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This paper explores the nonequilibrium behavior of thermodynamics at the apparent horizon of isotropic and homogeneous
universe model in 𝑓(G, 𝑇) gravity (G and 𝑇 represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor,
resp.). We construct the corresponding field equations and analyze the first as well as generalized second law of thermodynamics in
this scenario. It is found that an auxiliary term corresponding to entropy production appears due to the nonequilibrium picture of
thermodynamics in first law.The universal condition for the validity of generalized second law of thermodynamics is also obtained.
Finally, we check the validity of generalized second law of thermodynamics for the reconstructed 𝑓(G, 𝑇) models (de Sitter and
power-law solutions). We conclude that this law holds for suitable choices of free parameters.

1. Introduction

The discovery of current cosmic accelerated expansion has
stimulated many researchers to explore the cause of this
tremendous change in cosmic history. A mysterious force
known as dark energy (DE) is considered as the basic
ingredient responsible for this expanding phase of the uni-
verse. Dark energy has repulsive nature with negatively large
pressure but its complete characteristics are still unknown.
Modified gravity theories are considered as the favorable and
optimistic approaches to unveil the salient features of DE.
These modified theories of gravity are obtained by replacing
or adding curvature invariants as well as their corresponding
generic functions in the Einstein-Hilbert action.

Gauss-Bonnet (GB) invariant is a linear combination of
quadratic invariants of the form

G = 𝑅2 − 4𝑅𝜇]𝑅𝜇] + 𝑅𝜇]𝜉𝜂𝑅𝜇]𝜉𝜂, (1)

where 𝑅, 𝑅𝜇], and 𝑅𝜇]𝜉𝜂 denote the Ricci scalar and Ricci and
Riemann tensors, respectively. It is the second order Lovelock
scalar with the interesting feature that it is free from spin-2
ghost instabilities while its dynamical effects do not appear
in four dimensions [1–3]. The coupling of G with scalar field
and adding generic function 𝑓(G) in geometric part of the
Einstein-Hilbert action are the two promising ways to study

the dynamics of G in four dimensions. Nojiri and Odintsov
[4] presented the second approach as an alternative for DE
referred as 𝑓(G) gravity which explores the fascinating char-
acteristics of late-time cosmological evolution. This theory is
consistent with solar system constraints and has a quite rich
cosmological structure [5–7].

The curvature-matter coupling in modified theories has
attained much attention to discuss the cosmic accelerated
expansion. Harko et al. [8] introduced such coupling in 𝑓(𝑅)
gravity referred as 𝑓(𝑅, 𝑇) gravity. Recently, we have estab-
lished this coupling between quadratic curvature invariant
and matter named as 𝑓(G, 𝑇) theory of gravity and found
that such coupling leads to the nonconservation of energy-
momentum tensor (𝑇𝜇]) [9]. Furthermore, the nongeodesic
lines of geometry are followed bymassive test particles due to
the presence of extra forcewhile dust particles follow geodesic
trajectories. The stability of Einstein universe is analyzed
for both conserved and nonconserved 𝑇𝜇] in this theory
[10]. Shamir and Ahmad [11] applied Noether symmetry
approach to construct some cosmological viable 𝑓(G, 𝑇)
models in the background of isotropic and homogeneous
universe. We have reconstructed the cosmic evolutionary
models corresponding to phantom/nonphantom epochs, de
Sitter universe, and power-law solution and analyzed their
stability [12].
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The significant connection between gravitation and ther-
modynamics is established after the remarkable discovery of
black hole (BH) thermodynamics with Hawking temperature
as well as BH entropy [13–16]. Jacobson [17] obtained the
Einstein field equations using fundamental relation known
as Clausius relation 𝑑𝑄 = T𝑑S (S, T, and 𝑑𝑄 represent
the entropy, Unruh temperature, and energy flux observed by
accelerated observer just inside the horizon, resp.) together
with the proportionality of entropy and horizon area in the
context of Rindler space-time. Cai and Kim [18] showed
that Einstein field equations can be rewritten in the form of
first law of thermodynamics for isotropic and homogeneous
universe with any spatial curvature parameter. Akbar and
Cai [19] found that the Friedmann equations at the apparent
horizon can be written in the form 𝑑𝐸 = T𝑑S + 𝑊𝑑V (𝐸,
V, and 𝑊 are the energy, volume inside the horizon, and
work density, resp.) in general relativity (GR), GB gravity, and
the general Lovelock theory of gravity. In modified theories,
an additional entropy production term appeared in Clausius
relation that corresponds to the nonequilibrium behavior of
thermodynamics while no extra term appears in GB gravity,
Lovelock gravity, and braneworld gravity [20–24].

