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Abstract In the present work we show that warm chaotic
inflation characterized by a simple λ

4 φ4 self-interaction
potential for the inflaton, excluded by current data in standard
cold inflation, and by an inflaton decay rate proportional to
the temperature, is in agreement with the latest Planck data.
The parameters of the model are constrained, and our results
show that the model predicts a negligible tensor-to-scalar
ratio in the strong dissipative regime, while in the weak dis-
sipative regime the tensor-to-scalar ratio can be large enough
to be observed.

1 Introduction

The inflationary universe has become one of the central
paradigms in modern cosmology. This is due to the fact that
many long-standing problems of the Big Bang model, such as
the horizon, flatness, homogeneity, and monopole problems,
find a natural explanation in the framework of the inflation-
ary universe [1–6]. However, the essential feature of inflation
is that it generates a mechanism to explain the Large-Scale
Structure (LSS) of the universe [7–11] and provides a causal
interpretation of the origin of the anisotropies observed in
the Cosmic Microwave Background (CMB) radiation [12–
17], since primordial density perturbations may be produced
from quantum fluctuations during the inflationary era.

The original “old inflation” scenario assumed the inflaton
was trapped in a metastable false vacuum and had to exit to
the true vacuum via a first-order transition [1,2]. However,
the exit could occur neither gracefully nor completely. The
revised version of inflation was proposed by Linde [3,4], and
Albrecht and Steinhardt [5] in 1982 referred as “new infla-
tion”. However, these scenarios suffer from theoretical prob-
lems about the duration of inflation and initial conditions. In
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1983, Linde considered the case that the initial conditions for
scalar field driving inflation may be chaotic, which is called
“chaotic inflation” [6]. This inflation model can solve the
remaining problems, where the potential was chosen to be
quadratic or quartic form, i.e. m2

2 φ2 or λ
4 φ4, terms that are

always present in the scalar potential of the Higgs sector in all
renormalizable gauge field theories [18] in which the gauge
symmetry is spontaneously broken via the Englert–Brout–
Higgs mechanism [19,20]. Such models are interesting for
their simplicity, and has become one of the most favored,
because they predict a significant amount of tensor perturba-
tions due to the inflaton field gets across the trans-Planckian
distance during inflation [21]. After that, many kinds of infla-
tionary scenarios have been proposed, related to supersym-
metry (SUSY) theory, brane world, string theory, etc. (for a
review, see [22–25]).

On the other hand, with respect to the dynamical mech-
anisms of inflation, the warm inflation scenario, as opposed
to the standard cold inflation, has the attractive feature that
it avoids the reheating period at the end of the accelerated
expansion [26,27]. During the evolution of warm inflation
dissipative effects are important, and radiation production
takes place at the same time as the expansion of the uni-
verse. The dissipative effects arise from a friction term which
accounts for the processes of the scalar field dissipating into
a thermal bath. In further relation to these dissipative effects,
the dissipative coefficient � is a fundamental quantity, which
has been computed from first principles in the context of
supersymmetry. In particular, in Ref. [28], a supersymmetric
model containing three superfields�, X , andY has been stud-
ied, with a superpotential W = g√

2
�X2 − h√

2
XY 2, where

the scalar components of the superfields are φ, χ , and y,
respectively. For a scalar field with multiplets of heavy and
light fields, and different decay mechanisms, it is possible to
obtain several expressions for the dissipative coefficient �;
see e.g., [28–34].
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Following Refs. [31,32], a general parametrization of the
dissipative coefficient �(T, φ) can be written as

