Hμ

at orders one, two, and three and, most important, induce
nontrivial gauge transformations of the matter fields (at
order one). The terms generated in this context by the func-
tions n̄ A in the first order of perturbation theory, namely,
n̄ Aε in (107) and −kAB

(
∂μφA

)
(∂ n̄B/∂ϕ)ε in (105), are

obtained precisely by gauging the nontrivial, one-parameter
rigid symmetry constructed during the computation of the
cross-coupling first-order deformation aint (see the results
(236) and (237) from Appendix A). The associated con-
served current, (238), appearing in the interacting Lagrangian
action at order one in g via the term −tμ0 Aμ, is not gauge
invariant under these transformations. This result has two
main consequences at the second order of perturbation the-
ory: the appearance of the term (1/2)kABn̄An̄B AμAμ in the

Lagrangian action (100) and the introduction of the quantity
kABn̄A(∂ n̄B/∂ϕ)Aμε into the gauge transformations (105)
of the one-form Hμ. Moreover, there appears a rather unusual
behavior related to the presence of μAB : these functions can-
not be involved in any gauge transformation at order one since
they stem from a first-order deformation of the solution to the
master equation that is both antifield- and ghost-independent,
but instead modify the gauge transformations of Hμ at orders
two and three and also contribute to the cross-coupling ver-
tices at the same orders.

The main properties of the deformed generating set of
gauge transformations (104)–(107), namely, the accompa-
nying gauge algebra and reducibility, are investigated in
Appendix B.

6.2 Solutions to the consistency equations: mass terms
for the U (1) vector field

We recall that the entire Lagrangian formulation of the inter-
acting theory is controlled by the functions W (ϕ), T AB(ϕ),
nA(ϕ), V(ϕ, φ), and μAB(ϕ, φ), which are restricted so as
to satisfy the consistency equations (82) and (83), written in
detail like

∂V(ϕ, φ)

∂φA

(
nA(ϕ) + T AB(ϕ)kBCφC)

+ ∂V(ϕ, φ)

∂ϕ
W (ϕ) = 0, (108)

μAC (ϕ, φ)TCD(ϕ)kDB + μBC (ϕ, φ)TCD(ϕ)kDA

+ ∂μAB(ϕ, φ)

∂φC

(
nC (ϕ) + TCD(ϕ)kDEφE)

+ ∂μAB(ϕ, φ)

∂ϕ
W (ϕ) = 0. (109)

Thus, our procedure is consistent provided these equations
possess solutions. We give below two classes of solutions,
in terms of which the deformed Lagrangian action, (101),
displays a mass term for the BF U (1) vector field Aμ.

6.2.1 Type I solutions

A first class of solutions to Eqs. (108) and (109) is given by

W (ϕ) = arbitrary �= 0, T AB(ϕ) = t AB, nA(ϕ) = mA,

(110)

V(ϕ, φ) = V(q), μAB(ϕ, φ) = kABθ(q̄), (111)

where t AB = −t BA as well as mA are some nonvanishing,
real constants, while q and q̄ read

q = 1
2kAB

(
t ACφC + mA)(

t B DφD + mB)
, (112)

q̄ ≡ q − 1
2kABm

AmB = kABt
A
CφC( 1

2 t
B
DφD + mB)

,

(113)
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with t AC = t AEkEC . In (111) V(q) and θ(q̄) are some arbi-
trary, smooth functions of their arguments and, in addition,
θ is constrained to satisfy

θ(0) = 0. (114)

Condition (114) ensures that the function θ(q̄) contains no
additive constants and, as a consequence, none of the func-
tions μAB exhibits trivial components. Based on the above
solutions and taking into account result (67), we see that Eq.
(103) takes the particular form

D̂(I)μφA = D(I)μφA − gmAAμ, (115)

in terms of the notation

D(I)μφA ≡ ∂μφA − gt ACφC Aμ. (116)

Substituting solutions (110) and (111) together with (115) in
(101), we arrive at

S̄L
(I)[�α0 ] =

∫
d4x

[
HμDμϕ + 1

2 B
μν∂[μAν] − gV(q)

+ 1
2kAB(1 + gθ(q̄))

(D(I)μφA − 2gmAAμ

)Dμ

(I)φ
B

+ 1
2g

2kABm
AmB AμA

μ + 1
2g

3kABθ(q̄)mAmB AμA
μ
]
.

(117)

The same procedure applied to Eqs. (104)–(107) reveals that
the action (117) is now invariant under the gauge transfor-
mations

δ̄(I)�α1 ϕ = gW (ϕ)ε, δ̄(I)�α1 Aμ = ∂με, (118)

δ̄(I)�α1 Hμ = −2∂λξ
λμ

− g
dW (ϕ)

dϕ
(2Aλξ

λμ + Hμε), (119)

δ̄(I)�α1 Bμν = −3∂λε
λμν + 2gW (ϕ)ξμν, (120)

δ̄(I)�α1 φ
A = g

(
t ABφB + mA)

ε. (121)

Due to the fact that kAB was taken by assumption to be pos-
itively defined and mA are nonvanishing, we find that

kABm
AmB > 0. (122)

As a result, the quantity

1
2g

2kABm
AmB AμA

μ ≡ 1
2g

2M2AμA
μ (123)

from (117) is precisely a mass term for the BF U (1) vector
field Aμ. At the same time, we remark that the object

1
2g

3kABθ(q̄)mAmB AμA
μ (124)

cannot generate mass for Aμ due to the fact that θ(q̄) contains
no additive constants (see requirement (114)), so (123) is
indeed the only mass term present in (117).

We notice that in the case of type I solutions the mass
term coexists with the BF self-interactions (generated by the
nonvanishing function W (ϕ).

6.2.2 Type II solutions

The second class of solutions to the consistency equations
(108) and (109) reads

W (ϕ) = 0, T AB(ϕ) = arbitrary, A, B = 1, N , (125)

nA(ϕ) = mA + ñ A(ϕ), ñ A(ϕ) = arbitrary,

A = 1, N ,

(126)

V(ϕ, φ) = V(p), μAB(ϕ, φ) = kABτ( p̄), (127)

where mA are some real constants with the same property
like before and p together with p̄ take the form

p = 1
2kAB

(
T A

C (ϕ)φC + ñ A(ϕ) + mA)(
T B

D(ϕ)φD

+ ñB(ϕ) + mB)
, (128)

p̄ ≡ p − 1
2kAB

(
ñ A(ϕ) + mA)(

ñB(ϕ) + mB)

= kABT
A
C (ϕ)φC( 1

2T
B
D(ϕ)φD + ñB(ϕ) + mB)

. (129)

In (127) V(p) and τ( p̄) are some arbitrary, smooth functions
of their arguments and, moreover, τ is required to fulfill

τ(0) = 0. (130)

The last requirement grants in this context that τ( p̄) contains
no additive constants, so μAB are nontrivial as well. With the
help of the previous solutions and relying on result (67), we
then find that (103) becomes in this case

D̂(II)μφA = D(II)μφA − gmAAμ, (131)

where we employed the notation

D(II)μφA ≡ ∂μφA − g
(
T A

B(ϕ)φB + ñ A(ϕ)
)
. (132)

Inserting (125)–(127) and (131) into (101), we obtain the
expression of the interacting Lagrangian action in this par-
ticular case

S̄L
(II)[�α0 ] =

∫
d4x

[
Hμ∂μϕ + 1

2 B
μν∂[μAν] − gV(p)

+ 1
2kAB(1 + gτ( p̄))

(D(II)μφA − 2gmAAμ

)Dμ

(II)φ
B

+ 1
2g

2kABm
AmB AμA

μ + 1
2g

3kABτ( p̄)mAmB AμA
μ
]
.

(133)
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Acting along the same line with respect to relations (104)–
(107), we find that the action (133) displays the generating
set of gauge transformations

δ̄(II)�α1 ϕ = 0, δ̄(II)�α1 Aμ = ∂με, (134)

δ̄(II)�α1 Hμ = −2∂λξ
λμ

− gkAB(1 + gτ( p̄))
(
D̂(II)μφA)∂ n̂B(ϕ, φ)

∂ϕ
ε,

(135)

δ̄(II)�α1 Bμν = −3∂λε
λμν, (136)

δ̄(II)�α1 φ
A = g

(
n̂ A(ϕ, φ) + mA)

ε, (137)

where

n̂ A(ϕ, φ) ≡ T A
B(ϕ)φB + ñ A(ϕ). (138)

Exactly like in the previous case, the component

1
2g

2kABm
AmB AμA

μ ≡ 1
2g

2M2AμA
μ (139)

entering (133) is nothing but a mass term for the BF U (1)

vector field Aμ, while

1
2g

3kABτ( p̄)mAmB AμA
μ (140)

cannot generate mass for Aμ due to condition (130).
The mass term specific to type II solutions appears in

the absence of BF self-interactions, dictated by the choice
W (ϕ) = 0.

7 Conclusions and comments

To conclude with, in this paper we have investigated the cou-
plings between a topological BF model with a maximal field
spectrum (a scalar field, two sorts of vector fields, and a two-
form gauge field) and a set of massless real scalar fields by
means of the deformation of the solution to the master equa-
tion with the help of local BRST cohomology. Initially, we
constructed the concrete form of the deformed solution to the
master equations (which can be taken to stop at order three
in the coupling constant) and saw that it is parameterized by
five kinds of functions (depending on the undifferentiated
scalar fields form the theory), which are restricted to satisfy
some consistency equations. Next, from the above deformed
solution we derived the general Lagrangian formulation of
the interacting theory (Lagrangian action, gauge symmetries,
gauge algebra, reducibility relations). Finally, we gave two
types of solutions to the consistency equations, which led
to two classes of gauge-invariant interacting theories with a
mass term for the BF U (1) vector field Aμ. We mention that

the mass term emerged naturally and did not follow from the
Higgs mechanism.