The generalized second law of thermodynamics (GSLT)
has a significant importance in modified theories of gravity.
Wu et al. [25] derived the universal condition for the validity
of GSLT in modified theories of gravity. Bamba and Geng
[26] found that GSLT in the effective phantom/nonphantom
phase is satisfied in 𝑓(𝑅) gravity. Sadjadi [27] studied the
second law as well as GSLT in 𝑓(𝑅,G) gravity for de Sitter
universe model as well as power-law solution with the
assumption that apparent horizon is in thermal equilibrium.
Bamba and Geng [28] found that GSLT holds for the FRW
universe with the same temperature inside and outside the
apparent horizon in generalized teleparallel theory. Sharif
and Zubair [29] checked the validity of first and second
laws of thermodynamics at the apparent horizon for both
equilibrium aswell as nonequilibriumdescriptions in𝑓(𝑅, 𝑇)
gravity and found that GSLT holds in both phantom as
well as nonphantom phases of the universe. Abdolmaleki
and Najafi [30] explored the validity of GSLT for isotropic
and homogeneous universe filled with radiation and matter
surrounded by apparent horizon with Hawking temperature
in 𝑓(G) gravity.

In this paper, we investigate the first as well as second
law of thermodynamics at the apparent horizon of FRW
model with any spatial curvature.The paper has the following
format. In Section 2, we discuss the basic formalism of this
gravity while the laws of thermodynamics are investigated in
Section 3. Section 4 is devoted to analyze the validity of GSLT
for reconstructed 𝑓(G, 𝑇) models corresponding to de Sitter
and power-law solution. The results are summarized in the
last section.

2. 𝑓(G,𝑇) Gravity
The action of 𝑓(G, 𝑇) gravity is given by [9]

I = ∫√−𝑔(𝑅 + 𝑓 (G, 𝑇)
16𝜋𝐺 + L𝑚)𝑑4𝑥, (2)

where 𝑔, 𝐺, and L𝑚 represent determinant of the metric
tensor (𝑔𝜇]), gravitational constant, and matter Lagrangian
density, respectively. The variation of the action (2) with
respect to 𝑔𝜇] gives the fourth-order field equations as

𝑅𝜇] − 12𝑔𝜇]𝑅 = 12𝑔𝜇]𝑓 (G, 𝑇) − 2𝑅𝑅𝜇]𝑓G (G, 𝑇)
+ 4𝑅𝜉𝜇𝑅𝜉]𝑓G (G, 𝑇)
+ 4𝑅𝜇𝜉]𝜂𝑅𝜉𝜂𝑓G (G, 𝑇)
− 2𝑅𝜉𝜂𝛿𝜇 𝑅]𝜉𝜂𝛿𝑓G (G, 𝑇) − 2𝑅𝑔𝜇]
× ∇2𝑓G (G, 𝑇) + 4𝑅𝜇]∇2𝑓G (G, 𝑇)
+ 2𝑅∇𝜇∇]𝑓G (G, 𝑇)
− 4𝑅𝜉]∇𝜇∇𝜉𝑓G (G, 𝑇)
− 4𝑅𝜉𝜇∇]∇𝜉𝑓G (G, 𝑇) + 4𝑔𝜇]𝑅𝜉𝜂
× ∇𝜉∇𝜂𝑓G (G, 𝑇)
− 4𝑅𝜇𝜉]𝜂∇𝜉∇𝜂𝑓G (G, 𝑇) − (𝑇𝜇] + Θ𝜇])
× 𝑓𝑇 (G, 𝑇) + 8𝜋𝐺𝑇𝜇],

(3)

where 𝑓G(G, 𝑇) = 𝜕𝑓(G, 𝑇)/𝜕G, 𝑓𝑇(G, 𝑇) = 𝜕𝑓(G, 𝑇)/𝜕𝑇,∇2 = ∇𝜇∇𝜇 (∇𝜇 is a covariant derivative), and Θ𝜇] has the
following expression [31]:

Θ𝜇] = −2𝑇𝜇] + 𝑔𝜇]L𝑚 − 2𝑔𝜉𝜂 𝜕2L𝑚𝜕𝑔𝜇]𝜕𝑔𝜉𝜂 . (4)

The variation of √−𝑔L𝑚 with respect to 𝑔𝜇] yields
𝑇𝜇] = 𝑔𝜇]L𝑚 − 2𝜕L𝑚𝜕𝑔𝜇] , (5)

where we have used the fact thatL𝑚 depends only on 𝑔𝜇].
The covariant derivative of (3) gives

∇𝜇𝑇𝜇] = − 𝑓𝑇 (G, 𝑇)
8𝜋𝐺 − 𝑓𝑇 (G, 𝑇) [12𝑔𝜇]∇𝜇𝑇

− (Θ𝜇] + 𝑇𝜇]) ∇𝜇 ln𝑓𝑇 (G, 𝑇) − ∇𝜇Θ𝜇]] .
(6)

The nonzero divergence shows that the conservation law
does not hold in this gravity due to the curvature-matter
coupling. The above equations show that matter Lagrangian
density and a generic function have a significant importance
to discuss the dynamics of curvature-matter coupled theories.
The particular forms of 𝑓(G, 𝑇) are

𝑓 (G, 𝑇) = 𝑓1 (G) + 𝑓2 (𝑇) ,
𝑓 (G, 𝑇) = 𝑓1 (G) + 𝑓2 (G) 𝑓3 (𝑇) , (7)

where the first choice is considered as correction to 𝑓(G)
gravity since it does not involve the direct nonminimal
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curvature-matter coupling while the second form implies
direct coupling. Unlike 𝑓(𝑅, 𝑇) gravity [8], the choice𝑓(G, 𝑇) = G + 𝜆𝑇 (𝜆 is an arbitrary parameter) does not
exist in this gravity since G is a topological invariant in four
dimensions. It is clear from (3) that the contribution of GB
disappears for this particular choice of the model.