�(T, φ) = a
Tm

φm−1 , (1)

where the parameter a is related with the dissipative micro-
scopic dynamics and the exponent m is an integer. This
expression for the dissipative coefficient includes different
cases studied in the literature, depending of the values of m
(see Refs. [31,32]). Specifically, for the valuem=3, i.e., � ∝
T 3/φ2, the parameter a corresponds to 0.02h2NY , where a
generic supersymmetric model with chiral superfields �, X ,
and Yi , i = 1, . . . ,NY has been considered. This case cor-
responds to a low temperature regime, when the mass of the
catalyst fieldmχ is larger than the temperature T [33,34]. On
the other hand, m=1, i.e., �∝T corresponds to a high tem-
perature regime, where the thermal corrections to the catalyst
field mass start to be important, where a= 0.97g2/h2 [28].
For m=0, the dissipative coefficient represents an exponen-
tially decaying propagator in the high temperature regime.
Finally, for m = −1, i.e., � ∝ φ2/T , we have agreement
with the non-SUSY case [29,35]. Additionally, thermal fluc-
tuations during the inflationary scenario may play a funda-
mental role in producing the primordial fluctuations [36,37].
During the warm inflationary scenario the density pertur-
bations arise from thermal fluctuations of the inflaton and
dominate over the quantum ones. In this form, an essential
condition for warm inflation to occur is the existence of a radi-
ation component with temperature T > H , since the ther-
mal and quantum fluctuations are proportional to T and H ,
respectively [26,27,36,37]. When the universe heats up and
becomes radiation dominated, inflation ends and the universe
smoothly enters the radiation Big Bang phase [26,27]. For a
comprehensive review of warm inflation, see Refs. [38,39].

Upon comparison to the current cosmological and astro-
nomical observations, specially those related with the CMB
temperature anisotropies, it is possible to constrain the infla-
tionary models. In particular, the constraints in the ns − r
plane give us the predictions of a number of representa-
tive inflationary potentials. Recently, the Planck collabora-
tion has published new data of enhanced precision of the
CMB anisotropies [40]. Here, the Planck full mission data
has improved the upper bound on the tensor-to-scalar ratio
r0.002 < 0.11 (95 % CL) which is similar to obtained from
[17], in which r < 0.12 (95 % CL). In particular, the λ

4 φ4

model, which predicts a large value of the tensor-to-scalar
ratio r , lies well outside of the joint 99.7 % CL region in the
r–ns plane, so it is ruled out by the data. This result confirms
previous findings by, e.g., Hinshaw et al. [15] in which this
model is well outside the 95 % CL for the WMAP 9-year
data and is further excluded by CMB data at smaller scales.

In this way, the goal of the present work is to study the
possibility that the λ

4 φ4 model can be rescued in the warm

inflation scenario and be able to agree with the latest obser-
vational data. In order to achieve this, we consider an inflaton
decay rate � proportional to the temperature, which has been
computed in the context of a high temperature supersymmet-
ric model [28]. We stress that in previous works (see Refs.
[33,34]) the authors have also studied the quartic potential in
the framework of warm inflation. However, our work is differ-
ent in two ways. First, contrary to the standard cold inflation
where the dynamics is determined only by the inflaton poten-
tial, in warm inflation also the dissipative coefficient plays an
important role, and here we have considered an expression
for it not studied in the previous works. Furthermore, in none
of these papers the authors used the contour plots in the r–ns
plane to constrain the parameters of the model they studied.
On the contrary, in our work here we have used the latest data
from Planck, not available at that time, to put bounds on the
parameters of the model we have considered.

The outline of the paper is as follows: The next section
presents a short review of the basics of warm inflation sce-
nario. In Sect. 3 we study the dynamics of warm inflation
for our quartic potential, in the weak and strong dissipative
regimes; specifically, we obtain analytical expressions for the
slow-roll parameters and the dissipative coefficient. Imme-
diately, we compute the cosmological perturbations in both
dissipative regimes, obtaining expressions for the inflation-
ary observables such as the scalar power spectrum, the scalar
spectral index, and the tensor-to-scalar ratio. Finally, Sect.
4 summarizes our results and exhibits our conclusions. We
choose units so that c = h̄ = 1.