Actually, the mass term for theU (1) vector field (see (117)
and (133)) originates in our approach from the quantity

∫
d4x 1

2g
2kABn

A(ϕ)nB(ϕ)AμA
μ (141)

present in (101) particularized to type I and type II solutions
(see (110)–(114) and (125)–(130)). On the one hand, none
of the functions that parameterize the action (101), excepting
nA(ϕ), particularized to type I and type II solutions contribute
to the mass of the U (1) vector field. On the other hand, the
existence of the functions nA(ϕ) in (101) is a consequence
of the existence of the one-parameter global symmetry

�ϒφA = [
nA(ϕ) + T AB(ϕ)kBCφC]

ϒ, (142)

�ϒ Hμ = −kAB
(
∂μφA)

[
∂nB(ϕ)

∂ϕ

+ ∂T BC (ϕ)

∂ϕ
kCDφD

]
ϒ (143)

of the (free) action (2) (see the discussion from Appendix
A). Therefore, the appearance of this mass term is a direct
consequence of the deformation method employed here in
the context of the free limit described by the action (2).

Let us consider now a free action involving massive matter
scalar fields, of the form

SL[�α0 ] =
∫

d4x
[
Hμ∂μϕ + 1

2 B
μν∂[μAν]

+ 1
2kAB

(
∂μφA)(

∂μφB) − 1
2μ2kABφAφB]

≡ SL,BF[ϕ, Aμ, Hμ, Bμν] + SL,scalar[φ], (144)

where μ2 is a real, strictly positive constant. Action (144)
admits the one-parameter global symmetry

�ϒφA = T AB(ϕ)kBCφCϒ, (145)

�ϒ Hμ = −kAB
(
∂μφA)∂T BC (ϕ)

∂ϕ
kCDφDϒ, (146)

where the functions nA(ϕ) are no longer allowed. The pres-
ence of these functions in (145) and (146) is forbidden pre-
cisely by the mass term for the matter scalars φA. Thus, if
we apply the deformation procedure starting from the action
(144), then we infer no mass term for the U (1) vector field.
These considerations justify once more the importance of the
free limit (2) in view of obtaining a mass term for Aμ.

The fact that only the U (1) vector field from the BF field
spectrum gains mass is encouraging since it opens the per-
spective of a mass generation mechanism for gauge vector
fields through a procedure similar to that applied here, but in
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the presence of a free limit describing a collection of (mass-
less) Maxwell vectors and a set of massless real scalars. The
successful solving of the last problem may enlighten certain
aspects of the results following from the Higgs mechanism
based on spontaneous symmetry breaking. The last issue will
be reported elsewhere [41].
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Appendix A: Computation of the cross-coupling
first-order deformation

Here we generateaint as in (58) via its components of antifield
number 1 and 0 computed as the general solutions to Eqs. (62)
and (63) that in addition fulfill the specific set of rules invoked
in the preamble of Sect. 4.

As it has been noticed before (see the paragraph follow-
ing Eq. (63)), the solution aint

1 to Eq. (62) is a nontrivial
element of the cohomology of γ in pgh = 1 computed in
the algebra of local nonintegrated densities in the framework
of the working hypotheses, H1(γ ). We recall that the entire
cohomology algebra of the longitudinal exterior differential
computed in a given algebra, H(γ ), is defined like the equiva-
lence classes of γ -closed elements from that algebra modulo
γ -exact ones and inherits from γ the N-grading in terms of
the pure ghost number pgh. Focusing on definitions (29)–(32)
plus the observation that there exist no objects of strictly neg-
ative pure ghost number constructed out of the BRST gener-
ators, we see that the general solution to Eq. (62) in the above
mentioned algebra reads

aint
1 = f1

([�∗
α0

]lin, [∂[μAν]], [∂μH
μ], [∂νB

νμ], [ϕ], [φ])η.

(147)

The notation f ([y]) signifies that f depends on y and its
spacetime derivatives up to a finite order. All the antifields χ∗

�

and their spacetime derivatives of arbitrarily high, but finite,
orders are nontrivial elements of H(γ ) in pure ghost number
0 (see the latter notation from (18), the first relation in (21),
and the first definition from (29)). Nevertheless, the antifield
number of aint

1 is fixed to 1, such that the dependence on χ∗
�

from (147) is limited to a monomial of degree one simultane-
ously in both the antifields of the original fields �∗

α0
and their

spacetime derivatives up to a finite order since these are the
only objects of antifield number equal to 1 available here (see
the latter notation in (14) and the second relation from (20)).

This monomial dependence of degree one is symbolized in
(147) by [�∗

α0
]lin. The objects

{
∂[μAν], ∂μH

μ, ∂νB
νμ, ϕ, φ

} ≡ ω� (148)

together with their spacetime derivatives stand for the only
gauge-invariant quantities of the starting model (2)–(5) and
thus produce all the (obviously nontrivial) elements from
H(γ ) constructed out of the original fields �α0 (see the for-
mer notation in (14)). Their pure ghost number is also equal
to 0, so f1

([�∗
α0

]lin, [∂[μAν]], [∂μHμ], [∂νBνμ], [ϕ], [φ])
gives the most general representative of H0(γ ) of definite
antifield number, equal to 1. We notice from (147) that the
sole allowed dependence of aint

1 on the ghosts is actually
linear in the undifferentiated ghost η of pure ghost number
1 (and of agh equal to 0), which corresponds to the U (1)

gauge symmetry of the action (2) due to the gauge trans-
formation of the vector field Aμ (see the latter relation from
(3)). Indeed, we established that f1 exhibits pgh( f1) = 0 and
agh( f1) = 1. Consequently, the entire nontrivial dependence
of aint

1 on the ghosts ensuring (62) remains to be a monomial
of degree one in all nontrivial γ -closed linear combinations
constructed out of the ghosts of pure ghost number equal to
1, ηα1 , introduced in (15). In agreement with the actions of
γ on ηα1 , expressed by definitions (31), the γ -closed lin-
ear combinations of ηα1 are spanned by η, ∂λCλμ, ∂λη

λμν ,
and their spacetime derivatives. Nevertheless, ∂μη, ∂λCλμ,
∂λη

λμν , and their spacetime derivatives are trivial in H1(γ )

respectively due to the last relation in (29) and the first two
definitions from (30), which leaves us with the result that the
nontrivial part of aint

1 is truly linear in the undifferentiated
U (1) ghost η.

We can still eliminate some trivial terms from expression
(147) and meanwhile bring it to a more accessible form. In
fact, by simple manipulations, like integrations by parts, one
can remove the spacetime derivatives to act on the antifields
�∗

α0
modulo adding some (trivial) divergences and (irrele-

vant) γ -exact terms. Indeed, assuming that the maximum
derivative order of f1 with respect to the antifields �∗

α0
is

equal to l and employing notation (148), we have

f1
([�∗

α0
]lin, [ω�]) = �∗

α0
f α0

([ω�]) + (
∂μ�∗

α0

)
f α0
μ

([ω�])

+ · · · + (
∂μ1...μl�∗

α0

)
f α0
μ1...μl

([ω�]). (149)

All the coefficients denoted by f from the right-hand side
of (149) depend now only on the objects from (148) and
their spacetime derivatives up to a finite order, so they are
gauge invariant or, in other words, nontrivial elements of
H(γ ) with both pgh and agh equal to 0. Inserting (149) into
(147), moving the derivatives from the antifields, and using
the last definition from (29) together with the γ -closeness of
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all f ’s, we finally arrive at

aint
1 = �∗

α0
f̄ α0

([ω�])η + γ
( − wμ

([�∗
α0

]lin, [ω�])Aμ
)

+ ∂μ
(
wμ

([�∗
α0

]lin, [ω�])η)
, (150)

where

f̄ α0
([ω�]) = f α0

([ω�]) − ∂μ f α0
μ

([ω�]) + · · ·
+ (−)l∂μ1...μl f α0

μ1...μl

([ω�]) (151)

and wμ is a local, γ -closed current with agh = 1 and pgh =
0, which starts like

wμ

([�∗
α0

]lin, [ω�]) = �∗
α0

f α0
μ

([ω�]) + · · · . (152)

Analyzing (150), it is clear that one can eliminate both the γ -
exact term and the divergence from its right-hand side with-
out modifying either the cohomological class of aint

1 from
H1(γ ) or respectively the cohomological class of aint (of
the form (58)) from H0(s|d). By virtue of this result, from
now on we work with the general solution to Eq. (62) in the
form (obtained from (150) without trivial terms and with f̄ α0

renamed by f α0 ),

aint
1 = f1

(
�∗

α0
, [ω�])η,

f1
(
�∗

α0
, [ω�]) ≡ �∗

α0
f α0

([ω�]), (153)

where f1, with agh = 1 and pgh = 0, is linear now only in
the undifferentiated antifields corresponding to the original
fields.

In order to solve Eq. (63), we act with δ on (153) and
employ the last definition from (29), which produces a nec-
essary condition related to the existence of aint

0 ,

δ f1
(
�∗

α0
, [ω�]) = ∂μt

μ
0

([�α0 ]), (154)

where the current tμ0 (with agh = 0) should be local in the
original fields and their spacetime derivatives. (There is no a
priori reason to force this current to be gauge invariant, i.e.,
to depend on [ω�].) We remark that condition (154) does not
depend on the ghosts or, equivalently, the pure ghost number
of its both hand sides is equal to 0.

