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Abstract We consider soft-gluon evolution in the colour
flow basis. We give explicit expressions for the colour struc-
ture of the (one-loop) soft anomalous dimension matrix for
an arbitrary number of partons, and we show how the succes-
sive exponentiation of classes of large- N contributions can be
achieved to provide a systematic expansion of the evolution
in terms of colour-suppressed contributions.

1 Introduction

In order to reliably interpret current and upcoming measure-
ments at the LHC, precise QCD predictions for multi-jet final
states are indispensable. These include both fixed-order cal-
culations, as well as their combination with analytic resum-
mation and/or parton shower event generators, e.g. [1-3], to
sum leading contributions of QCD corrections to all orders,
such as to arrive at a realistic final state modelling. Fixed-
order calculations at leading and next-to-leading order in the
strong coupling are by now highly automated, and frame-
works to automatically resum a large class of observables
have been pioneered as well [4]. The combination of NLO
QCD corrections with event generators [5—10] is an estab-
lished research area, and first steps towards combining ana-
lytic resummation and event generators have been taken [11].

The efficient treatment of QCD colour structures is central
to both fixed-order and resummed perturbation theory. Partic-
ularly the use of the colour flow basis has led to tremendously
efficient implementations of tree-level amplitudes [12-14],
which can be used both for leading order calculations, as well
as one-loop corrections within the context of recent meth-
ods requiring only loop integrand evaluation (see [15] for
the exact treatment of the colour flow basis in the one-loop
case). This colour basis is closely linked to determining initial
conditions for parton showering. After evolving a partonic
system through successive parton shower emissions, while
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keeping track of the colour structures (in the large-N limit),
colour flows also constitute the initial condition to hadro-
nisation models; this includes the dynamics of how multi-
ple partonic scatterings are linked to hadronisation. Colour
reconnection models, such as those described in [16,17], are
exchanging colour between primordial hadronic configura-
tions like strings or clusters, and have proven to be of utmost
phenomenological relevance in the description of minimum
bias and underlying event data.

Despite its relevance to event generators, the colour flow
basis has typically not been considered in analytic resum-
mation, most probably for the reason of being not the most
simple or minimal basis. While recent work has focussed
on obtaining minimal (and even orthogonal) colour bases
[18], an intuitive connection to the physical picture is hard to
maintain in such approaches. It is until now an open question
whether amplitudes can be evaluated in a similarly efficient
way in such bases. Also, in analytic resummation, matching
to a fixed-order calculation is usually mandatory and the use
of colour flow bases could allow one to use the full power
of automated matrix element generators within this context.
Understanding soft-gluon evolution in the colour flow basis
thus seems to be a highly relevant problem to address, which
can also shed light on colour reconnection models, being so
far based on rather simple phenomenological reasoning.

The purpose of the present work is to study soft-gluon evo-
lution in the colour flow basis. While for a fixed, small num-
ber of partons the exponentiation of the soft gluon anoma-
lous dimension matrix can be performed either analytically or
numerically, the case for a large number of partons is rapidly
becoming intractable. This limitation thus prevents insight
into the soft gluon dynamics of high-multiplicity systems rel-
evant to both improved parton shower algorithms [19,20] as
well as colour reconnection models. We will derive the gen-
eral structure of the soft anomalous dimension matrix in the
colour flow basis for an arbitrary number of partons, and we
tackle its exponentiation by successive summation of large-
N powers in a regime where the kinematic coefficients y are
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of comparable size to the inverse of the number of colours,
y N ~ 1, leading to a computationally much more simple
problem than the full exponentiation. This strategy can well
be applied to a large number of partons in an efficient way.
This paper is organised as follows: In Sect. 2 we set
our notation and present the general form of the soft gluon
anomalous dimension. In Sect. 3 we derive its exponentiation
and show how subsequent towers of large-N contributions
can be summed in a systematic way. Section 4 is devoted
to a few numerical studies of testing the accuracy of these
approximations in a simple setting of QCD 2 — 2 scat-
tering, while Sect. 5 presents an outlook on possible future
applications before arriving at conclusions in Sect. 6. A num-
ber of appendices is devoted to calculational details and for
reference formulae to achieve what we will later call a next-
to-next-to-next-to-leading colour (N3LC) resummation.