2 Basics of warm inflation scenario

2.1 Background evolution

We start by considering a spatially flat Friedmann–Robert-
son–Walker (FRW) universe containing a self-interacting
inflaton scalar field φ with energy density and pressure given
by ρφ = φ̇2/2+V (φ) and Pφ = φ̇2/2−V (φ), respectively,
and a radiation field with energy density ργ . The correspond-
ing Friedmann equation reads

H2 = 1

3M2
p
(ρφ + ργ ), (2)

where Mp = 1√
8πG

is the reduced Planck mass.
The dynamics of ρφ and ργ is described by the equations

[26,27]

ρ̇φ + 3 H (ρφ + Pφ) = −�φ̇2, (3)

and

ρ̇γ + 4Hργ = �φ̇2, (4)
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where the dissipative coefficient � > 0 produces the decay
of the scalar field into radiation. Recall that this decay rate
can be assumed to be a function of the temperature of the
thermal bath �(T ), or a function of the scalar field �(φ), or
a function of �(T, φ) or simply a constant [26,27].

During warm inflation, the energy density related to the
scalar field predominates over the energy density of the radi-
ation field, i.e., ρφ � ργ [26,27,36,41–43], but even if small
when compared to the inflaton energy density it can be larger
than the expansion rate with ρ

1/4
γ > H . Assuming thermal-

ization, this translates roughly into T > H , which is the
condition for warm inflation to occur.

When H , φ, and � are slowly varying, which is a good
approximation during inflation, the production of radiation
becomes quasi-stable, i.e., ρ̇γ � 4Hργ and ρ̇γ � �φ̇2;
see Refs. [26,27,36,41–43]. Then the equations of motion
reduce to

3 H (1 + R)φ̇ � −V,φ, (5)

where, φ denotes differentiation with respect to inflaton, and

4Hργ � � φ̇2, (6)

where R is the dissipative ratio defined as

R ≡ �

3H
. (7)

In warm inflation, we can distinguish between two pos-
sible scenarios, namely the weak and strong dissipative
regimes, defined as R � 1 and R � 1, respectively. In
the weak dissipative regime, the Hubble damping is still the
dominant term, however, in the strong dissipative regime, the
dissipative coefficient � controls the damped evolution of the
inflaton field.

If we consider thermalization, then the energy density of
the radiation field could be written as ργ = Cγ T 4, where
the constantCγ = π2 g∗/30. Here, g∗ represents the number
of relativistic degrees of freedom. In the Minimal Supersym-
metric Standard Model (MSSM), g = 228.75 and Cγ � 70
[36]. Combining Eqs. (5) and (6) with ργ ∝ T 4, the temper-
ature of the thermal bath becomes

T =
[

� V 2
,φ

36Cγ H3(1 + R)2

]1/4

. (8)

On the other hand, the consistency conditions for the
approximations to hold imply that a set of slow-roll con-
ditions must be satisfied for a prolonged period of inflation
to take place. For warm inflation, the slow-roll parameters
are [28,36]

ε = M2
p

2

(
V,φ

V

)2

, η = M2
p

(
V,φφ

V

)
,

β = M2
p

(
�,φ V,φ

� V

)
, σ = M2

p

(
V,φ

φV

)
. (9)

The slow-roll conditions for warm inflation can be
expressed as [28,36]

ε � 1+R, η � 1+R, β � 1+R, σ � 1 + R (10)

When one these conditions is not longer satisfied, either
the motion of the inflaton is no longer overdamped and slow-
roll ends, or the radiation becomes comparable to the inflaton
energy density. In this way, inflation ends when one of these
parameters become the order of 1 + R.

From first principles in quantum field theory, the dissipa-
tive coefficient � has been computed. As we have seen in the
introduction, the parametrization given by Eq. (1) includes
different cases, depending of the values of m. Concretely, for
m = 3, for which � = aT 3φ−2, the parameter a agrees with
a = 0.02 h2 NY , where a generic supersymmetric model
with chiral superfields �, X , and Yi , i = 1, ...,NY has been
considered. In particular, this inflation ratio decay has been
studied extensively in the literature [33,34,44–46], including
the quartic potential [38,39] . For the special case m = 1,
the dissipative coefficient � ∝ T is related with the high
temperature supersymmetry (SUSY) case [28]. Finally, for
the cases m = 0 and m = −1, � represents an exponentially
decaying propagator in the high temperature SUSY model
and the non-SUSY case, respectively [29,35].