Equation (154) expressing the necessary condition on the
existence of aint

0 has a precise cohomological content: it
requires that the double { f1, tμ0 } defines (by a one-to-one

correspondence) an element
{[4]
f 1,

[3]
t 0

}
from the kernel of

δ modulo d in antifield number 1 and in maximum form
degree (deg) computed in the algebra of local forms that are
ghost-independent, (Ker(δ|d))4

1:

{[4]
f 1,

[3]
t 0

}
∈ (Ker(δ|d))4

1 ⇔ δ
[4]
f 1 = d

[3]
t 0, (155)

[4]
f 1 ≡ f1

(
�∗

α0
, [ω�])d4x,

[3]
t 0 ≡ 1

3!ενρλσ t
σ
0

([�α0 ])dxνdxρdxλ. (156)

In the above the overscript between brackets symbolizes the
form degree and the lower numeric index is assigned, like
before, to the antifield number. The operator δ is extended
to the (supercommutative) algebra of local forms with coef-
ficients that are ghost-independent by δ(dxμ) = 0, so it still
defines a differential, the spacetime differential d is taken
to act as a right derivation (such that it anticommutes with
s, δ, and γ ), and ενρλσ signify the components of the four-
dimensional Levi-Civita symbol. We omitted the symbol of
wedge product in the last formula from (156) since there
is no danger of confusion, i.e., it is understood that by the
notation dxνdxρdxλ we mean dxν ∧ dxρ ∧ dxλ. It is the
anticommuting property of the two differentials δ and d on
the above mentioned supercommutative algebra (δ2 = 0,
d2 = 0, δd + dδ = 0), endowed in this context with two
main N-gradings (agh with respect to δ, agh(δ) = −1, and
deg in relation with d, deg(d) = 1) that do not interfere
(agh(d) = 0 = deg(δ)), which ensures the correct con-
struction of the homology of δ modulo d, also known as the
local homology of the Koszul–Tate differential and tradition-
ally denoted by H(δ|d), and the cohomology of d modulo
δ, H(d|δ). We insist on the fact that here we work on the
algebra of local forms that do not depend on the ghosts (at
pgh = 0) since otherwise, if we allow the coefficients of
the local forms to depend also on the ghost fields, then the
homology H(δ|d) for both strictly positive values of agh and
pgh vanishes [16,18].

On the other hand, the nontriviality of aint in H0(s|d)

induces that
{[4]
f 1,

[3]
t 0

}
should belong to a nontrivial class of

the local homology of the Koszul–Tate differential in max-
imum form degree (4) and in antifield number 1, H4

1 (δ|d).

A trivial element from H4
1 (δ|d),

{[4]
f triv,1,

[3]
t triv,0

}
, is defined

in the standard manner like an element from the image of δ

modulo d in antifield number 1 and in maximum form degree,
(Im(δ|d))4

1:

{[4]
f triv,1,

[3]
t triv,0

}
∈ (Im(δ|d))4

1

⇔
⎧
⎨

⎩

[4]
f triv,1 = δ

[4]
g 2 + d

[3]
u 1,

[3]
t triv,0 = −δ

[3]
u 1 + d

[2]
v 0,

(157)

with
[4]
g 2,

[3]
u 1, and

[2]
v 0 some ghost-independent, local forms

of fixed form degrees and antifield numbers, such that the

relation δ
[4]
f triv,1 ≡ d

[3]
t triv,0 is automatically satisfied. Going

back to dual notations, the nontriviality of
{[4]
f 1,

[3]
t 0

}
in
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H4
1 (δ|d) is equivalent to the nontriviality of the double

{ f1, tμ0 }. A double { ftriv,1, t
μ
triv,0} is said to be trivial in this

context if and only if

ftriv,1 = δg2 + ∂μu
μ
1 , tμtriv,0 = δuμ

1 + ∂νv
νμ
0 , (158)

where the nonintegrated density g2, the current uμ
1 , and the

two-tensor v
νμ
0 are local and ghost-independent, with v

νμ
0

antisymmetric, v
νμ
0 = −v

μν
0 , such that δ ftriv,1 ≡ ∂μt

μ
triv,0.

The equivalence between expressions (157) and (158) fol-
lows immediately if we work in dual notations,

[4]
f triv,1 ≡ ftriv,1d

4x,
[3]
t triv,0 ≡ 1

3!ενρλσ t
σ
triv,0dx

νdxρdxλ, (159)

[4]
g 2 ≡ g2d

4x,
[3]
u 1 ≡ 1

3!ενρλσu
σ
1 dx

νdxρdxλ,

[2]
v 0 ≡ 1

4ερλσθv
σθ
0 dxρdxλ. (160)

The above discussion of the cohomological interpretation
of Eq. (154) implies two things: (1) its solution is unique only
up to the addition of trivial elements,

f1 → f ′
1 = f1 + δg2 + ∂μu

μ
1 ,

tμ0 → t ′μ0 = tμ0 + δuμ
1 + ∂νv

νμ
0 , (161)

which does not change the class from H4
1 (δ|d) in the sense

that δ f ′
1 − ∂μt

′μ
0 ≡ δ f1 − ∂μt

μ
0 = 0, and (2) if { f1, tμ0 } is

found to be completely trivial, i.e., of the form (158), then
the corresponding aint

1 like in (153) can be safely removed
from the first-order deformation (58).

There is also a crucial physical content of Eq. (154). In
agreement with the general results from [16,18], the spaces
(Ker(δ|d))4

1 and (Im(δ|d))4
1 are in a bijective correspondence

to the set of global symmetries and of trivial global sym-
metries associated with the Lagrangian action (2), such that
the factor space H4

1 (δ|d) ≡ (Ker(δ|d))4
1/(Im(δ|d))4

1 is in a
one-to-one correspondence with the inequivalent (nontrivial)
rigid symmetries of the action (2). A global symmetry of a
given action is said to be trivial if it coincides with a gauge
symmetry (possibly modulo on-shell trivial gauge symme-
tries). The above correspondence can easily be exemplified
in our setting by going back to dual notations, replacing f1
with its expression from (153), and acting with δ on it via
definitions (24) and (25) written compactly in terms of the
EL derivatives of the action (2) as

δ�∗
α0

= −δSL[�β0 ]
δ�α0

. (162)

In this manner we infer that condition (154), which becomes
equivalent to

f α0
([ω�])δSL[�β0 ]

δ�α0
+ ∂μt

μ
0

([�α0 ]) = 0, (163)

is nothing but Noether’s theorem requiring the invariance of
the action (2), �ϒ SL[�α0 ] = 0, under a nontrivial, global
one-parameter transformation,

�ϒ�α0 = f α0
([ω�])ϒ. (164)

Thus, we replaced the necessary condition on the existence of
aint set as existence of nontrivial elements from H4

1 (δ|d) with
the existence of nontrivial, one-dimensional rigid symmetries
of the free Lagrangian action.

Before solving Eq. (163), it is worth mentioning that the
nontriviality of (164) automatically induces the nontrivial-
ity of the conserved current tμ0 appearing in (163), which,
in turn, is a key point in ensuring the nontriviality of the
coupled Lagrangian at the first order of perturbation theory,
aint

0 . Indeed, the homology space H4
1 (δ|d) in pgh = 0 is

known to be isomorphic to the cohomology space of d mod-
ulo δ in antifield number 0 and in form degree 3 computed in
the algebra of ghost-independent local forms, H3

0 (d|δ) (for
instance, see [16,18,42]). The cohomology H3

0 (d|δ) can be
analyzed even without introducing the antifields and is in
a bijective correspondence with the space of inequivalent
nontrivial conserved currents of the action (2). In view of
the physical significance of its hand sides, the isomorphism
H4

1 (δ|d) � H3
0 (d|δ) is a cohomological reformulation of

Noether’s theorem and stipulates the isomorphism between
the space of inequivalent nontrivial global symmetries of the
action (2) and the space of its inequivalent nontrivial con-
served currents. According to Eq. (163), tμ0 is precisely the
conserved current of this action corresponding to the non-
trivial rigid symmetry (164) and hence, by the above isomor-
phism, it will also be nontrivial. We recall that a conserved
current (∂μt

μ
0 ≈ 0) is said to be trivial if it coincides on-shell

with an identically conserved current, tμtriv,0 ≈ ∂νv
νμ
0 , with

v
νμ
0 = −v

μν
0 . The on-shell or weak equality “≈” means as

usually an equality that holds on the (stationary) surface of
field equations, δSL/δ�α0 ≈ 0.

Beside being nontrivial, the global symmetry (164) of
the action (2) has to meet several other requirements. Thus,
the necessity of producing a one-dimensional global invari-
ance of the free Lagrangian action (there is a single constant
parameter ϒ in (164)) is precisely due to the sole presence
of the scalar ghost η, which is allowed in aint

1 of the form
(153). In addition, all the generators of this global symme-
try, f α0 , should be gauge invariant since they may depend
only on the gauge-invariant quantities ω� introduced in (148)
and their derivatives up to a finite order. This dependence
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automatically ensures the spacetime locality and Poincaré
invariance of deformations. Moreover, the coefficients f α0

are demanded to instate the remaining hypotheses, namely,
the Lorentz covariance and the derivative-order assumption.
In order to analyze properly the implications of these fea-
tures, we pass to the explicit form of Eq. (164),

�ϒϕ = f
([ω�])ϒ, �ϒ Aν = f ′

ν

([ω�])ϒ, (165)

�ϒ Hμ = f̄ μ
([ω�])ϒ, �ϒ Bμν = f̃ μν

([ω�])ϒ, (166)

�ϒφA = f̂ A
([ω�])ϒ, (167)

along with the concrete expressions of the EL derivatives of
the action (2),

δSL[�α0 ]
δϕ

≡ −∂λH
λ,

δSL[�α0 ]
δAν

≡ −∂λB
λν,

δSL[�α0 ]
δHμ

≡ ∂μϕ, (168)

δSL[�α0 ]
δBμν

≡ 1
2∂[μAν],

δSL[�α0 ]
δφA

≡ −kAB�φB = −�φA, (169)

such that the detailed structure of Eq. (163) is given by

− f ∂λH
λ − f ′

ν∂λB
λν + f̄ μ∂μϕ + 1

2 f̃ μν∂[μAν]
− f̂ AkAB�φB + ∂μt

μ
0 = 0. (170)

The Lorentz covariance attracts that f from (165) and f̂ A

from (167) are some scalars, both f ′
ν and f̄ μ appearing in

(165) and (166) stand for the components of some four-
dimensional vector fields, while f̃ μν implied in (166) defines
an antisymmetric two-tensor. Along the same line, the con-
servation of the number of derivatives on each field with
respect to the free Lagrangian in the corresponding aint

0 as
solution to Eq. (63) limits the dependence on the fields deriva-
tives allowed to enter each generator. Indeed, this hypothesis
constrains the conserved current tμ0 in (163) and (170) to
contain at most two derivatives and the terms with precisely
two derivatives to be quadratic in the first-order derivatives of
the matter fields. Inspecting Eq. (170), it follows on the one
hand that the BF generators { f, f ′

ν, f̄ μ, f̃ μν} should respect
the same rules like tμ0 and on the other hand that the gen-
erators related to the real scalar fields, { f̂ A}, should be at
most linear in the first-order derivatives of the matter fields.
However, we show that we can relax this condition to the
requirement that the conserved current tμ0 involved in (163)
and (170) contains at most two derivatives acting on any of
the fields and tμ0 yet fulfills the conservation of the number
of derivatives on each field with respect to the free limit.