2 Notation and soft anomalous dimensions

We consider the soft-gluon evolution of an amplitude |M,,)
involving n coloured legs, either in the fundamental or adjoint
representation of SU(NV), with in general N colour charges.
The amplitude is a vector in both colour and spin space,
though we shall here mainly be interested in the colour struc-
ture, decomposing the amplitude into a colour basis {|o')},

M) =Y Myolo). ()

We assume that all momenta of the amplitude are taken to
be outgoing, and we will order the fundamental and adjoint
representation legs successively as

o = 1IN, 25, -y (ng — DN, gy, (ng + DA, - (ng +1g)A

for the case of n, fundamental and anti-fundamental, and
ng adjoint representation legs. We will consider soft-gluon
evolution of the amplitude,

M) = e" M), )
with the soft anomalous dimension

F=Zr“ﬂ T, - T, (3)
a#tp

in terms of the usual colour charge products T, - Tg. Though
sometimes basis independent results can be obtained for the
soft-gluon evolution, e.g. [21], one in general sticks to a par-
ticular basis of colour structures in order to obtain a matrix
representation of I" such that the exponentiation can be per-
formed.

We shall here consider the colour flow basis, by translat-
ing all colour indices into indices transforming either in the
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Fig. 1 An illustration of the colour basis chosen for the case of two
colour flows. Connected lines correspond to Kronecker-6 symbols in
the space of (anti-) fundamental representation indices

fundamental (N) or the anti-fundamental (N) representation.
For a thorough derivation of this paradigm, including a list
of Feynman rules and their application to fixed-order cal-
culation, see for example [12]. Translating the labelling of
physical legs, «, to a labelling of corresponding colour and
anti-colour ‘legs’,

k< a=kN
k—1<a=ky
k—ng/2 _
k—nq/z}"’“_kA’

we are able to label the basis tensors in the colour flow
basis by permutations of the anti-colour indices relative to
the colour indices,

boom >—5"1 gl @

o) ...om)|  "Tm G’

o) =

where m = n,/2 +n g.l A pictorial representation of these
basis tensors is given in Fig. 1. The colour charges (note that
Ty -Tg = Tg-T,) translate as (obvious cases relating colour
and anti-colour are not shown):

Ty -Tg=T; T

Ty -Tg =T, T;

Ty Tg=T - Ti+T, T,

Ty - Tg=T T;+Ti T,
+T1'T,€—|—TE~T1‘

o =kN,B=IN
a=kn,B=(1I+ 1y
a=kn,B=U+ng/2)a
o = (k+ng/2)a,
B=(+ng/2)a

&)
and the colour flow charge products are expressed as”
1 i’ J" l il j’
T,'-szz 85 6; _N‘S"‘Sf 6)

for a system of two N (and similarly for a system of two N)
legs, and by

! Notice that we do not impose a limitation to colour structures as
appearing for tree-level calculations. Indeed, the gluon exchange will
generate all possible structures starting from only tree-level ones.

2 (1) k= F818% — (1/N)s 8%
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- - - - where
T, T~ T, -T5~ 1
Iy =35 Viawy (11)
i
1
———— =5 i ity | (12)
i,j i<j
T, Ty ~ T; Ty~

_

Fig. 2 TIllustration of the non-diagonal contributions to colour charge
products acting on colour flow basis tensors. Note that the ‘singlet’
operators are entirely equivalent to the ‘swapping’ ones

1 ./ 0 1 . 0
Tl‘ . Tj_ = —E <Sl ]T/SJZ' - NS’ iSjJT/> (7)

for a NN correlation.? Hence the anomalous dimension reads

P=Y T Tj+v;T-Tp+ Y viTi-T;,  ®)

i<j iJ
where the form of the y can be inferred from Eq. 5, e.g.*

v =T + TP o =kn, p=IN
vi=T?+IP a=kn p=(01+1g ©)
yk]E:O a:ﬁ:(k+nq/2)A

Examples of the non-diagonal part of the colour correla-
tors are given in Fig. 2. Since the colour flow charge products
effectively describe one-gluon exchange between two colour
flow lines, the general form of the matrix representation of
I is straightforwardly found to be given by?

1
[zIC]|o] = <_NFO’ + Np) b0 + X0, (10)

3 Note that appropriate crossing signs have to be included when consid-
ering incoming quarks, i.e., a factor of —1 for each correlator involving
an incoming quark or anti-quark as long as the anomalous dimension
coefficients and amplitudes are evaluated in the physical regime.

4 Note that we did not assume I"*# = I'P¢ in the first place, as may be
the case due to inclusion of recoil effects or further contributions along
the lines of dipole subtraction terms [22].