2.2 Perturbations

In the warm inflation scenario, a thermalized radiation com-
ponent is present with T > H , then the inflaton fluctuations
δφ are predominantly thermal instead quantum. In this way,
following [36–39], the amplitude of the power spectrum of
the curvature perturbation is given by

PR1/2 �
(

H

2π

)(
3H2

Vφ

)
(1 + R)5/4

(
T

H

)1/2

, (11)

where the normalization has been chosen in order to recover
the standard cold inflation result when R → 0 and T � H .

On the other hand, the scalar spectral index ns is given by
[36]

ns =1+dPR
d ln k

� 1+ 1

1+R
[−(2−5AR)ε−3ARη+(2+4AR)σ ],

(12)

where AR = R
1+7R .
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Regarding tensor perturbations, these do not couple to the
thermal background, so gravitational waves are only gener-
ated by quantum fluctuations, as in standard inflation [47].
However, the tensor-to-scalar ratio r is modified with respect
to standard cold inflation, yielding [38,39]

r �
(
H

T

)
16ε

(1 + R)5/2
. (13)

We can see that warm inflation predicts a tensor-to-scalar
ratio suppressed by a factor (T/H)(1+ R)5/2 > 1 compared
with standard cold inflation.

When a specific form of the scalar potential and the dis-
sipative coefficient � are considered, it is possible to study
the background evolution under the slow-roll regime and the
primordial perturbations in order to test the viability of warm
inflation. In the following we will study how an inflaton decay
rate proportional to the temperature, corresponding to the
case m = 1, influences the inflationary dynamics for the
quartic potential. We will restrict ourselves to the weak and
strong dissipation regimes.

3 Dynamics of warm λ
4φ4 inflation

Although inflation is widely accepted as the standard
paradigm for the early universe, it is not a theory yet as
we do not know how to answer the question that naturally
arises, “what is the inflaton and what is its potential?”. After
the recent discovery of the Higgs boson at CERN [48,49],
which showed that elementary scalars exist in nature, the
most natural and simplest thing to assume is that inflation
is driven by the Higgs boson (in the standard model or in
some extension of it). Unfortunately it is well known that
the quartic potential, which is the simplest Higgs potential
provided by particle physics in renormalizable theories, has
been excluded by current data [50] since it predicts too many
gravity waves. Although the presence of a non-minimal cou-
pling can make the quartic potential viable [51,52], warm
inflation provides another solution that is simpler and at the
same time, as we have already mentioned, avoids the discus-
sion as regards reheating. If we look at the expressions for
the observables in the framework of warm inflation, we see
that the key ingredient that can in principle reduce the tensor-
to-scalar ratio and bring the predictions of the model inside
the region allowed by observational data, is the suppression
factors (T/H) and R5/2. This is exactly what happens indeed
as we will show in the discussion to follow.

Warm inflation with a quartic potential for the inflaton
has also been studied in [32,53,54]. However, there are
some differences, as in these works the authors have used
another expression for the dissipative coefficient; they have
not derived the allowed range for the parameters of the model

they studied, and finally in our work we have used the most
recent data available today.

3.1 The weak dissipative regime

Considering that our model evolves in agreement with the
weak dissipative regime, where R � 1, and that under
the slow-roll approximation the Friedmann and the Klein–
Gordon equations take the standard form, the temperature
of the radiation field, assuming an inflaton potential of the
form V (φ) = (1/4)λφ4 and an inflaton decay rate � = aT ,
becomes

T �
(

aV 2
,φ

36Cγ H3

)1/3

, (14)

and the Hubble parameter is given by

H �
(

V

3M2
p

)1/2

. (15)

In this way, for the weak regime, the slow-roll parameters
become

ε = 8M2
p

φ2 , η = 12M2
p

φ2 , β = 0, σ = 4M2
p

φ2 . (16)

It is easy to see that the end of inflation is determined by
the condition η = 1, where the scalar field takes the value
φend = 2

√
3Mp.