The energy-momentum tensor for perfect fluid as cosmic
matter contents is given by

𝑇𝜇] = (𝜌 + 𝑃) V𝜇V] − 𝑃𝑔𝜇], (8)

where 𝑃, 𝜌, and V𝜇 denote pressure, energy density, and four-
velocity, respectively. This four-velocity satisfies the relations
V𝜉V𝜉 = 1 and V𝜉∇]V𝜉 = 0. In this case, the tensor Θ𝜇] with
L𝑚 = −𝑃 takes the form

Θ𝜇] = −𝑃𝑔𝜇] − 2𝑇𝜇]. (9)

Using (8) and (9), (3) can be written in a similar form as the
Einstein field equations for dust case (𝑃 = 0)

𝐺𝜇] = 8𝜋𝐺𝑇eff
𝜇] = 8𝜋𝐺𝑇𝜇] + 𝑇(D)𝜇] , (10)

where

𝑇(D)𝜇] = 12𝑔𝜇]𝑓 (G, 𝑇) − 2𝑅𝑅𝜇]𝑓G (G, 𝑇)
+ 4𝑅𝜉𝜇𝑅𝜉]𝑓G (G, 𝑇) + 4𝑅𝜇𝜉]𝜂𝑅𝜉𝜂𝑓G (G, 𝑇)
− 2𝑅𝜉𝜂𝛿𝜇 𝑅]𝜉𝜂𝛿𝑓G (G, 𝑇) − 2𝑅𝑔𝜇]∇2𝑓G (G, 𝑇)
+ 4𝑅𝜇]∇2𝑓G (G, 𝑇) + 2𝑅∇𝜇∇]𝑓G (G, 𝑇)
− 4𝑅𝜉]∇𝜇∇𝜉𝑓G (G, 𝑇) − 4𝑅𝜉𝜇∇]∇𝜉𝑓G (G, 𝑇)
+ 4𝑔𝜇]𝑅𝜉𝜂∇𝜉∇𝜂𝑓G (G, 𝑇)
− 4𝑅𝜇𝜉]𝜂∇𝜉∇𝜂𝑓G (G, 𝑇) ,

𝐺 = 𝐺𝐹,
𝐹 = 1 + 𝑓𝑇 (G, 𝑇)

8𝜋𝐺 .

(11)

The line element for FRW universe model is

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑡)1 − 𝑘𝑟2 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2sin2𝜃𝑑𝜙2, (12)

where 𝑟 = 𝑎(𝑡)𝑟 and 𝑎(𝑡) and 𝑘 represent the scale factor
depending on cosmic time and spatial curvature parameter
which corresponds to open (𝑘 = −1), closed (𝑘 = 1), and flat(𝑘 = 0) geometries of the universe. The GB invariant takes
the form

G = 24 (𝐻2 + 𝐻̇) (𝐻2 + 𝑘𝑎2) . (13)

Using (8), (10), and (12), we obtain the following field
equations:

3 (𝐻2 + 𝑘𝑎2) = 8𝜋𝐺𝜌 + 12𝑓 (G, 𝑇) − 12 (𝐻2 + 𝐻̇)
⋅ (𝐻2 + 𝑘𝑎2) × 𝑓G (G, 𝑇) + 12𝐻(𝐻2 + 𝑘𝑎2)
⋅ (𝑓GG (G, 𝑇) Ġ + 𝑓G𝑇 (G, 𝑇) 𝑇̇) ,

− (2𝐻̇ + 3𝐻2 + 𝑘𝑎2) = −12𝑓 (G, 𝑇) + 12 (𝐻2 + 𝐻̇)
⋅ (𝐻2 + 𝑘𝑎2)𝑓G (G, 𝑇) − 8𝐻 (𝐻2 + 𝐻̇)
⋅ (𝑓GG (G, 𝑇) Ġ + 𝑓G𝑇 (G, 𝑇) 𝑇̇) − 4 (𝐻2 + 𝑘𝑎2)
⋅ (𝑓GGG (G, 𝑇) Ġ2 + 2𝑓GG𝑇 (G, 𝑇) Ġ𝑇̇
+ 𝑓G𝑇𝑇 (G, 𝑇) 𝑇̇2 + 𝑓GG (G, 𝑇) G̈ + 𝑓G𝑇 (G, 𝑇) 𝑇̈) ,

(14)

where 𝐻 = ̇𝑎/𝑎 is a Hubble parameter and dot represents
derivative with respect to time. We can rewrite the above
equations as

3 (𝐻2 + 𝑘𝑎2) = 8𝜋𝐺𝜌tot = 8𝜋𝐺 (𝜌 + 𝜌(D)) , (15)

−2(𝐻̇ − 𝑘𝑎2) = 8𝜋𝐺 (𝜌tot + 𝑃tot)
= 8𝜋𝐺 (𝜌 + 𝜌(D) + 𝑃(D)) ,

(16)

where 𝜌(D) and 𝑃(D) are dark source terms given by

𝜌(D) = 1
8𝜋𝐺𝐹 [12𝑓 (G, 𝑇) − 12 (𝐻2 + 𝐻̇) (𝐻2 + 𝑘𝑎2)