From (170) we then deduce that under this weaker assump-
tion the BF generators { f, f ′

ν, f̄ μ, f̃ μν} may involve at most
two derivatives, while those related to the real scalar fields,
{ f̂ A}, involve at most a single one. In order to produce true
cross-couplings between the BF and matter sectors, all the
generators of the BF fields mandatorily depend on the real
scalar fields and their derivatives, [φ].

Due to the fact that the field equations contain no Levi-
Civita symbols, we can further split the generators of the
searched one-parameter rigid transformations from Eqs.
(165)–(167) into

f = fPT
([ω�]) + fnPT

([ω�]),
f ′
ν = f ′

PT,ν

([ω�]) + f ′
nPT,ν

([ω�]), (171)

f̄ μ = f̄ μ
PT

([ω�]) + f̄ μ
nPT

([ω�]),
f̃ μν = f̃ μν

PT

([ω�]) + f̃ μν
nPT

([ω�]), (172)

f̂ A = f̂ APT

([ω�]) + f̂ AnPT

([ω�]), (173)

where each f α0
PT and f α0

nPT contains an even and an odd number
of Levi-Civita symbols, respectively. Consequently, (170)
becomes equivalent to two distinct equations

− fPT∂λH
λ − f ′

PT,ν∂λB
λν + f̄ μ

PT∂μϕ

+ 1
2 f̃ μν

PT ∂[μAν] − f̂ APTkAB�φB + ∂μt
μ
PT,0 = 0, (174)

− fnPT∂λH
λ − f ′

nPT,ν∂λB
λν + f̄ μ

nPT∂μϕ

+ 1
2 f̃ μν

nPT∂[μAν] − f̂ AnPTkAB�φB + ∂μt
μ
nPT,0 = 0, (175)

where the currents tμPT,0 and tμnPT,0 should also involve an
even and respectively an odd number of Levi-Civita sym-
bols. The strategy goes as follows. We start from the gen-
eral representations of the above generators in terms of [ω�]
that implement all the working hypotheses (in agreement
with the discussion from the previous paragraph), then solve
Eqs. (174) and (175), and finally eliminate all the trivial terms
from their general solutions.

In order to solve Eq. (174), we begin with the most general
representations of f α0

PT from (171)–(173) in terms of (148)
and their spacetime derivatives that are covariant and imple-
ment the more relaxed requirement regarding their maximum
number of field derivatives: two with respect to the BF gen-
erators and one at the level of the matter generators,

fPT
([ω�]) = f1(ϕ, φ) + f2(ϕ, φ)∂ρH

ρ

+ f3(ϕ, φ)(∂ρH
ρ)(∂σ H

σ )

+ f4(ϕ, φ)(∂ρBρν)(∂σ B
σν)

+ f5(ϕ, φ)(∂[μAν])(∂ [μAν])
+ f6(ϕ, φ)(∂μϕ)(∂μϕ)

+ f7AB(ϕ, φ)
(
∂μφA)(

∂μφB)
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+ f8(ϕ, φ)(∂ρBρν)(∂
νϕ)

+ f9A(ϕ, φ)(∂ρBρν)
(
∂νφA)

+ f10A(ϕ, φ)(∂μϕ)
(
∂μφA) + f11(ϕ, φ)�ϕ

+ f12A(ϕ, φ)�φA, (176)

f ′
PT,ν

([ω�]) = f ′
1(ϕ, φ)∂ρBρν + f ′

2(ϕ, φ)∂νϕ

+ f ′
3A(ϕ, φ)∂νφ

A + f ′
4(ϕ, φ)∂ν∂ρH

ρ

+ f ′
5(ϕ, φ)∂ρ∂[ρ Aν]

+ f ′
6(ϕ, φ)(∂ρH

ρ)(∂σ Bσν)

+ f ′
7(ϕ, φ)(∂ρH

ρ)(∂νϕ)

+ f ′
8A(ϕ, φ)(∂ρH

ρ)
(
∂νφ

A)

+ f ′
9(ϕ, φ)(∂[ρ Aν])(∂σ B

σρ)

+ f ′
10(ϕ, φ)(∂[ρ Aν])(∂ρϕ)

+ f ′
11A(ϕ, φ)(∂[ρ Aν])

(
∂ρφA)

, (177)

f̄ μ
PT

([ω�]) = f̄1(ϕ, φ)∂ρB
ρμ + f̄2(ϕ, φ)∂μϕ

+ f̄3A(ϕ, φ)∂μφA + f̄4(ϕ, φ)∂μ∂ρH
ρ

+ f̄5(ϕ, φ)∂ρ∂ [ρ Aμ]

+ f̄6(ϕ, φ)(∂ρH
ρ)(∂λB

λμ)

+ f̄7(ϕ, φ)(∂ρH
ρ)(∂μϕ)

+ f̄8A(ϕ, φ)(∂ρH
ρ)

(
∂μφA)

+ f̄9(ϕ, φ)(∂λBλρ)(∂ [ρ Aμ])
+ f̄10(ϕ, φ)(∂ρϕ)(∂ [ρ Aμ])
+ f̄11A(ϕ, φ)

(
∂ρφA)

(∂ [ρ Aμ]), (178)

f̃ μν
PT

([ω�]) = f̃1(ϕ, φ)∂ [μAν] + f̃2(ϕ, φ)∂ [μ∂ρB
ν]ρ

+ f̃3(ϕ, φ)(∂ρH
ρ)(∂ [μAν])

+ f̃4(ϕ, φ)(∂ρB
ρ[μ)(∂ν]ϕ)

+ f̃5A(ϕ, φ)(∂ρB
ρ[μ)

(
∂ν]φA)

+ f̃6A(ϕ, φ)(∂ [μϕ)
(
∂ν]φA)

+ f̃ AB7 (ϕ, φ)
(
∂ [μφA

)(
∂ν]φB

)
, (179)

f̂ APT

([ω�]) = f̂ A1 (ϕ, φ) + f̂ A2 (ϕ, φ)∂ρH
ρ. (180)

In the above all the coefficients denoted by f , f ′, f̄ , f̃ , or
f̂ stand for some unknown smooth functions of the undiffer-
entiated BF scalar field ϕ and undifferentiated matter scalar
fields {φA} ≡ φ. In addition, all the coefficients contain-
ing an underlined φ mandatorily depend on the matter fields
in order to ensure true cross-couplings among the BF and
matter sectors in aint

1 (see (153)). Also, the functions f7AB
together with f̃ AB7 possess definite “symmetry” properties,
f7AB(ϕ, φ) = f7BA(ϕ, φ), f̃ AB7 (ϕ, φ) = − f̃ B A

7 (ϕ, φ), gen-
erated by the expressions of the corresponding terms from
(176) and (179). We note that even if the derivative-order
assumption allows larger classes of terms in (176)–(180),

like for instance linear in the first-order derivatives of the
matter fields with respect to fPT, f̃ μν

PT , and f̂ APT or quadratic
in the first-order derivatives of the matter fields at the level
of f ′

PT,ν and f̄ μ
PT, it is the Lorentz covariance that actually

kills them.
Some of the above expressions of the global PT generators

can be still simplified given their uniqueness up to adding triv-
ial contributions obtained by two mechanisms: either combi-
nations of true gauge transformations with the gauge param-
eters replaced by functions of fields and their derivatives or
trivial gauge transformations, i.e., antisymmetric combina-
tions of free field equations. First of all, we show that we can
remove the terms involving the functions f ′

4, f ′
5, f̄4, and f̄5

from (177) and (178). Indeed, let us transform f ′
PT,ν and f̄ μ

PT
by adding to each of them some combinations of true gauge
transformations of the vector fields Aλ and Hλ (see Eqs. (3)
and (4))

f ′
PT,ν → f ′

PT,ν + δλ
ν δ

�
α1
1
Aλ + σνλδ�

α1
1
Hλ, (181)

f̄ μ
PT → f̄ μ

PT + σμλδ
�

α1
2
Aλ + δ

μ
λ δ

�
α1
2
Hλ, (182)

defined like

δ
�

α1
1
Aλ = ∂λε1, ε1 ≡ − f ′

4∂ρH
ρ, (183)

δ
�

α1
1
Hλ = −2∂ρξ

ρλ
1 , ξ

ρλ
1 ≡ 1

2 f ′
5∂

[ρ Aλ], (184)

δ
�

α1
2
Aλ = ∂λε2, ε2 ≡ − f̄4∂ρH

ρ, (185)

δ
�

α1
2
Hλ = −2∂ρξ

ρλ
2 , ξ

ρλ
2 ≡ 1

2 f̄5∂
[ρ Aλ]. (186)

After simple computations, we find that (183)–(186) ensure
that transformations (181) and (182) affect only the terms
from (177) and (178) depending on f ′

4, f ′
5, f̄4, and f̄5 in the

following manner:

f ′
PT,ν : f ′

4∂ν∂ρH
ρ + f ′

5∂
ρ∂[ρ Aν]

→ −(∂ρH
ρ)

(
∂ f ′

4

∂ϕ
∂νϕ + ∂ f ′

4

∂φA
∂νφ

A
)

− (∂[ρ Aν])
(

∂ f ′
5

∂ϕ
∂ρϕ + ∂ f ′

5

∂φA
(∂ρφA

)
, (187)

f̄ μ
PT : f̄4∂

μ∂ρH
ρ + f̄5∂ρ∂ [ρ Aμ]

→ −(∂ρH
ρ)

(
∂ f̄4
∂ϕ

∂μϕ + ∂ f̄4
∂φA

∂μφA
)

