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Theory of Behavioral Power Functions

J. E. R. Staddon
Duke University

Data in operant conditioning and psychophysics are often well fitted by func-
tions of the form y — qx'. A simple theory derives these power functions from
the simultaneous equations dx/x = aif(z)dz and dy/y = a j ( z ) d z , where z is a
comparison variable that is equated for the effects of x and y, and Oj and a2 are
sensitivity parameters. In operant conditioning, * and y are identified with re-
sponse rates; in psychophysics, with measures of stimulus and response. The
theory can explain converging sets of power functions, solves the dimensional
problems with the standard power function, and can account for the relation
between Type I and Type II psychophysical scales.

Many empirical relations take on a linear
form when plotted in double-logarithmic co-
ordinates. In experimental psychology such
relations have frequently been reported in
operant studies of choice behavior and rate-
dependent drug effects and in experiments on
psychophysical scaling. Power functions of the
form y = qx', where q and s are constants, are
the simplest mathematical approximation to
these empirical functions. While there has been
considerable theoretical discussion about the
possible processes responsible for the psycho-
physical power law, choice of power function
fits in other cases has been largely a matter of
empirical convenience. The theoretical basis
even for the psychophysical power function is
still a matter for dispute.

In this article, I propose a very simple theo-
retical basis for power functions. This deriva-
tion can be interpreted in terms of behavioral
competition in operant conditioning situations
and in terms of an internal "sensation" vari-
able in psychophysical scaling experiments.
The theory predicts that sets of power func-
tions will in many cases converge on a common
point; it solves problems of dimensional balance
encountered when x and y are measured in the
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same units; and it is consistent with recent
work on the relation between different types
of psychophysical scales. Data from numerous
experiments on operant behavior and psycho-
physical scaling are consistent with the con-
vergence prediction.

The derivation is most easily introduced in
connection with a specific example, and this is
done in the first section. The second section
describes its application to rate-dependent
drug effects, and the third section deals with
the psychophysical power law.

Response Competition

The most obvious effect of reward and
punishment is on the level of the rewarded or
punished response. However, for a complete
understanding of reinforcement, it is necessary
to study not just direct effects on a particular
response but also indirect effects on the way
that behaviors interact with one another. The
most frequent type of interaction is competi-
tion, since the time available for responding in
instrumental (operant) conditioning situations
is generally less than the time needed for all
tendencies to action to find full expression
(Atkinson & Birch, 1970; McFarland, 1974;
Staddon, 1977a; Staddon & Ayres, 1975).
Recent theoretical analyses of competitive in-
teractions have shown that even quite simple
quantitative treatments can sometimes inte-
grate a surprisingly wide range of data (Mc-
Farland & Sibly, 1975; Staddon, 1977b).
However, the topic of response competition
has received relatively little direct experi-
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mental attention, and until recently, few re-
sults were available comparable in quantita-
tive precision to those from studies of the
direct effect of reinforcement on rates of op-
erant responding.

The most direct way to study competition is
to look at the level of one activity while the
level of a second, competing one is varied by
some means known not to affect the level of
the first activity directly. In practice, however,
this method is difficult to apply because a
causal factor sufficient to affect one activity
may also have direct effects on the other. How-
ever, a recent series of experiments by Nevin
(1974a, 1974b) appears to meet this objection
and has yielded data that are susceptible of a
relatively simple interpretation. In his most
extensive experiment, Nevin (1974b) studied
the behavior of hungry pigeons responding for
food reinforcement on two separate response
keys. Pecks on one key yielded brief access to
grain for the first peck after SO sec (fixed-
interval [FI] 50-sec schedule). On the other
key, two colors alternated at 10-sec intervals.
Food was available intermittently at different
rates in the presence of each color for pecking
on this second key (multiple variable-interval
variable-interval [VI VI] schedule). The rela-
tive frequency of food delivery for pecking on
each of the two multiple-key colors was varied
in different conditions of the experiment. In
each condition, the animals were exposed to the
schedules daily until their rates of responding
on each key and to each color had settled down
to stable levels.

On FI schedules, responding increases pro-
gressively through the time between food
deliveries, rising to a maximum as the next
feeding becomes imminent. The pigeons in this
study responded in this fashion on the FI key.
Responding on the other (multiple) key fol-
lowed a complementary course: The pigeons
pecked rapidly early in the (FI) interfood
interval and more slowly toward the end.
Food delivery for pecks on the multiple key
was aperiodic. Hence, it is likely that the ob-
served temporal variation in multiple-key re-
sponding was due primarily to progressive
suppression by Fl-key responding and not to
a separate internal clock for responding on the
multiple key.