⋅ 𝑓G (G, 𝑇) + 12𝐻(𝐻2 + 𝑘𝑎2) (𝑓GG (G, 𝑇) Ġ
+ 𝑓G𝑇 (G, 𝑇) 𝑇̇)] ,

𝑃(D) = 1
8𝜋𝐺𝐹 [−12𝑓 (G, 𝑇) + 12 (𝐻2 + 𝐻̇) (𝐻2

+ 𝑘𝑎2)𝑓G (G, 𝑇) − 8𝐻 × (𝐻2 + 𝐻̇) (𝑓GG (G, 𝑇) Ġ
+ 𝑓G𝑇 (G, 𝑇) 𝑇̇) − 4 (𝐻2 + 𝑘𝑎2)
× (𝑓GGG (G, 𝑇) Ġ2 + 2𝑓GG𝑇 (G, 𝑇) Ġ𝑇̇
+ 𝑓G𝑇𝑇 (G, 𝑇) 𝑇̇2 + 𝑓GG (G, 𝑇) G̈
+ 𝑓G𝑇 (G, 𝑇) 𝑇̈)] .

(17)
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The continuity equation for (12) becomes

̇𝜌 + 3𝐻𝜌 = −18𝜋𝐺 + 𝑓𝑇 (G, 𝑇) [12 ̇𝜌𝑓𝑇 (G, 𝑇)
+ 𝜌 (𝑓G𝑇 (G, 𝑇) Ġ + 𝑓𝑇𝑇 (G, 𝑇) 𝑇̇)] .

(18)

The conservation law holds in the absence of curvature-
matter coupling for both 𝑓(G) gravity and GR.

3. Laws of Thermodynamics

In this section, we study the laws of thermodynamics in the
context of 𝑓(G, 𝑇) gravity at the apparent horizon of FRW
universe model.

3.1. First Law. The first law of thermodynamics is based on
the concept that energy remains conserved in the system but
can change from one form to another. To study this law, we
first find the dynamical apparent horizon evaluated by the
relation

ℎ𝜇]𝜕𝜇𝑟𝜕]𝑟 = 0, (19)

where ℎ𝜇] = diag(1, −𝑎2/(1 − 𝑘𝑟2)) is a two-dimensional
metric. For isotropic and homogeneous universe model, the
above relation gives the radius of apparent horizon as

𝑟𝐴 = (𝐻2 + 𝑘𝑎2)
−1/2 . (20)

Taking the time derivative of this equation and using (16), it
follows that

𝑑𝑟𝐴 = 4𝜋𝐺 (𝜌tot + 𝑃tot) 𝑟3𝐴𝐻𝐹𝑑𝑡, (21)

where 𝑑𝑟𝐴 represents the infinitesimal change in apparent
horizon radius during the small time interval 𝑑𝑡.

Bekenstein-Hawking entropy is defined as one-fourth of
apparent horizon area (A = 4𝜋𝑟2𝐴) in units of Newton’s
gravitational constant [13–16]. Inmodified theories of gravity,
the entropy of stationary BH solutions with bifurcate Killing
horizons is a Noether charge entropy also known as Wald
entropy [32]. It depends on the variation of Lagrangian
density (L) with respect to 𝑅𝜇]𝜉𝜂 as [33–35]

S = −2𝜋∮ 𝜕L𝜕𝑅𝜇]𝜉𝜂 𝜖𝜉𝜂𝜖𝜇]𝑑𝑉2𝑛−2, (22)

where 𝑑𝑉2𝑛−2 and 𝜖𝜉𝜂 represent the volume element on (𝑛−2)-
dimensional space-like bifurcation surface (Σ) and binormal
vector to Σ satisfying the relation 𝜖𝜉𝜂𝜖𝜉𝜂 = −2. Brustein et
al. [36] proposed that Wald entropy is equal to quarter of
A in units of the effective gravitational coupling in modified
theories of gravity. Using these concepts, theWald entropy in𝑓(G, 𝑇) gravity is given by

S = A4𝐺𝐹 (1 − 4̂
𝑟2𝐴𝑓G (G, 𝑇)) . (23)

This formula corresponds to 𝑓(G) gravity for 𝐹 = 1 while
the traditional entropy in GR is obtained for 𝑓G = 0 [37, 38].
Taking differential of (23) and using (21), we obtain

12𝜋𝑟𝐴𝑑S = 4𝜋 (𝜌tot + 𝑃tot) 𝑟3𝐴𝐻𝑑𝑡 − 2𝑟𝐴𝐺𝐹𝑑𝑓G
+ 𝑟𝐴2𝐺 (1 − 4̂

𝑟2𝐴𝑓G)𝑑( 1𝐹) .
(24)

The surface gravity (𝜅sg) helps to determine temperature
on the apparent horizon as [18]

T =
󵄨󵄨󵄨󵄨󵄨𝜅sg󵄨󵄨󵄨󵄨󵄨2𝜋 , (25)

where

𝜅sg = 1
2√−ℎ𝜕𝜇 (√−ℎℎ𝜇]𝜕]𝑟) = 1̂𝑟𝐴 (1 − ̇̂𝑟𝐴2𝑟𝐴𝐻)