− (∂ [ρ Aμ])
(

∂ f̄5
∂ϕ

∂ρϕ + ∂ f̄5
∂φA

∂ρφA
)

. (188)

But all these contributions can be absorbed in similar terms
already present in (177) and (178) by means of the redefini-
tions
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f ′
7 − ∂ f ′

4

∂ϕ
→ f ′

7, f ′
8A − ∂ f ′

4

∂φA
→ f ′

8A, (189)

f ′
10 − ∂ f ′

5

∂ϕ
→ f ′

10, f ′
11A − ∂ f ′

5

∂φA
→ f ′

11A, (190)

f̄7 − ∂ f̄4
∂ϕ

→ f̄7, f̄8A − ∂ f̄4
∂φA

→ f̄8A, (191)

f̄10 − ∂ f̄5
∂ϕ

→ f̄10, f̄11A − ∂ f̄5
∂φA

→ f̄11A, (192)

which are allowed since all the (smooth) functions of ϕ and
φ from (176)–(180) are arbitrary at this stage. In conclusion,
we can indeed take

f ′
4 = f ′

5 = f̄4 = f̄5 = 0 (193)

in Eqs. (177) and (178) without loss of potentially nontrivial
terms. On the other hand, the terms depending on the func-
tions f ′

9 from (177) and f̄10 in (178) are already trivial since
they are involved in the rigid transformations of the vector
fields Aν and Hμ and reduce to antisymmetric combinations
of precisely the associated free field equations (δSL/δAρ and
δSL/δHρ)

f ′
9(∂[ρ Aν])(∂σ B

σρ) = f ′
9νρ

δSL

δAρ

,

f ′
9νρ = − f ′

9ρν, f ′
9νρ ≡ f ′

9∂[ν Aρ],

f̄10(∂ρϕ)(∂ [ρ Aμ]) = f̄ 10μρ δSL

δHρ
,

f̄ 10μρ = − f̄ 10ρμ, f̄ 10μρ ≡ − f̄10∂
[μAρ],

so they can be safely removed by setting

f ′
9 = f̄10 = 0. (194)

Inserting relations (193) together with (194) into rep-
resentations (176)–(180) and the resulting expressions in
Eq. (174), we find that it becomes equivalent to 13 (indepen-
dent) equations obtained by projection on the (total) number
of derivatives from the corresponding current component (0,
1, and 2) and then, for each distinct value of the derivative
order, on all independent combinations of fields and their
derivatives:

1. at zero derivatives in tμPT,0 there is a single equation

− f1∂λH
λ + ∂μt

μ
PT,0,0 = 0; (195)

2. at one derivative there appear five distinct equations:

− f2(∂ρH
ρ)(∂λH

λ) + ∂μt
1,μ
PT,0,1 = 0, (196)

− f ′
1(∂

ρBρν)(∂λB
λν) + ∂μt

2,μ
PT,0,1 = 0, (197)

1
2 f̃1(∂[μAν])(∂ [μAν]) + ∂μt

3,μ
PT,0,1 = 0, (198)

[
( f̄1 − f ′

2)∂
μϕ − f ′

3A∂μφA]
(∂ρBρμ)

+ ∂μt
4,μ
PT,0,1 = 0, (199)

(
f̄2∂

μϕ + f̄3A∂μφA)
(∂μϕ) − f̂ A1 kAB�φB

+ ∂μt
5,μ
PT,0,1 = 0; (200)

3. at two derivatives there occur seven independent equa-
tions:

− f3(∂ρH
ρ)(∂σ H

σ )(∂λH
λ) + ∂μt

1,μ
PT,0,2 = 0, (201)

− ( f4 + f ′
6)(∂

ρBρν)(∂σ B
σν)(∂λH

λ)

+ ∂μt
2,μ
PT,0,2 = 0, (202)

( 1
2 f̃3 − f5

)
(∂[μAν])(∂ [μAν])(∂λH

λ)

+ ∂μt
3,μ
PT,0,2 = 0, (203)

− [
( f8 + f ′

7 − f̄6)∂
μϕ

+ ( f9A + f ′
8A)∂μφA]

(∂ρBρμ)(∂λH
λ)

+ ∂μt
4,μ
PT,0,2 = 0, (204)

− {
f̃2∂

μ∂ρB
ρν + [

( f ′
10 + f̄9 + f̃4)∂

μϕ

+ ( f ′
11A + f̃5A)∂μφA]

(∂ρB
ρν)

}
(∂[μAν])

+ ∂μt
5,μ
PT,0,2 = 0, (205)

− [
f11�ϕ + ( f6 − f̄7)(∂μϕ)(∂μϕ)

+ ( f10A − f̄8A)(∂μϕ)
(
∂μφA) + f7AB

(
∂μφA)(

∂μφB)

+ ( f12A + kAB f̂ B2 )�φA]
(∂λH

λ) + ∂μt
6,μ
PT,0,2 = 0,

(206)
[
( f̄11A − f̃6A)

(
∂μφA)

(∂νϕ)

+ f̃ AB7

(
∂μφA

)(
∂νφB

)]
(∂[μAν]) + ∂μt

7,μ
PT,0,2 = 0.

(207)

The general solutions to these equations, organized according
to their order of appearance in (176)–(180), can be expressed
thus:

f1(ϕ, φ) = c, f2(ϕ, φ) = 0, f3(ϕ, φ) = 0, (208)

f4(ϕ, φ) = − f ′
6(ϕ, φ), f5(ϕ, φ) = 1

2 f̃3(ϕ, φ), (209)

f6(ϕ, φ) = f̄7(ϕ, φ), f7AB(ϕ, φ) = 0, (210)

f8(ϕ, φ) = − f ′
7(ϕ, φ) + f̄6(ϕ, φ), (211)

f9A(ϕ, φ) = − f ′
8A(ϕ, φ), f10A(ϕ, φ) = f̄8A(ϕ, φ), (212)

f11(ϕ, φ) = 0, f12A(ϕ, φ) = −kAB f̂ B2 (ϕ, φ), (213)

f ′
1(ϕ, φ) = 0, f ′

3A(ϕ, φ) = ∂ f ′
3(ϕ, φ)

∂φA
, (214)

f ′
10(ϕ, φ) = − f̄9(ϕ, φ) − f̃4(ϕ, φ), (215)

f ′
11A(ϕ, φ) = − f̃5A(ϕ, φ), (216)
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f̄1(ϕ, φ) = f ′
2(ϕ, φ) − ∂ f ′

3(ϕ, φ)

∂ϕ
+ f ′(ϕ), (217)

f̄2(ϕ, φ) = 0, f̄3A(ϕ, φ) = −kAB
∂ f̂ B1 (ϕ, φ)

∂ϕ
, (218)

kAC
∂ f̂ C1 (ϕ, φ)

∂φB
+ kBC

∂ f̂ C1 (ϕ, φ)

∂φA
= 0, (219)

f̃1(ϕ, φ) = 0, f̃2(ϕ, φ) = 0, (220)

f̃6A(ϕ, φ) = f̄11A(ϕ, φ), f̃ AB7 (ϕ, φ) = 0. (221)

The above solutions are parameterized by one constant (c),
one arbitrary scalar smooth function of the undifferentiated
BF scalar field ( f ′), nine arbitrary, smooth scalar functions
( f ′

2, f ′
3, f ′

6, f ′
7, f̄6, f̄7, f̄9, f̃3, and f̃4) and five arbitrary col-

lections of smooth scalar functions ( f ′
8A, f̄8A, f̄11A, f̃5A, and

f̂ A2 ) depending on all the undifferentiated scalar fields from
the theory, supplemented by a set of smooth scalar functions
of ϕ and φ, namely f̂ A1 , which are not arbitrary, but sub-
ject to Eq. (219). In order to produce true cross-couplings at
the level of the first-order deformation aint, the nine param-
eterizing scalar functions should effectively depend on the
undifferentiated matter fields and, in addition, we must take

c = 0, f ′(ϕ) = 0. (222)

Substituting the results (208)–(222) together with choices
(193) and (194) in Eqs. (176)–(180) and employing (168)
and (169), after some simple computations we arrive at

fPT = (
f ′
6∂

λBλν + f ′
7∂νϕ + f ′

8A∂νφ
A) δSL

δAν

+ (
f̄6∂λB

λμ + f̄7∂
μϕ + f̄8A∂μφA) δSL

δHμ

+ f̃3∂
[μAν] δSL

δBμν
+ f̂ A2

δSL

δφA
, (223)

f ′
PT,ν = ∂ν f

′
3 − (

f ′
6∂

λBλν + f ′
7∂νϕ + f ′

8A∂νφ
A)δSL

δϕ

+ δ[ρ
ν

(
f̃4∂

λ]ϕ + f̃5A∂λ]φA) δSL

δBρλ

+ f̄9∂[ν Aλ]
δSL

δHλ

+ δμ
ν

(
f ′
2 − ∂ f ′

3

∂ϕ

)
δSL

δHμ
, (224)

f̄ μ
PT = −(

f̄6∂λB
λμ + f̄7∂

μϕ + f̄8A∂μφA)δSL

δϕ

+ f̄9∂
[μAλ] δSL

δAλ
− δμ

ν

(
f ′
2 − ∂ f ′

3

∂ϕ

)
δSL

δAν

− f̄11A
(
δ
μ
[ρ∂λ]φA) δSL

δBρλ

− kAB
(
∂μφA)∂ f̂ B1

∂ϕ
, (225)

f̃ μν
PT = − f̃3∂

[μAν] δSL

δϕ
− δ

[μ
λ

(
f̃4∂

ν]ϕ + f̃5A∂ν]φA) δSL

δAλ

+ f̄11A
(
δ
[μ
λ ∂ν]φA) δSL

δHλ

, (226)

f̂ APT = f̂ A1 − f̂ A2
δSL

δϕ
. (227)

Finally, we observe that all the contributions from (223)–
(227) excepting those depending on f̂ A1 are trivial since they
reduce either to a gauge transformation of the BF vector field
Aν with the U (1) gauge parameter replaced by f ′

3 (the first
term from the right-hand side of (224)) or to purely trivial
gauge transformations of the action (2) otherwise, so we will
discard them via setting zero all the corresponding parame-
terizing functions,

f ′
2 = f ′

3 = f ′
6 = f ′

7 = f̄6 = f̄7 = f̄9 = f̃3 = f̃4 = 0,

(228)

f ′
8A = f̄8A = f̄11A = f̃5A = 0, f̂ A2 = 0, A = 1, N .