3 Our notation [|...|] indicates that we refer to the matrix element with
respect to the given representation of the amplitude as a complex vector,
and not the quantity (z|I"|o’), which will only coincide with the former
in an orthonormal basis, that being not the case for the colour flow basis
considered here, nor for most other colour bases.

while the off-diagonal elements are given by

Teo =) Zijei(pSriro(pSr(poty | | Sewory  (13)
i,j k#i, j

with
1
Ziju = 5 ij +var = Vi = Vi) (14)

i.e. only non-vanishing when connecting two basis tensors
which do not differ by more than a transposition in the per-
mutation identifying these (note that the Kronecker §’s in
Eq. 13 ensure exactly one transposition between t and o and
the sum consists of solely one term).

3 Summation of large-N towers

Though the exponentiation of the soft anomalous dimension
matrix is possible either analytically or using standard numer-
ical algorithms for a fixed (small) number of external legs, a
general expression seems yet out of reach, due to the rapid
growth of the dimension of colour space with the number of
partons. In this section, we will consider successive approxi-
mations to the full exponentiation by subsequently summing
towers of large-N contributions, y” N"~*. To derive the form
of the large-N towers, let us start from the structure of the
soft anomalous dimension matrix,

1
P=NC+ 2+ 5ol 15)

where we choose an arbitrary ordering of the permutations to
identify these with the indices of the rows and columns of the
matrix representation, such that I” = diag({— I }), and such
that ¥ = (X,,) does not contain any diagonal elements.

The nth power of the matrix representation then takes the
form

n n

Fn

n —]—
(k)zv" ks (16)
k=0 I=k
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where X, ; originates from powers of NI" + X,
n
(NC+2)"=) Nz, (17)
=0

with matrix elements given by (see Appendix A):

n—I—1
(Zp e =(=D" Y amosan,g( I1 anawl)

a=0

X Qn—1.1 ({00, .. On—1}, ') . (18)

Here I' = {I;} and the details of the polynomials Qy ; are
discussed in Appendix B. The exponentiation of the anoma-
lous dimension matrix is then given by

< 1
(=D
[elelol =D —
=0
1 (—,O)k 1—k—1
X Z T Z 8“705‘71—1\'(7 ( l_[ 2(701(701-%—1)
k=0 T 00,01k a=0
XR({GO,...,Ul_k},{Fg}) (19)

where R is worked out in Appendix B.

We are now in the position to define successive summa-
tion of large-N contributions. Equation 19 suggests to define
successive summations at (next-to)? -leading colour (N?LC)
by truncating the sum at / = d. Owing to the properties
of the R functions, we find that this prescription amounts to
summing (schematically), the following contributions (lower
order contributions always implied):

atLC: 14 yN +y>N% + ...
at NLC : ()/ n %) (14+yN+ 92N>+ )

) Y \? 2272
at NNLC : y—l—ﬁ (I+yN+y°N-+..),

i.e. we consider a regime in which y N = O(1) to require
resummation, while y ~ 1/N and y/N ~ 1/N? can still
be considered small in comparison the N enhancement of
the O(1) towers being resummed. We shall also consider
the case that we have (trivially) exponentiated all contri-
butions stemming from the p contribution to the anoma-
lous dimension matrix. This resummation, which we will
here refer to as NYLC’, is obtained by only considering the
k = 0 terms in Eq. 19, while redefining the I',; appropriately,
Il = Iy — p/N?. Then we sum towers of

R

Y \? a2
)N+ (v +as) N

l+(y+ N2

with a prefactor of (Ny +7y/N)4 at NYLC’. Explicit expres-
sions of the R functions as required through N3LC are given

@ Springer

in Appendix C. Explicitly, at leading colour (LC), we have
[zle"|o] = 8roe™ 7 4+ NLC, (20)

whereas at next-to-leading colour (NLC), we have

- o
[t]e"]o] = 8;peNTo (1 + ﬁ)
1 e~NIt _ o—NT,
—— XY, ,——  + NNLC. 21
R o (21)
Note that the NLC summation is sufficient to recover the
anomalous dimension matrix upon a next-to-leading order
expansion,

[tle"|o]|y; ¢ = 8c0 + [TITIo] + OG). (22)

Also note that the structure of the approximated exponenti-
ations reflects the same approximation to be applied to the
scalar product matrix of the basis tensors: The basis is orthog-
onal at LC, at NLC only scalar products between tensors dif-
fering by at most a transposition need to be considered (and
there is no non-vanishing matrix element of the exponenti-
ated soft anomalous dimension connecting other tensors to
this order), and similar observations apply to higher order
summations.