= 12𝑟𝐴 ( 𝑘𝑎2 + 𝐻2 + 𝐻̇) ,
(26)

where ℎ is the determinant of ℎ𝜇]. Using (24)–(26), we have
T𝑑S = 4𝜋 (𝜌tot + 𝑃tot) 𝑟3𝐴𝐻𝑑𝑡

− 2𝜋 (𝜌tot + 𝑃tot) 𝑟2𝐴𝑑𝑟𝐴 − 4𝜋T𝐺𝐹 𝑑𝑓G
+ 𝜋𝐺𝑟2𝐴T(1 − 4̂

𝑟2𝐴𝑓G)𝑑( 1𝐹) .
(27)

The total energy inside the apparent horizon of radius 𝑟𝐴 for
FRW universe model is given by

𝐸 = V𝜌tot = 43𝜋𝑟3𝐴𝜌tot = 3V
8𝜋𝐺 (𝐻2 + 𝑘𝑎2) . (28)

This equation shows that 𝐸 is directly related to 𝑟𝐴, so the
small displacement 𝑑𝑟𝐴 in horizon radius will cause the
infinitesimal change given by

𝑑𝐸 = 4𝜋𝜌tot𝑟2𝐴𝑑𝑟𝐴 − 4𝜋 (𝜌tot + 𝑃tot) 𝑟3𝐴𝐻𝑑𝑡
+ 𝑟𝐴2𝐺𝑑( 1𝐹) . (29)

Using (27) and (29), it follows that

T𝑑S = −𝑑𝐸 + 𝑊𝑑V − 4𝜋T𝐺𝐹 𝑑𝑓G
+ 𝑟𝐴2𝐺 [1 + 2𝜋𝑟𝐴T(1 − 4̂

𝑟2𝐴𝑓G)]𝑑( 1𝐹) ,
(30)

where𝑊 = (𝜌tot −𝑃tot)/2 is the work done by the system.The
above equation can be written as

T (𝑑S + 𝑑𝑖S) = −𝑑𝐸 + 𝑊𝑑V, (31)
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where

𝑑𝑖S = 4𝜋𝐺𝐹𝑑𝑓G
− 𝑟𝐴2𝐺T [1 + 2𝜋𝑟𝐴T(1 − 4̂

𝑟2𝐴𝑓G)]𝑑( 1𝐹)
(32)

is interpreted as the entropy production term which appears
due to nonequilibrium thermodynamical behavior at the
apparent horizon. The nonequilibrium picture of thermo-
dynamics implies that there is some energy change inside
and outside the apparent horizon. Due to the presence
of this extra term, the field equations do not obey the
universal form of first law of thermodynamics 𝑑𝐸 = T𝑑S +𝑊𝑑V in this gravity. It is mentioned here that, in modified
theories, this auxiliary term usually appears in the first law
of thermodynamics while it is absent in GR, GB gravity, and
Lovelock gravity [19–24].

3.2. Generalized Second Law. In this section, we discuss the
GSLT in 𝑓(G, 𝑇) gravity which states that total entropy of the
system is not decreasing in time given by

Ṡ + Ṡtot + 𝑑𝑖Ṡ ≥ 0, (33)

where Stot is the entropy due to energy as well as all matter
contents inside the horizon and 𝑑𝑖Ṡ = 𝜕𝑡(𝑑𝑖S). The Gibbs
equation relates Stot to the total energy density and pressure
as [25]

Ttot𝑑Stot = 𝑑 (𝜌totV) + 𝑃tot𝑑V, (34)

whereTtot represents total temperature corresponding to all
matter and energy contents inside the horizon and is not
equal to the apparent horizon temperature. We assume

Ttot = 𝜁T, 0 < 𝜁 < 1. (35)

This proportional relation shows that total temperature inside
the horizon is positive and always smaller than the tempera-
ture at the apparent horizon. Using (31) and (34) in (33), we
obtain

Ṡ + Ṡtot + 𝑑𝑖Ṡ = (24 + 𝑟4𝐴G96𝜋𝜁𝑟𝐴 )Υ ≥ 0, (36)

where

Υ = (1 − 𝜁)V ̇𝜌tot + (𝜌tot + 𝑃tot) (1 − 𝜁2) V̇. (37)

Using (15) and (16), the GSLT condition takes the form

(24 + 𝑟4𝐴G192𝜋𝜁𝐺𝐹) 𝑟4𝐴Ξ ≥ 0, (38)

where

Ξ = (2 − 𝜁)𝐻(𝐻̇ − 𝑘𝑎2)
2 + 2 (1 − 𝜁)𝐻𝑟𝐴 (𝐻̇ − 𝑘𝑎2)

+ (1 − 𝜁) 𝐹𝑟4𝐴 𝜕𝑡 ( 1𝐹) .
(39)

It is seen that GSLT is valid for G > 0, 𝐹 > 0 and Ξ > 0.
For flat FRW universe model, the conditions G > 0, 𝐹 > 0,𝐻 > 0, 𝐻̇ > 0, and 𝜕𝑡(1/𝐹) > 0 must be satisfied to protect
the GSLT in 𝑓(G, 𝑇) gravity. The equilibrium description of
thermodynamics implies that the temperature inside and at
the horizon are the same yielding