(229)

In this manner, the general solutions to Eq. (174), respon-
sible for the PT-invariant part from the nontrivial one-
parameter rigid transformations (165)–(167), become

fPT = 0, f ′
PT,ν = 0, f̃ μν

PT = 0, (230)

f̄ μ
PT = −kAB

(
∂μφA)∂ f̂ B1 (ϕ, φ)

∂ϕ
, f̂ APT = f̂ A1 (ϕ, φ). (231)

The above generators depend now on a single set of smooth
scalar functions (in number equal to the number of matter
real scalar fields from the collection, N ), f̂ A1 (ϕ, φ), which is
subject to Eqs. (219). Their general solutions, to be denoted
by n̄ A, are expressed by a linear dependence of the undiffer-
entiated matter fields,

f̂ A1 (ϕ, φ) ≡ n̄ A(ϕ, φ) = nA(ϕ) + T AB(ϕ)kBCφC ,

T AB(ϕ) = −T BA(ϕ), (232)

parameterized by an N -dimensional vector whose compo-
nents depend arbitrarily (but yet smoothly) on the undif-
ferentiated BF scalar field, n(ϕ) ≡ {nA(ϕ), A = 1, N },
and by a skew-symmetric quadratic matrix of order N with
elements also arbitrary smooth functions of the same field,
T (ϕ) ≡ {T AB(ϕ), A, B = 1, N }.

An absolutely similar procedure developed with respect
to Eq. (175) can be shown to give rise to purely trivial terms
only,

fnPT = 0, f ′
nPT,ν = 0, f̄ μ

nPT = 0, (233)

f̃ μν
nPT = 0, f̂ AnPT = 0. (234)

Assembling now the results (230)–(234) via the decompo-
sitions (171)–(173), it follows that the general expressions
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of the generators of the one-parameter rigid transformations
read

f
([ω�]) = 0, f ′

ν

([ω�]) = 0, f̃ μν
([ω�]) = 0, (235)

f̄ μ
([ω�]) = −kAB

(
∂μφA)

(
∂nB(ϕ)

∂ϕ
+ ∂T BC (ϕ)

∂ϕ
kCDφD

)

≡ −kAB
(
∂μφA)∂ n̄B(ϕ, φ)

∂ϕ
, (236)

f̂ A
([ω�]) = kAB

(
nB(ϕ) + T BC (ϕ)kCDφD)

≡ n̄ A(ϕ, φ). (237)

The associated conserved current emerging from the conser-
vation law (170) is given by

tμ0 (ϕ, [φ]) = kAB
(
∂μφA)(

nB(ϕ) + T BC (ϕ)kCDφD)

≡ kAB
(
∂μφA)

n̄B(ϕ, φ), (238)

so it is clearly nontrivial, linear in the first-order spacetime
derivatives of the matter fields, and, most important in what
follows, is gauge-invariant under (3)–(5), δ�α1 t

μ
0 = 0, since it

is allowed to depend only on the scalar fields from the theory.
It is important to note that even if we worked with the more
relaxed assumption that there may be at most two derivatives
in tμ0 acting on any fields (BF/matter), its nontrivial compo-
nent, given by the right-hand side of (238), comprises a single
derivative (acting on the matter fields) and thus will indeed
ensure the conservation of the number of derivatives on each
field from the free limit at the level of the interacting model.
The last observation enables us to state that so far we indeed
determined the most general, nontrivial, one-parameter rigid
symmetry of the free Lagrangian action (2) that complies
with all the working hypotheses and meanwhile couples the
BF and the matter sectors.

Inserting the results (235)–(237) into (153) we finally find
the general nontrivial solution to Eq. (62) that fulfills all
the working hypotheses and satisfies the necessary condition
(154),

aint
1 =

[
− H∗

μkAB
(
∂μφA)∂ n̄B(ϕ, φ)

∂ϕ

+φ∗
An̄

A(ϕ, φ)

]
η, (239)

δ

[
− H∗

μkAB
(
∂μφA)∂ n̄B(ϕ, φ)

∂ϕ
+ φ∗

An̄
A(ϕ, φ)

]

= ∂μt
μ
0 (ϕ, [φ]), (240)

with n̄ A and tμ0 (ϕ, [φ]) of the form (232) and (238). Given the
fact that from (239) one determines all the deformed gauge
transformations of the fields at order one in the coupling
constant by detaching the antifields and replacing the ghosts
with the corresponding gauge parameters (in our case η →

ε), it follows that they are obtained simply by gauging the
nontrivial, one-parameter rigid transformations of the fields
obtained in the above. On behalf of (240) and using the first
definition in (24) particularized to η together with the last
relation from (29), it follows immediately that

δaint
1 = −∂μ[tμ0 (ϕ, [φ])η] + γ [tμ0 (ϕ, [φ])Aμ]

− [γ tμ0 (ϕ, [φ])]Aμ

= −∂μ[tμ0 (ϕ, [φ])η] + γ [tμ0 (ϕ, [φ])Aμ] (241)

since γ tμ0 = 0. By means of Eqs. (241) and (63), we remark
that it is precisely the invariance of the conserved current
(238) under the gauge transformations (3)–(5), equivalent to
its γ -closeness, which turns the necessary condition (154)
for the existence of a nonvanishing solution aint

0 to Eq. (63)
into a sufficient one. In this manner, (241) renders that the
general solution to Eq. (63) can be written as

aint
0 = −tμ0 (ϕ, [φ])Aμ + āint

0

≡ −kAB
(
∂μφA)

n̄B(ϕ, φ)Aμ + āint
0 . (242)

Recalling that aint
0 is the Lagrangian density of the coupled

model at order one in the deformation parameter, we can par-
tially synthesize (242) by the standard result that the exis-
tence of a nontrivial rigid symmetry of the action (2) with
a gauge-invariant current produces a minimal current-gauge
field coupling at order one of perturbation theory. We observe
that the nontrivial conserved current obtained in the above
(the right-hand side of (238)) under a weaker derivative-order
assumption implies that the associated interacting vertex at
order one of perturbation theory, written as the first term from
the right-hand side of (242), truly conserves the number of
derivatives on each field from the free limit since it is linear
in the first-order derivatives of the fields.

The terms denoted by āint
0 stand for the general nontriv-

ial solutions to the ‘homogeneous’ equation associated with
(63),

γ āint
0 = ∂μ j̄μint,0 (243)

that should also comply with all the working hypotheses
and couple the BF to the matter fields. Such solutions can-
not deform the gauge transformations and depend only on
the original fields and their spacetime derivatives, āint

0 =
āint

0

([�α0 ]). They provide solutions to the cross-coupling
first-order deformation equation (51) that are independent
of the previous ones, which ended in antifield number 1. We
stress that here we work in antifield number 0, so we are not
allowed to replace Eq. (243) with its homogeneous version,
γ āint

0 = 0, like we did before, in antifield number 1 (see the
paragraph between Eqs. (61) and (62)). Instead, we split āint

0
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into

āint
0

([�α0 ]) = ā′int
0

([�α0 ]) + ā′′int
0

([�α0 ]), (244)

where the first component is the general solution to the truly
homogeneous equation corresponding to (243),

γ ā′int
0

([�α0 ]) = 0 (245)

and the second corresponds to a nonvanishing current,

γ ā′′int
0

([�α0 ]) = ∂μ j̄μint,0, ∂μ j̄μint,0 �= 0. (246)

Actually, since the actions of the Koszul–Tate differential on
all fields are vanishing (see the first relation in (24) for χ� =
�α0 ) and the BRST differential reduces to (22), it follows
that Eq. (243) defines by itself an element from H0(s|d)

computed in the space of local nonintegrated densities that
satisfy the working hypotheses, which is both ghost- and
antifield-independent,

γ āint
0

([�α0 ]) = ∂μ j̄μint,0 ⇔ sāint
0

([�α0 ]) = ∂μ j̄μint,0. (247)

In view of the above equivalence, by trivial solution in rela-
tion with Eq. (243) we understand any s-exact object mod-
ulo a full divergence. In the sequel we determine the general
nontrivial solutions to Eqs. (245) and (246) that satisfy the
general assumptions imposed on the deformations.