More precisely, for m colour flows the scalar product
matrix is given by

(O’|‘L’> — ]\]m—#transpositions(cr,t)7 (23)

where #transpositions(o, 7) denotes the number of transpo-
sitions required to map o into . When working in an NLC
approximation, the question arises to what extent one should
apply the same level of approximation to the scalar product
matrix when calculating the square of evolved amplitudes.
Given that the approximations considered here should con-
verge to the exact exponentiation of the soft gluon anomalous
dimension, we propose not to approximate the scalar prod-
uct matrix for the reason of not obscuring the convergence of
the resummation; this can easily happen when terms in the
squared amplitude are dropped, which usually would have
been taken into account without further complications (i.e.
when considering unevolved amplitudes).

As a first assessment on the accuracy of the procedure
outlined above, let us consider the case of the evolution of
two colour flows. Here, the soft anomalous dimension matrix
in the basis {|12), |21)} takes the form

r= (—NF12 + 4P
21221

PILI) )
, (24)
—NDoi+ g
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and its exact exponentiation is given by

r eﬁpe—%(ﬂz-ﬁ-&l)
e B

K
—Assinh 5 + « cosh 5
231221 Sinh%

221212 sinh%
Asinh 5 + k cosh 5 (25)

where A = N(I'o, — I»1) and k = \/Az + 431212 X121
Let us for the moment assume that all y are real (though
this is of course not the general case); considering then a
phase space region for which A% >> 431510 Z1201, k ~ |Al,
we recover the NLC’ approximation, i.e., there is a phase
space region where purely kinematic reasons give rise to a
NLC’ expansion without having actually considered the very
size of N itself. Note that the different treatment of p, either
absorbing it into a redefinition of the I3, or treating it as
subleading itself, amounts—for the case of gg singlet—to
either keeping Cr = (N2 —1)/(2N) exactly or doing a strict
large-N limit with Cr ~ C4/2. An observation that these
different prescriptions account for the bulk of subleading-N
effects in a colour-improved parton shower evolution [20]
has already been made, though we are far from drawing an
ultimate conclusion here.

4 Numerical results

In this section we consider numerical results on summing
subsequent large-N towers for the case of QCD 2 — 2
scattering, p1, po — p3, pa with a simple Ansatz for the
anomalous dimension matrix,

12 _ ;34 _ Y 1. 5 . s
r =TI _E(Eln ?—lﬂln?>
t
p13=r24=§‘_;1n2% (26)
JaLE I cr I ﬁln2m
8r u?

in terms of the standard Mandelstam variables s, ¢, u and
some resolution scale w. This anomalous dimension corre-
sponds to a jet veto in a typical parton shower resolution
variable, following the more general discussion in reference
[21], but otherwise it should rather be thought of as a generic
example. We refer to [23] for a detailed discussion and note
that a colour flow approach for the quark-quark case has
already been considered in [24]. We will explicitly consider
the matrix elements of the exponentiated anomalous dimen-
sion. For the case of processes involving four (anti-) quarks,
we can directly compare to the analytic resultin Eq. 25, while
for the other cases we study the convergence of successive
approximations (though exact results could also be obtained
in these cases). All calculations have been carried out with the

1.05

1.025

0.975 b

0.95 ! ! ! !
0 20 40 60 80 100

0.03

0.028

0.026

0.024 : : : :
0 20 40 60 80 100

[t|/GeV?

Fig. 3 Real and imaginary parts of a diagonal evolution matrix element
for quark—quark scattering at s = 100 GeV?, u?> = 25 GeV? as a
function of the momentum transfer |¢|, comparing the exact results to
various approximations. This matrix elements describes the amplitude
to keep a ¢-channel colour flow o

C++ library CVolver, which is available on request from
the author.

For quark-quark scattering, we display numerical results
for the real and imaginary parts of the evolution matrix e' in
Figs. 3 and 4. Generally, we find that NLC summations are
required to get a reasonable approximation to the real part,
while NNLC is required for a similar description of the imag-
inary parts. At N°LC we find a sub-permille level agreement
of the approximation with the exact results. In Fig. 5 we
compare the difference between the native summation and
the prime prescription, which clearly improves the approxi-
mation of the exact result leading to an accuracy at N°LC,
which is comparable to the N3LC calculation.