𝑟4𝐴𝐻(𝐻̇ − 𝑘𝑎2)
2 (24 + 𝑟4𝐴G192𝜋𝜁𝐺𝐹) ≥ 0, 𝜁 = 1. (40)

The validity of GSLT can be obtained for positive values of𝐻,
G, and 𝐹.
4. Validity of GSLT

Now we check the validity of GSLT for some reconstructed
cosmological models in 𝑓(G, 𝑇) gravity.
4.1. De Sitter Universe. The well-known cosmological de
Sitter solution elegantly describes the evolution of current
cosmic expansion. For this model, the Hubble parameter is
constant (𝐻(𝑡) = 𝐻0) and scale factor grows exponentially
as 𝑎(𝑡) = 𝑎0𝑒𝐻0𝑡. In case of dust fluid, energy density and GB
invariant are given by

𝜌 = 𝜌0𝑒−3𝐻0𝑡,
G = 24𝐻40 ,

(41)

where 𝜌0 is an integration constant. In this case, (38) takes the
form

1 + 𝑎40𝐻40 (𝑎20𝐻20 + 𝑘𝑒−2𝐻0𝑡)
𝜁 (8𝜋𝐺 + 𝑓𝑇)2 [2𝑘𝐻0𝑒−2𝐻0𝑡 (𝑏 − 1)

⋅ (8𝜋𝐺 + 𝑓𝑇) × (𝑎20𝐻40 + 𝑘𝑒−2𝐻0𝑡)−1
− 3𝜌0𝐻0𝑒−3𝐻0𝑡 (𝑏 − 1) 𝑓𝑇𝑇 + 𝑘2𝐻0𝑒−4𝐻0𝑡 (2 − 𝑏)
× (8𝜋𝐺 + 𝑓𝑇) (𝑎20𝐻20 + 𝑘𝑒−2𝐻0𝑡)−2] ≥ 0.

(42)

The reconstructed 𝑓(G, 𝑇) model for de Sitter universe is
given by [9]

𝑓 (G, 𝑇) = 𝑐1𝑐2𝑒𝑐1G𝑇−(1/2)((1−24𝑐1𝐻4

0
)/(1−36𝑐1𝐻

4

0
))

+ 𝑐1𝑐2𝑇−1/2 − 16𝜋𝐺3 𝑇 + 6𝐻20 ,
(43)

where 𝑐𝑗’s (𝑗 = 1, 2) are integration constants and the standard
conservation law is used in the reconstruction technique.
The continuity constraint splits the above model into the
following two 𝑓(G, 𝑇) forms:

𝑓1 (G, 𝑇) = 18𝑐21 𝑐2𝐻40 (32𝑐1𝐻40 − 1)
(1 − 36𝑐1𝐻20)2

⋅ 𝑒𝑐1G𝑇−(1/2)((1−24𝑐1𝐻4

0
)/(1−36𝑐1𝐻

4

0
)) + 6𝐻20 ,

(44)
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Figure 1: Validity of GSLT for the model (44). (a) is for 𝑐1 = 𝑐2 = 1 and (b) for 𝑐1 = 1 with 𝑐2 = −1.
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Figure 2: Validity of GSLT for the model (44). (a) is for 𝑐1 = −1 with 𝑐2 = 1 and (b) for 𝑐1 = 𝑐2 = −1.

𝑓2 (G, 𝑇) = 18𝑐1𝐻40 (1 − 32𝑐1𝐻40)(1 − 24𝑐1𝐻40) (1 − 30𝑐1𝐻40) (𝑐1𝑐2𝑇−1/2

− 16𝜋𝐺3 𝑇) + 6𝐻20 .
(45)

Figures 1 and 2 show the validity of GSLT for the
model (44) in the background of flat FRW universe model.
The present day value of Hubble parameter is 𝐻0 =(67.8 ± 0.9) kms−1Mpc−1 at the 68% CL (CL stands for
confidence level) which can be considered as 0.67 in units
of 100 kms−1Mpc−1 [39, 40]. The value of matter density
parameter is constrained as 0.308 ± 0.012 with 68% CL
whereas scale factor at 𝑡0 = 13.7Gyr is 𝑎0 = 1 [39]. For
this model, we have four parameters 𝑐1, 𝑐2, 𝜁, and 𝑡 with fixed
values of 𝐻0 = 0.67, 𝑎0 = 1, and 𝜌0 = 0.3. Here, we
examine the validity of GSLT against two parameters 𝜁 and𝑡 with four possible choices of integration constants. For the

case (𝑐1, 𝑐2) > 0, we find that the validity of GSLT holds for
the considered intervals of 𝜁 and 𝑡. Figure 1(a) indicates the
validity for 𝑐1 = 𝑐2 = 1 while Figure 1(b) corresponds to the
case 𝑐1 > 0 and 𝑐2 < 0. Figure 2(a) shows that the validity of
GSLT is not true for 𝑐1 < 0 with 𝑐2 > 0 while it satisfies for
both negative values of (𝑐1, 𝑐2) as shown in Figure 2(b). It is
found that the generalized second law holds at all times only
for the same signatures of integration constants.