Due to the fact that ā′int
0 depends only on the fields and

their spacetime derivatives, Eq. (245) is completely equiv-
alent to the gauge-invariance condition δ�α1 ā′int

0 = 0 and
hence, by virtue of a previous result (see the paragraph con-
taining Eq. (148)), its solutions depend (locally) only on
the gauge-invariant quantities introduced in (148) and their
derivatives up to a finite order,

ā′int
0

([�α0 ]) = h
([ω�]), (248)

so h is actually a polynomial in all the quantities from (148)
and their spacetime derivatives excepting the undifferenti-
ated scalar fields ϕ and φ, which are allowed to enter h via a
smooth dependence. We start from a general representation
of h in terms of [ω�] that is local, covariant, and Poincaré
invariant, but relax again the conservation of the number of
derivatives on each field from the free limit to the requirement
that h contains maximally two derivatives that may act on any
of the fields. Subsequently, we eliminate the trivial contribu-
tions and show that the remaining (nontrivial) terms satisfy
the stronger derivative-order assumption as well. Under these
circumstances, we begin with

h
([ω�]) = h1(ϕ, φ) + h2(ϕ, φ)∂ρH

ρ

+ h3(ϕ, φ)(∂ρH
ρ)(∂λH

λ)

+ h4(ϕ, φ)(∂ρBρμ)(∂λB
λμ)

+ 1
2h5(ϕ, φ)(∂[μAν])(∂ [μAν])

+ h6(ϕ, φ)(∂μϕ)(∂μϕ)

+ 1
2h7AB(ϕ, φ)

(
∂μφA)(

∂μφB)

+ 2h8(ϕ, φ)(∂μϕ)(∂ρB
ρμ)

+ h9A(ϕ, φ)
(
∂μφA)

(∂ρB
ρμ)

+ h10A(ϕ, φ)(∂μϕ)
(
∂μφA) + h11(ϕ, φ)�ϕ

+ h12A(ϕ, φ)�φA

+ 1
2εμνρλh13(ϕ, φ)(∂[μAν])(∂[ρ Aλ]), (249)

where all the coefficients denoted by h stand for some arbi-
trary smooth functions of the undifferentiated scalar fields
from the theory, with h7AB symmetric. With the help of def-
initions (24) and (25) and decomposing h7AB into

h7AB(ϕ, φ) =
(

∂h7A(ϕ, φ)

∂φB
+ ∂h7B(ϕ, φ)

∂φA

)

+ μAB(ϕ, φ), (250)

μAB(ϕ, φ) = μBA(ϕ, φ),

μAB(ϕ, φ) �=∂uA(ϕ, φ)

∂φB
+ ∂uB(ϕ, φ)

∂φA
, (251)

we find that

h = h1(ϕ, φ) + 1
2μAB(ϕ, φ)

(
∂μφA)(

∂μφB)

+ s

{
ϕ∗(h2(ϕ, φ) + h3(ϕ, φ)∂λH

λ
)

+ A∗μ
(
h4(ϕ, φ)∂ρBρμ

+ h8(ϕ, φ)∂μϕ + h9A(ϕ, φ)∂μφA)

+ H∗
μ

[
− h6(ϕ, φ)∂μϕ

+
(

∂h7A(ϕ, φ)

∂ϕ
− h10A

)
∂μφA

− h8(ϕ, φ)∂ρB
ρμ + ∂μh11(ϕ, φ)

]

− B∗
μν

(
h5(ϕ, φ)∂ [μAν]

+ εμνρλh13(ϕ, φ)∂[ρ Aλ]
)

+ φ∗
Ak

AB(−h7B(ϕ, φ) + h12B(ϕ, φ))

}

+ ∂μ

(
h7A(ϕ, φ)∂μφA + h11(ϕ, φ)∂μϕ

)
. (252)
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Removing the trivial (s-exact modulo divergences) terms by
setting zero the associated parameterizing functions,

h2 = h3 = h4 = h5 = h6 = h8 = h11 = h13 = 0, (253)

h7A = h9A = h10A = h12A = 0, (254)

and denoting the coefficient h1 by −V for further conve-
nience, we see that (252) reduces to a sum between two types
of terms only

h
([ω�]) ≡ ā′int

0

([�α0 ]) = −V(ϕ, φ)

+ 1
2μAB(ϕ, φ)

(
∂μφA)(

∂μφB)
, (255)

so it is parameterized by an arbitrary scalar smooth function
of the undifferentiated scalar fields (V(ϕ, φ)) and by a sym-
metric quadratic matrix of order N (μ(ϕ, φ) ≡ μAB(ϕ, φ),
A, B = 1, N ) with elements also some smooth functions
of the same fields, which are arbitrary up to the requirement
(251). It is clear now that the components from the right-hand
side of (255) satisfy all the working hypotheses including the
conservation of the number of derivatives on each field with
respect to the free Lagrangian since they contain just terms
with maximally two derivatives that are precisely quadratic in
the first-order derivatives of the matter fields and, most impor-
tant, they are truly nontrivial. This is because on the one hand
V exhibits no spacetime derivatives while any divergence or
s-exact term incorporates at least one (see definitions (24)–
(32) with nonvanishing right-hand sides and the decomposi-
tion (22)), so V(ϕ, φ) is trivial in H0(s|d) iff V(ϕ, φ) = 0
and, on the other hand, the symmetric functions μAB are sub-
ject to (251). Indeed, it easy to see that the terms from the
right-hand side of (255) quadratic in the first-order deriva-
tives of the matter fields are in a trivial of class of H0(s|d) if
and only if the elements of the symmetric quadratic matrix of
order N are written like the symmetric first-order derivatives
of the components of an N -dimensional vector with respect
to the matter fields

μAB(ϕ, φ) = μtriv
AB(ϕ, φ)

≡ ∂uA(ϕ, φ)

∂φB
+ ∂uB(ϕ, φ)

∂φA
, (256)

in which case we have

1
2μtriv

AB(ϕ, φ)
(
∂μφA)(

∂μφB)

= s

[
H∗

μ

(
∂μφA)∂uA(ϕ, φ)

∂ϕ
− kABφ∗

AuB(ϕ, φ)

]

+ ∂μ

(
uA(ϕ, φ)∂μφA)

. (257)

In view of the above result, we will call any symmetric
matrix of the form (256) involved in vertices of the type
μtriv

AB(ϕ, φ)
(
∂μφA

)(
∂μφB

)
to be trivial. Such terms have

already been considered in (249) via the split (250) of h7AB

between a trivial and a nontrivial part (see the quantities
from (252) involving the functions h7A). In conclusion, con-
dition (251) guarantees that the second kind of terms from
the right-hand side of (255) belongs to a nontrivial class from
the cohomology H0(s|d) and therefore gives rise to allowed
first-order deformations that do not modify the initial gauge
transformations. It is interesting to regard the previous neces-
sary and sufficient condition yet from another perspective: if
needed, one can always add a trivial part to μ(ϕ, φ) and use
the associated terms quadratic in the first-order derivatives
of the matter fields as ‘counterterms’ to similar quantities
appearing in higher orders of perturbation theory (possibly
up to an appropriate redefinition of the coupling constant).

Equation (246) can be approached in a standard fashion
(for instance, see [43,44]) by decomposing ā′′int

0 according to
the number of derivatives and by solving the emerging equiv-
alent equations via introducing a derivation in the algebra of
the fields and of their derivatives that counts the powers of all
fields and of their derivatives excepting the undifferentiated
scalar fields (BF and matter). Proceeding along this line it is
easy to see that all the solutions to Eq. (246) that fulfill the
working hypotheses are nonetheless trivial, so we can safely
take

ā′′int
0

([�α0 ]) = 0. (258)

Putting together the results given in Eqs. (239), (242),
(244), (248), (255), and (258) via the former expansion in
(58), we conclude that the general, nontrivial expression of
the nonintegrated density of the first-order deformation that
couples the BF to the matter fields and satisfies all the work-
ing hypotheses reads

aint = aint
0 + aint

1 ,

aint
0 = −kAB

(
∂μφA)

n̄B(ϕ, φ)Aμ − V(ϕ, φ)

+ 1
2μAB(ϕ, φ)

(
∂μφA)(

∂μφB)
,

aint
1 =

[
− H∗

μkAB
(
∂μφA)∂ n̄B(ϕ, φ)

∂ϕ
+ φ∗

An̄
A(ϕ, φ)

]
η,

where n̄ A(ϕ, φ) is given by (232) and the symmetric func-
tions μAB(ϕ, φ) are nontrivial (relations (251)). This com-
pletes the proof regarding the general solutions to Eqs. (62)
and (63).

Appendix B:Main properties of the deformed generating
set of gauge transformations

In order to analyze the characteristic features of the gauge
transformations (104)–(107) corresponding to the deformed
model, we need the explicit form of the interacting field equa-
tions resulting from the action (101), namely,
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δ S̄L[�α0 ]
δϕ

= −D′
μH

μ − g
∂V(ϕ, φ)

∂ϕ

+ g

2

∂μAB(ϕ, φ)

∂ϕ

(
D̂μφA)(

D̂μφB)

− g(kAB + gμAB(ϕ, φ))
(
D̂μφA)

Aμ ∂ n̄B(ϕ, φ)

∂ϕ
≈ 0, (259)

δ S̄L[�α0 ]
δAμ

= −∂λB
λμ − gW (ϕ)Hμ

− g(kAB + gμAB(ϕ, φ))
(
D̂μφA)

n̄B(ϕ, φ) ≈ 0,

(260)

δ S̄L[�α0 ]
δHμ

= Dμϕ ≈ 0,
δ S̄L[�α0 ]

δBμν
= 1

2∂[μAν] ≈ 0,

(261)

δ S̄L[�α0 ]
δφA

= −∂μ
[
(kAB + gμAB(ϕ, φ))

(
D̂μφB)]

− g
∂V(ϕ, φ)

∂φA
+g

2

∂μBC (ϕ, φ)

∂φA

(
D̂μφB)(

D̂μφC)

− g(kBC + gμBC (ϕ, φ))
(
D̂μφB)

Aμ ∂ n̄C (ϕ, φ)

∂φA
≈ 0, (262)

written in terms of (102) and (103) and of the additional
“covariant derivative”,

D′
μ ≡ ∂μ + g

dW (ϕ)

dϕ
Aμ, (263)

that may act on any object involved in the Lagrangian formu-
lation of the coupled theory (fields, gauge parameters, etc.). It
is easy to see from the above formulas that the field equations
satisfy the derivative-order assumption. Indeed, on the one
hand the derivative order of all BF field equations is equal to
one and that of the matter fields is equal to two (with respect
to the matter fields themselves) via the term −kAB�φB fol-
lowing from the first kind of quantities on the right-hand side
of (262)) and, on the other hand, each term from every field
equation is strictly linear in the first-order derivatives of the
BF fields. Excepting the EL derivatives of the action (101)
with respect to the BF two-form Bμν , which coincide with
those from the free limit, the others are deformed by contri-
butions due to both the self-interactions among the BF fields
(in the first order of perturbation theory) and to the cross-
couplings between BF and matter field sectors (at orders one,
two, and three).