On the other hand, the number of e-folds is given by the
standard formula

N =
∫ tend

t∗
H dt � 1

M2
p

∫ φ∗

φend

V

Vφ

dφ � 1

4

(
φ∗
Mp

)2

, (17)

where we have assumed that φ∗ � φend.
In the following, we will study the scalar and tensor per-

turbations. In the weak dissipative regime, the amplitude of
the power spectrum (11) becomes

PR1/2 �
(

H

2π

)(
3H2

V,φ

)(
T

H

)1/2

. (18)

By using Eqs. (14), (15), and (17), it may we written in terms
in the number of e-folds as

PR1/2 �
(

λ
√
aN 3

6
√

70π3

)1/3

. (19)

The power spectrum constraint P1/2
R ∼ 10−5 [17,40] deter-

mines the dimensionless coupling λ in terms of a and N ,
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while the scalar spectral index (12) turns out to be

ns � 1 − 2ε + 2σ, (20)

which may be expressed in terms of the number of the e-folds,
obtaining

ns = 1 − 1

N
, (21)

while the tensor-to-scalar ratio (13) becomes

r �
(
H

T

)
16ε, (22)

so eventually we can obtain r as a function of ns . Using Eqs.
(19), (21), and (22), the relation r(ns) is given by

r = 4
√

14

625
√

5 a1/2
(1 − ns). (23)

In Fig. 1, the relation r(ns) is shown for several values of a.
In the same plot we also show the curve for standard inflation
(a = 0) as well as the contours allowed by the Planck latest
data. When a decreases the curve is shifted upwards and
finally lies outside the allowed contours. This induces a lower
bound on a. On the other hand, when a increases the curve is
shifted downwards, but R also increases and eventually the
condition for being in the weak dissipative regime is violated.
This induces an upper bound on a, which is found to be

Fig. 1 Plot of the tensor-to-scalar ratio r versus the scalar spectral
index ns in the weak dissipative regime, for the quartic potential and
an inflaton ratio decay � = aT . Here, we have considered the two-
dimensional marginalized joint confidence contours for (ns , r), at the
68 and 95 % CL, from the latest Planck data [40]. In this plot we have
used four different values of the parameter a, where the value a = 0
corresponds to standard cold inflation

6.5 × 10−5 < a < 3.4 × 10−2. This implies that Eq. (19),
evaluated when the cosmological scales cross the Hubble
horizon during inflation at 60 e-folds, gives us the constraint
on λ determined by 10−15 < λ < 10−13. It is interesting to
note that this result is in agreement with the value obtained for
λ in the standard cold inflation using the COBE normalization
[55], given by λ ∼ 10−14.

3.2 The strong dissipative regime

Considering that our model evolves in agreement with the
strong dissipative regime, where R � 1, under the slow-
roll approximation, the temperature of the radiation field
becomes

T �
(

V 2
,φ

4Cγ aH

)1/5

, (24)

and the Hubble parameter is given by Eq. (15). In this way,
for the strong regime, the slow-roll parameters become

ε = 8M2
p

φ2 , η = 12M2
p

φ2 , β
15M2

p

5φ2 , σ = 4M2
p

φ2 . (25)

For the strong regime, inflation ends when one of these slow-
roll parameters becomes the order of R. In this case, the end
of inflation is determined by the condition η = R, where the

inflaton takes the value φend = (6735)1/4

a λ1/4Mp.
On the other hand, the number of e-folds is given by

N =
∫ tend

t∗
H dt � 1

M2
p

∫ φ∗

φend

V

Vφ

R dφ

� 1

8

(
a 54

7 λ62

)1/5 (
φ∗
Mp

)4/5

, (26)

where we have assumed that φ∗ � φend.
Now, the amplitude of the power spectrum (11) becomes

PR1/2 �
(

H

2π

)(
3H2

Vφ

)(
T

H

)1/2

R5/4, (27)

Similarly to the weak regime, the amplitude of the power
spectrum may we written in terms of the number of e-folds.
Using Eqs. (15), (24), and (26), we have

PR1/2 �
[

4N 3λ

125π8/3

(
2

315

)1/3
]3/8

. (28)

In this case, the power spectrum does not depend on a and
then the constraint P1/2

R ∼ 10−5 [17,40] determines the infla-
ton self-interaction coupling λ.
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For this regime, the scalar spectral index (12) turns out to
be

ns � 1 + 1

7R
(−3η + 18σ − 9ε), (29)

which expressed in terms of the number of the e-folds yields

ns = 1 − 45

28N
. (30)