The graphical behavior of GSLT for de Sitter 𝑓(G, 𝑇)
model (45) is shown in Figures 3 and 4 against parameters𝜁 and 𝑡. In this case, we have considered 𝐻0 = 0.67,𝑎0 = 1, and 𝜌0 = 0.3 with four possible signature
choices of integration constants 𝑐1 and 𝑐2 as in the previous
model. Figures 3(b) and 4(a) show that GSLT is true for all
considered values of 𝜁 and 𝑡 with opposite signatures of(𝑐1, 𝑐2). For model (45), the choice of same signatures of
integration constants is ruled out since it does not provide
feasible region for which GSLT holds.
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Figure 3: Validity of GSLT for the model (45). (a) is for 𝑐1 = 𝑐2 = 1 and (b) for 𝑐1 = 1 with 𝑐2 = −1.
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Figure 4: Validity of GSLT for the model (45). (a) is for 𝑐1 = −1 with 𝑐2 = 1 and (b) for 𝑐1 = 𝑐2 = −1.

4.2. Power-Law Solution. Power-law solution has remarkable
importance in modified theories of gravity to discuss the
decelerated as well as accelerated cosmic evolutionary phases
which are characterized by the scale factor as [41]

𝑎 (𝑡) = 𝑎0𝑡𝛽,
𝐻 = 𝛽

𝑡 ,
𝛽 > 0.

(46)

The accelerated phase of the universe is observed for 𝛽 > 1
while 0 < 𝛽 < 1 covers the decelerated phase including
dust (𝛽 = 2/3) as well as radiation (𝛽 = 1/2) dominated
cosmic epochs. For this scale factor, the energy density and
GB invariant becomes

𝜌 = 𝜌0𝑡−3𝛽,
G = 24𝛽3

𝑡4 (𝛽 − 1) . (47)

Using (46) and (47) in (38), the validity condition for GSLT
takes the form

1 + 𝑎40𝛽3 (𝛽 − 1) 𝑡−4 (𝑎20𝛽2𝑡−2 + 𝑘𝑡−2𝛽)−2
𝜁 (8𝜋𝐺 + 𝑓𝑇) [

[
𝛽
𝑡 (2 − 𝜁)

⋅ ( 𝛽𝑎20𝑡−2 + 𝑘𝑡−2𝛽
𝛽2𝑎20𝑡−2 + 𝑘𝑡−2𝛽)

2

− 2𝛽
𝑡 (1 − 𝜁)

⋅ ( 𝛽𝑎20𝑡−2 + 𝑘𝑡−2𝛽
𝛽2𝑎20𝑡−2 + 𝑘𝑡−2𝛽)

− 𝜁 − 18𝜋𝐺 + 𝑓𝑇 (96𝛽3
𝑡5 (𝛽 − 1) 𝑓G𝑇 + 3𝛽𝜌0𝑡−4𝑓𝑇𝑇)]

]
≥ 0.

(48)
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The reconstructed𝑓(G, 𝑇)model for dust fluid is given by [9]

𝑓 (G, 𝑇) = 𝑑1𝑑3𝑇𝑑2G(1/4)(𝛼1+𝛼2)
+ 𝑑2𝑑3𝑇𝑑2G(1/4)(𝛼1−𝛼2) + 𝑑1𝑑2𝑇𝛼3 + 𝛼4𝑇
+ 𝛼5𝑇𝛼6 ,

(49)

where 𝑑𝑙’s (𝑙 = 1, 2, 3) are integration constants and

𝛼1 = 12 [5 − 𝛽 (1 + 3𝑑2)] ,
𝛼2 = [34𝛽𝑑2 {3𝑑2𝛽 + 2 (𝛽 − 1) − 8}

+ 14 (𝛽 − 1) (𝛽 + 7) + 4 + 8𝑑2 (𝛽 − 1)]1/2 ,
𝛼3 = −12 ,
𝛼4 = −16𝜋𝐺3 ,
𝛼5 = ( 18𝛽3

3𝛽 + 4)𝜌−2/3𝛽0 ,
𝛼6 = 23𝛽

(50)

imply that the conservation law holds. The continuity con-
straint splits this model into two functions with some addi-
tional constants as

𝑓1 (G, 𝑇) = 𝑑1𝑑3𝛾1𝑇𝑑2G(1/4)(𝛼1+𝛼2) + 𝑑1𝑑2𝛾2𝑇𝛼3
+ 𝛾3𝑇 + 𝛾4𝑇𝛼6 , (51)

𝑓2 (G, 𝑇) = 𝑑2𝑑3𝛾5𝑇𝑑2G(1/4)(𝛼1−𝛼2) + 𝑑1𝑑2𝛾6𝑇𝛼3
+ 𝛾7𝑇 + 𝛾8𝑇𝛼6 , (52)

where

𝛾1 = 1 − 𝛼7𝛼8 ,

𝛾2 = 1 − 𝛼23𝛼8 ,
𝛾3 = 𝛼4 (1 − 1𝛼8) ,

𝛾4 = 𝛼5 (1 − 𝛼26𝛼8) ,
𝛾5 = 1 − 𝛼8𝛼7 ,

𝛾6 = 1 − 𝛼23𝛼7 ,

𝛾7 = 𝛾4 (1 − 1𝛼7) ,

𝛾8 = 𝛾5 (1 − 𝛼26𝛼7) ,
𝛼7 = 𝑑26𝛽 [6𝑑2𝛽 − 3𝛽 + 2 (𝛼1 + 𝛼2)] ,
𝛼8 = 𝑑26𝛽 [6𝑑2𝛽 − 3𝛽 + 2 (𝛼1 − 𝛼2)] .