@ Springer
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-0.08

-0.082

-0.084

-0.086 : : : :
0 20 40 60 80 100

It/ GeV?

Fig. 4 Same as Fig. 3 for an off-diagonal matrix element. The matrix
element considered describes the transition from a u-channel colour
flow 7 to a r-channel one, o

For the other configurations contributing to QCD 2 — 2
scattering we find a similar pattern of convergence through
successive orders. We note, however, that some of the matrix
elements for processes with more and more colour flows are
non-zero starting only from a high enough order. Especially
for a large number of legs, this will require a minimum order
to obtain at least a first, non-zero, contribution for the respec-
tive matrix elements. Investigating the impact of these con-
tributions at the level of squared amplitudes will be subject
to future work.

5 Outlook on possible applications

The work presented here is relevant to cases where soft gluon
evolution is a required ingredient for precise predictions, but

@ Springer
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Fig. 5 Comparison of the prime resummation prescription compared
to the native one for the same parameters as used in Fig. 3. Typically,
a N2LC’ summation reaches a similar accuracy as a N°LC one, both
providing sub-permille agreement with the exact result

not feasible in exact form owing to a large number of exter-
nal legs present. This, in particular, applies to improved par-
ton shower algorithms but also to analytic resummation for
observables of multi-jet final states. Looking at the conver-
gence of the NLC expansions, which can easily be imple-
mented in an algorithmic way, one can gain confidence of
providing a reliable resummed prediction at some truncation
of the exponentiation. As for the case of parton showers, the
colour flow basis, being itself ingredient to many highly effi-
cient matrix element generators, offers unique possibilities
to perform Monte Carlo sums over explicit colour structures
or charges, such that efficient algorithms in this case seem to
be within reach. The requirement to study soft gluon dynam-
ics for a large number of legs is as well at the heart of the
dynamics behind non-global logarithms [25], when consid-
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ered to more than the first order in which they appear, and
beyond leading colour. Another application (which, in part,
triggered the present work) is to gain insight into the dynam-
ics of colour reconnection models. A QCD motivated and
feasible colour reconnection model based on summing large-
N towers is subject to ongoing work and will be presented
elsewhere.

Let us finally remark that NYLC calculations in general do
not require matrix exponentiation and at most d plain matrix
multiplications. Owing to the respective matrices being very
sparse,® this can be performed very efficient. Indeed, one can
imagine to perform a Monte Carlo summation over colour
structures by generating subsequent sequences of colour
flows to be considered. The number of possible sequences is
very limited given the fact that the X' matrices only contain
non-vanishing matrix elements for two colour flows which
differ at most by a transposition in the permutations labelling
them.

6 Conclusions

In this paper we have investigated soft-gluon evolution in
the colour flow basis, presenting the structure of the soft
anomalous dimension for any number of legs. We have
then focussed on systematic summation of large-N enhanced
terms with the aim of providing successive approximations
to the exact exponentiation of the anomalous dimension. We
generally find a good convergence of these approximations
for a simple anomalous dimension in QCD 2 — 2 scatter-
ing. The present work can be used to perform soft gluon
resummation for a large number of external legs, where the
full exponentiation is not feasible anymore. It also forms the
basis for improved parton shower evolution and may shed
light on the dynamics to be considered for colour reconnec-
tion models.

Particularly in conjunction with matrix element genera-
tors, making use of the colour flow basis, very efficient and
highly automated calculations can be performed owing to
the algorithmic structure of N¢ LC approximations, including
Monte Carlo sums over individual colour structures. The C++
library CVolver [27], which has been developed within this
context provides all required tools to do so.
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6 Note that this does not only apply to the colour flow basis, but similar
observations have been made for other choices, e.g. [26].
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Appendix A: anomalous dimension powers at p = 0

In this appendix we consider powers of the non-trivial part of
the anomalous dimension, as decomposed in Eq. 17. Intro-
ducing the boundary conditions ¥} ; = I', ¥, ; = X and
2, =0 whenever/ < 0or/ > n we find the recursion

=L x, . +2%, 27)

which can be solved by

1 n—I

Za=y . r"J]

mo=0 a=1

l
2 ELM ) St (28)

me=0

which satisfies all boundary conditions. Taking matrix ele-
ments of this expression and inserting (") ;¢ = —8¢¢ [, We
arrive at the nested sum expression given in Eq. 18.