Finally, for the tensor-to-scalar ratio (13) we have

r �
(
H

T

)
16 ε

R5/2
, (31)

which may be expressed as a function of ns . Using Eqs. (28),
(30), and (31), the relation r(ns) is given by

r � 8.5 × 10−9 π10/3

a4 (1 − ns). (32)

In Fig. 2, the relation r(ns) is shown for two different val-
ues of a. In the same plot, as in the weak regime, we also
show the curve for standard cold inflation (a = 0) as well
as the contours allowed by the latest Planck data. When a
decreases the curve is shifted upwards, but R also decreases
and eventually the condition for being in the strong dissipa-
tive regime is violated. This induces a lower bound on a. On
the other hand, when a increases the curve is shifted down-
wards, but R also increases and the condition for being in the

Fig. 2 Plot of the tensor-to-scalar ratio r versus the scalar spectral
index ns in the strong dissipative regime, for the quartic potential and
an inflaton ratio decay � = aT . Here, we have considered the two-
dimensional marginalized joint confidence contours for (ns , r), at the
68 and 95 % CL, from the latest Planck data [40]. In this plot we have
used two different values of the parameter a, where the value a = 0
corresponds to standard cold inflation

strong dissipative regime is always satisfied. This implies
that there is only a lower bound for a found by the require-
ment of staying in the strong dissipative regime, and given
by a > 3.4×10−2. Finally, Eq. (28), evaluated at 60 e-folds,
gives us the constraint on λ, determined by λ ∼ 10−15. This
value is almost the same order that obtained for λ in the stan-
dard cold inflation.

4 Conclusions

In the present work we have studied warm inflation with a
quartic inflaton potential V (φ) = (1/4)λφ4 and an inflaton
decay rate proportional to the temperature, namely � = aT .
Warm inflation consists an alternative to the standard cold
inflation, during which radiation is neglected and which
requires two steps, a slow-roll phase followed by a reheating
phase, about which very little is known. On the contrary, in
warm inflation, which has the attractive feature that avoids
reheating, radiation is also taken into account and it is coupled
to the inflaton leading to testable predictions different from
the predictions of standard inflation even in the weak dissipa-
tive regime. The model we have considered is characterized
by two parameters, namely the dimensionless couplings a
and λ. We have used the latest Planck data to constrain the
parameters of the model, and the results we have obtained
are shown in the Figs. 1 and 2 for the case of weak and
strong dissipative regime, respectively. In the weak regime
first, where � � 3H , the background equations look the
same as in standard inflation, however, the tensor-to-scalar
ratio is suppressed by the factor T/H , which must always
be larger than one in warm inflation. The power spectrum
constraint determines λ in terms of a, and then the tensor-
to-scalar ratio as a function of the scalar index ns changes
according to a as follows: As a increases the theoretical curve
is shifted downwards, and on the other hand as a decreases
the theoretical curve is shifted upwards. We have obtained
both an upper and a lower bound on a, since when a becomes
too low the theoretical curve lies outside the contours allowed
by data, and when a becomes too large the condition for the
weak dissipative regime is not satisfied. In Fig. 1 we show
the contours allowed by the data together with four theo-
retical curves, namely one for the standard inflation and for
three different values of the coupling a in warm inflation, the
minimum value, the maximum value and one intermediate
value. In the strong dissipative regime, where � � 3H , the
power spectrum does not depend on a and so the constraint
determines the inflaton self-interaction coupling λ. In Fig.
2, the r–ns plot is shown and there is only a lower bound
for a, obtained by the requirement of staying in the strong
dissipative regime. In this regime the tensor-to-scalar ratio
is suppressed by the factor T/H as in the weak regime, but
also by the factor R5/2. That is why in the strong regime the
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model always predicts a very low r . By the other hand, we
observe that the constraints found on the coupling λ, in both
dissipative regimes, are in agreement with the value obtained
in standard cold inflation using the COBE normalization. In
this way, we conclude that warm inflation can rescue the
quartic potential that in standard inflation is ruled out by the
data.
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