In the sequel we investigate the main properties of the
deformed generating set of gauge transformations, (104)–
(107). The associated gauge algebra is defined by the com-
mutators among the above gauge transformations, which,
in turn, result by retaining from the deformed solution to

the master equation, (99), the terms of antifield number 2
that are quadratic (in the ghosts with the pure ghost num-
ber equal to 1). If no such components were present in S̄,
then all the commutators would vanish, and therefore the
corresponding gauge algebra would be Abelian. In general
the pieces of antifield number 2 quadratic in the ghosts fall
in two possible classes: either linear in the antifields of the
ghosts with the pure ghost number equal to 1 or quadratic in
the antifields of the original fields. The appearance only of
elements from the first class signalizes that all the commu-
tators among the gauge transformations of the fields close
off-shell, but some are nonvanishing, so the gauge algebra
is still closed, but non-Abelian. If there exists at least one
term from the second class, i.e. quadratic in the antifields of
the original fields, this means that at least one commutator
among the gauge transformations of the fields closes on-shell
via trivial gauge transformations, i.e. on the stationary sur-
face through some antisymmetric combinations of field equa-
tions, and therefore the emerging gauge algebra is said to be
open. Inspecting from this perspective the structure of (99)
by means of Eqs. (33), (52)–(57), (64)–(66), (86)–(88), and
(92)–(94), we notice that there appear nonvanishing elements
from both classes, but only at order one in g, via the first-
order deformation aBF (the last two terms on the right-hand
side of (55), quadratic in η and Cμν). The former is linear
in the antifields C∗

μν and contains the first-order derivative
of the smooth function W (ϕ), while the latter is quadratic in
the antifields H∗

μ of the BF one-form Hμ and includes the
second-order derivative of W . Consequently, only the com-
mutators among the gauge transformations that depend on
the gauge parameters ξμν (since C∗

μν ↔ Cμν ↔ ξμν with
the help of Eqs. (6) and (15)) may be nonvanishing, i.e., those
of the BF fields Hμ and Bμν (see the first two terms on the
second line of (105) and the last from (106)), while the sole
commutator that may close one-shell is that corresponding
to Hμ precisely by antisymmetric combinations of its own
field equations, Mμλδ S̄L/δHλ ≈ 0, with Mμλ = −Mλμ. All
this information extracted from the structure of the deformed
solution to the master equation is translated at the level of the
Lagrangian formulation of the interacting theory along the
following formulas:[

δ̄
�

α1
1

, δ̄
�

α1
2

]
φA = 0,

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
ϕ = 0, (264)

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
Aμ = 0, (265)

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
Hμ = −2D′

λ

[
g
dW (ϕ)

dϕ
(ε1ξ

λμ
2 − ε2ξ

λμ
1 )

]

+ 2g
d2W (ϕ)

dϕ2 (ξ
μλ
1 ε2 − ξ

μλ
2 ε1)Dλϕ,

(266)

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
Bμν = 2gW (ϕ)

[
g
dW (ϕ)

dϕ
(ε1ξ

μν
2 − ε2ξ

μν
1 )

]
,

(267)
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where the “covariant derivatives” D′
λ and Dλϕ are of the form

(263) and (102), while the commutators among the gauge
transformations are considered with respect to two indepen-
dent sets of gauge parameters organized in agreement with
the notation (6),

�
α1
1 ≡ {ε1, ξ

λμ
1 , ε

λμν
1 }, �

α1
2 ≡ {ε2, ξ

λμ
2 , ε

λμν
2 }. (268)

Comparing the right-hand sides of (264)–(267) with the
corresponding gauge transformations from (104)–(107) and
using the former field equation from (261), we find that the
previous commutators can be written like

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
φA = 0,

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
ϕ = 0, (269)

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
Aμ = 0, (270)

[
δ̄
�

α1
1

, δ̄
�

α1
2

]
Hμ = δ̄�̃α1 H

μ

+ Mμλ(�
α1
1 ,�

α1
2 )

δ S̄L[�α0 ]
δHλ

, (271)
[
δ̄
�

α1
1

, δ̄
�

α1
2

]
Bμν = δ̄�̃α1 B

μν, (272)

in terms of a new set of gauge parameters,

�̃α1 ≡
{
ε̃ = 0, ξ̃ λμ = g

dW (ϕ)

dϕ
(ε1ξ

λμ
2 − ε2ξ

λμ
1 ),

ε̃λμν = 0

}
(273)

and of the antisymmetric coefficients,

Mμλ(�
α1
1 ,�

α1
2 ) = 2g

d2W (ϕ)

dϕ2 (ξ
μλ
1 ε2 − ξ

μλ
2 ε1). (274)

In conclusion, the gauge algebra associated with the new
gauge transformations, (104)–(107), is open if and only if
the self-interactions among the BF fields are allowed and the
second-order derivative of W is nonvanishing (so the coef-
ficients Mμλ are not equal to zero). If it is vanishing, but
the first-order derivative of W is not, then the gauge alge-
bra is closed, but non-Abelian (the coefficients Mμλ become
zero, but the gauge parameters ξ̃ λμ given in (273) resist), so
it is still deformed with respect to the initial, Abelian one.
Finally, if the BF self-interactions are excluded (W = 0),
then all the above commutators vanish off-shell, such that the
gauge algebra of the cross-coupled theory remains Abelian,
like that from the free limit.

The deformation procedure cannot alter either the maxi-
mum reducibility order of the generating set of gauge trans-
formations or the number of reducibility relations at each
stage since it preserves both the field sector and the number
of physical degrees of freedom from the free limit. But it may
modify the form of the reducibility functions (and hence the

transformations of the gauge or reducibility parameters of a
given order in terms of those corresponding to the next order)
and of the associated reducibility relations; for instance, if the
reducibility relations from the free limit held off-shell, then it
is possible that the deformed ones take place on-shell, mean-
ing on the deformed stationary surface. These features are
dictated by the pieces linear in the ghosts with the pure ghost
number strictly greater than 1 from the deformed solution to
the master equation in strictly positive orders of perturba-
tion theory. If no such components were present, then both
the reducibility functions and the relations would be those
from the free limit. In the opposite situation, two kinds of ele-
ments linear in the ghosts with pgh > 1 are of interest: those
likewise linear in the antifields (of some ghosts since their
antifield number should also be at least equal to 2) and those
simultaneously quadratic in the antifields and containing two
antifields of the original fields if pgh = 2 = agh or a single
one if pgh = agh > 2. Whenever only elements belonging
to the first kind are allowed, then some of the reducibility
functions are modified with respect those from the free limit,
but all the deformed reducibility relations hold like in the free
limit, namely off-shell here. If at least one element from the
second class is detected, then the associated reducibility rela-
tions hold only on-shell. With these observations in mind, we
notice in (99) contributions to both classes at the first order of
perturbation theory only, coming again from the purely BF
deformation (52) (all the terms from (55) linear in the ghosts
Cμνρ and just five out of the seven components from (56)
linear in Cμνρλ). Consequently, all the reducibility functions
may be affected with respect to their free limit, but only at
order one in g, and some of the reducibility relations may hold
now on-shell (at the same order), depending on the choice
and properties of the smooth function W (ϕ). Their detailed
analysis will be given below maintaining notations (1), (6),
(8), and (11) and relying on the deformed gauge transfor-
mations (104)–(107). Related to the first-order reducibility,
we transform the gauge parameters from (6) in terms of the
first-order reducibility ones, (8), by adding to relations (7)
some supplementary quantities induced by the correspond-
ing elements from the first class present in (55),

�α1 = �α1(�α2)

⇔
⎧
⎨

⎩

ε(�α2) = 0,

ξμν(�α2) = −3D′
λξ

λμν,

εμνρ(�α2) = −4∂λε
λμνρ − 2gW (ϕ)ξμνρ,

(275)

with D′
λ like in (263). Consequently, the deformed gauge

transformations of the fields, (104)–(107), are transformed
like

δ̄�α1 (�α2 )φ
A = 0, δ̄�α1 (�α2 )ϕ = 0, (276)
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δ̄�α1 (�α2 )Aμ = 0, (277)

δ̄�α1 (�α2 )H
μ = 6gξμρλ

(
d2W (ϕ)

dϕ2 Aρ

δ S̄L[�α0 ]
δHλ

− dW (ϕ)

dϕ

δ S̄L[�α0 ]
δBρλ

)
, (278)

δ̄�α1 (�α2 )B
μν = 6gξμνλ dW (ϕ)

dϕ

δ S̄L[�α0 ]
δHλ

(279)

and represent the first-order reducibility relations of the inter-
acting model. In relation with the second-order reducibility,
we express the first-order reducibility parameters from (8)
in terms of the second-order reducibility ones (see (11)) by
modifying Eqs. (10) with some additional pieces implied by
the associated elements from the first class appearing in (56)

�α2 = �α2(�α3)

⇔
{

ξμνρ(�α3) = −4D′
λξ

λμνρ,

ελμνρ(�α3) = 2gW (ϕ)ξλμνρ,
(280)

such that the transformed gauge parameters (275) become

ε(�α2(�α3)) = 0, (281)

ξμν(�α2(�α3)) = 12gξμνρλ

(
d2W (ϕ)

dϕ2 Aρ

δ S̄L[�α0 ]
δHλ

− dW (ϕ)

dϕ

δ S̄L[�α0 ]
δBρλ

)
, (282)

εμνρ(�α2(�α3)) = 8gξμνρλ dW (ϕ)

dϕ

δ S̄L[�α0 ]
δHλ

(283)

and provide the second-order reducibility relations of the
interacting theory. With the help of the results (275)–(283),
we conclude that at least some of the reducibility functions for
the generating set of gauge transformations corresponding to
the interacting theory are deformed with respect to that of
the free limit if and only if the self-interactions among the
BF fields are permitted. If in addition at least the first-order
derivative of the function W (ϕ) is nonvanishing, then both
the reducibility relations of order one and those of order two
hold on-shell, by contrast to those associated with the free
model.

The remaining terms from (99), not taken in account so far,
of antifield number 3 and 4, are entirely contained in the com-
ponents (56) and (57) of the purely BF first-order deforma-
tion aBF. They bring contributions to the higher-order tensor
structure functions corresponding to the deformed generat-
ing set of gauge transformations (104)–(107) and are fully
manifested (always only at the first order of perturbation the-
ory) if and only if all the derivatives of the function W (ϕ) up
to the fourth order inclusively are not vanishing.
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