Appendix B: summing Q-polynomials

Given a vector I" and a set of indices o = {0y, ..., o} refer-
ring to elements in I” we consider the following class of
polynomials Q;:

#o—1

1
Qo.M =[] | Y e Byt t g 1 (29)

a=0 \my=0

Note that Q;({oo}, I') = I}, Qo(o. I') = 1 and Qi (o, I)
= 0 for/ < 0. Also note that Q;(o, I') is independent of the
order of indices considered in o. Let us first cover the case
that some of the indices in o are identical. Let d, (o) be the
degeneracy of the index o, € 0, i.e. o4 occurs dy(o) + 1
times in 0. Also let uniq(o) denote the set which is obtained
by removing all repeated occurrences of indices in o. Using

1 k
0i(G0: v 1) = Fr 50 (rk ool D) G0)
k+1 times

and the definition of Q;, we then have

Qi(o, I')
#uniq(o)—1 1 Bd"‘(g) o)
= %@ | 0(unig(0), I).
Q) da(a)! 81—,{;2,(5) Oy

€1y}
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If all indices are distinct, we have

Qi (uniq(0), I')

#uniq(o)—1 #uniq(o)—1 1
— I #uniq(o)+/—1 ’
Z ( ‘701) 1_[ r, — I,
a=0 B=0,p#a 2 B
(32)
which follows from using
n n+1 _ bn+1
D — (33)
a—>b
m=0
and the recursion
Qi (uniq(o), I')
I .
= ———Qi(uniq(0)\og, I') + (@ < ). (34)
Iy, — Iy
We will especially need
R{{oo, ...,01—k}, I)
o
(SO
=Y ————0u ({00, ... ori}, I) (35)
(n—k)!
n=I
for 0 < k < [. In this case,
o
(=N)"
RO, 1) =)  ~——0utoti(0, ) (36)
=0 n'
such that
R(o, I")
#uniq(o)—1 dy ()
1 9% ~
= l_[ —d— al?a(U) R(Ua F)?
ol dy(0)! 34O [~ O
(37)
where
o0
< (=N)" .
R(©,I) =) ———Quto+1(unig(©), I')
S
#uniq(o)—1
— Z (FO‘ )#uniq(zr)—#(r e—NI}O{
a=0
#uniq(o)—1 1
_ 38
< J] T (38)
p=0.p#a ~ °* b
Finally,
#uniq(o)—1 dy (o)
1 9%
R(o, ') = - -
(o,1) E) dy (0)! adm(a)['aa
#uniq(o)—1 #uniq(o)—1 dg (o)
Uoy/T5,)%
X Z e Nl 1_[ —Gﬂ/ i (39)
FO’ - Fa
a=0 B=0,B+#a o B
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Appendix C: R functions through N3LC

In this appendix we give explicit expressions for the R func-
tions needed for summations through N®LC. Note that the
index order does not matter. Also note that equality of some
of the I, is equivalent to putting the respective indices to be
equal.

C.1LC
R({oo}, I') = e N0, (40)
C.2 NLC
e Nloy _ p=NIy
R({og,01}, ") = ————7F, (41)
Ty — Ty,
R({og, o0}, I') = —Ne Nloo, (42)
C.3 NNLC
R({o0, 01,02}, I")
efNI"UO

= + (0 1)+ (0 2),
Tos —ToN U =Ty T Qo DT 02

(43)
R({o0, 00,01}, I")
—NTy, —NTy, _ ,—NTly
——N— + < . (44)
FU()_FO'I (Fal_F(T())
N2 —NT,
R({o0, 00, 00}, I") = —-e™ 0. (45)
CAN3LC
R{o09,01,02,03}, I)
e—NI"(,0
(Do = To) Ty — Toy) Ty — T3)
+(0 < 1)+ (0 <> 2) + (0 <> 3), (46)
R({o9, 00, 01,02}, I')
e~ N
T Ty — Toy) Ty — Ty)
T+ Ty = 2T e Moo
(Fcro - Fal)Z(Fao - 02)2
e NTo
+ +(1<2)), (47)
(Fao - F01)2(F01 - Foz)
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N2 e_NF"’O
R({o9, 00, 00,01}, ') = —
2 Iy —To,
—NT, —NT, —NTI
e o0 e 0 —e 71
+N _ —. (48)
(Fao_Fol) (Fao_ral)
R({o0, 00, 01,01}, I')
—NTy, NIy, ~NIyy _ ,—NTIy,
_ e +e ; e e - (49)
(Fao_Fm) (Fao_ral)
3
R({00, 00, 00, o0}, I') = —?e—”vo. (50)
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