(53)

The validity of GSLT for models (51) and (52) depends
on five parameters 𝑑1, 𝑑2, 𝑑3, 𝜁, and 𝑡. Figures 5 and 6 show
the behavior of GSLT for power-law reconstructed 𝑓(G, 𝑇)
model (51). We examine the validity against 𝜁 and 𝑡 with𝑎0 = 1, 𝜌0 = 0.3, 𝑛 = 2/3, and 𝑑2 = −1.64285 while the
behavior of remaining two integration constants 𝑑2 and 𝑑3
is investigated for four possible choices of their signatures.
Figure 5 shows that GSLT is satisfied for both cases 𝑑3 > 0 and𝑑3 < 0 with 𝑑1 > 0 in the considered interval of parameters(𝜁, 𝑡). We also check that the validity region decreases as the
value of integration constants increases positively as well as
negatively. Figure 6 shows that GSLT does not hold for model
(51) when 𝑑3 > 0 and 𝑑3 < 0 with 𝑑1 < 0. From both figures,
it is found that the signature of 𝑑1 has dominant effect on the
validity of GSLT as compared to 𝑑3.

The validity of GSLT for the model (52) is shown in
Figures 7 and 8. For this model, the viability of law again
depends on five parameters 𝑑1, 𝑑2, 𝑑3, 𝜁, and 𝑡 while we set𝑎0 = 1, 𝜌0 = 0.3, 𝑛 = 2/3, and 𝑑2 = 7.5. (a) shows that this
law is satisfied for all values of 𝜁 at the initial times as well as
when 𝜁 approaches to 1 with 𝑡 ≥ 27 for the case (𝑑1, 𝑑3) > 0
while the feasible region for 𝑑1 > 0 and 𝑑3 < 0 is shown in
(b). Similarly, Figure 8 shows the regions where GSLT holds
for the remaining two signatures of (𝑑1, 𝑑3). In this case, we
observe that validity of GSLT is true for all four possible
choices of integration constants for the specific ranges of 𝜁
and 𝑡.
5. Concluding Remarks

In this paper, we have investigated the first and second
laws in the nonequilibrium description of thermodynamics
and also checked the validity of GSLT for reconstructed
models in 𝑓(G, 𝑇) gravity. The thermodynamical laws are
studied at the apparent horizon of FRW universe model
with any spatial curvature parameter 𝑘. We have found
that the total entropy in the first law of thermodynamics
involves contribution from horizon entropy in terms of area
and the entropy production term. This second term appears
due to nonequilibrium behavior which implies that some
energy is exchanged between outside and inside the apparent
horizon. It is worth mentioning here that no such auxiliary
entropy production term appears in GR, GB, Lovelock, and
braneworld theories of gravity [19–24].

We have found the general expression for the validity
of GSLT in terms of horizon entropy, entropy production
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Figure 5: Validity of GSLT for the model (51). (a) is for 𝑑1 = 𝑑3 = 1 and (b) for 𝑑1 = 1 and 𝑑3 = −1.
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Figure 6: Validity of GSLT for the model (51). (a) is for 𝑑1 = −1 with 𝑑3 = 1 and (b) for 𝑑1 = 𝑑3 = −1.
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Figure 7: Validity of GSLT for the model (52). (a) is for 𝑑1 = 𝑑3 = 1 and (b) for 𝑑1 = 1 and 𝑑3 = −1.
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Figure 8: Validity of GSLT for the model (52). (a) is for 𝑑1 = −1 with 𝑑3 = 1 and (b) for 𝑑1 = 𝑑3 = −1.

term, and entropy corresponding to all matter and energy
contents inside the horizon. For nonequilibrium picture of
thermodynamics, it is assumed that temperature associated
with all matter and energy contents inside the horizon is
always positive and smaller than the temperature at apparent
horizon. It is found that viability condition for this law is
consistent with the universal condition for its validity in
modified theories of gravity [25]. We have also investigated
the validity condition ofGSLT for the equilibriumdescription
of thermodynamics. The validity of this law for the recon-
structed 𝑓(G, 𝑇) models (de Sitter universe and power-law
solution) for the dust fluid [9, 12] is also studied. The results
can be summarized as follows.

(i) For de Sitter reconstructed models, it is found that
the validity of GSLT is true for model (44) when
the integration constants (𝑐1, 𝑐2) have same signatures
while, for the second model (45), the feasible regions
are obtained for the opposite signatures (Figures 1–4).

(ii) For power-law reconstructedmodels, the valid results
are found when integration constant 𝑑1 is positive for
themodel (51) while for, the model (52), this holds for
all possible choices of 𝑑1 and 𝑑3 (Figures 5–8).

We conclude that the validity condition of GSLT is true for
both reconstructed de Sitter and power-law 𝑓(G, 𝑇) models
with suitable choices of free parameters.
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