The major result from this study is a set of
functions showing how responding on each of
the multiple-key colors was suppressed by the
progressively increasing Fl-key responding
throughout the 50-sec FI interfood interval.
The interval was divided into 10-sec blocks,
and plots were made of response rate during
comparable blocks in the presence of each of
the multiple-key colors, that is, of response
rate to one color versus response rate to the
other, at comparable times in the 50-sec fixed
interval. These response-response plots were in
all cases acceptably fitted by power functions
of the form

y = qx> (1)

where x and y are response rates in the presence
of the two multiple-key colors, and q and 5
are parameters that varied with the frequen-
cies of reinforcement in the two colors.

Equation 1 can be derived in a number of
ways. However, the basis to be presented here
is one of the simplest and may be the most
general. I suppose only that the effect on be-
haviors a; or y of changes in the competing
behavior z, the level of FI responding, depends
solely on the initial levels of x or y. This
assumption can be stated precisely as follows:

and

dx/x = aif(z)dz

dy/y = azf(z)dz.

(2a)

(2b)

In words, these equations simply affirm that
a small change, dz, in the level of z produces
a change, dx (or dy) in x or y that is propor-
tional to the initial level of x, to the change
in z, and to some unspecified function of z,
f(z). The constants of proportionality «i and
#2 represent the sensitivities of x and y, re-
spectively, to these changes in z. The fact that
/(z) need not be specified simply indicates
that the relation between x and y (which is
about to be derived) does not depend on the
form of the relation between x (or y) and z
(except that it be the same for x and y). I
return to this point in a moment. Since the
interactions between x or y and z in Nevin's
(1974b) experiment are assumed to be com-
petitive, /(z) is likely to be a negative function
of some sort.
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Figure 1. The right-hand panel shows lines fitted by Nevin (1974b) to the logarithms of response rates
(In y and In x) in two multiple-schedule components at corresponding times in relation to periodic food
delivered for an alternative response to a second response key. (Each line represents a different com-
bination of reward frequencies for responding on the multiple-schedule key.) The left-hand panel shows
the relation between the slopes (s) and intercepts (In q) of the lines in the right-hand panel.

Integrating both sides of Equation 2 yields

In x + Ki = 01 / f(z)dz (3a)

and

In y + Ki. = f(z)tiz. (3b)

Dividing Equations 3a and 3b to eliminate
expressions involving z, rearranging, and ex-
ponentiating yields

y = exp(a2#i/ai - K^-x^"\ (4)

where K\ and K?. are constants of integration.
Equation 4 is of the same form as Equation

1, but with

q = exp(a2^i/ai - #2) (5)
and

s = a<ila\. (6)

Parameter 5, the ratio of sensitivities, repre-
sents the elasticity of behavior y with respect
to behavior x. It follows from Equations 5 and
6 that

In q = sKi - Ki. (7)

Nevin found that both 5 and q varied with
the frequencies of food delivery for responding
to the two multiple-key colors. The simplest
assumption is that these changes are solely a
reflection of changes in a\ and a^, the sensi-
tivities of the two responses, so that K\ and
Ki can be assumed constant across conditions.
If this is so, then Equation 7 implies a linear
relation between elasticity parameter 5 in
Equation 1 and the logarithm of parameter q.

Nevin (1974b) obtained a number of func-
tions that were fit by Equation 1, and he
estimated s and q for each. A plot of In q
versus s from these data appears as the left-
hand panel of Figure 1. The six points are very
well fit by a straight line, with K\ = — 3.96
and KI = — 4.69, in accordance with the
prediction.

Geometrically, Equation 7 implies that the
original power functions from which 5 and q
were obtained should all pass through the
point In x — — K\, In y — — Kt. The right-
hand panel of Figure 1 shows that the data are
consistent with this prediction.1 The point of

1 There is an important caveat to be noted here.
Since the zero point of a logarithmic scale corresponds
to the unity point of the corresponding linear scale,
the location of zero depends on the units of measure-
ment. The linear relation of Equation 7 simply repre-
sents the obvious fact that the slopes and intercepts
of a set of straight lines that go through a point will
be related—positively if the origin is to the right of
the point of intersection, negatively otherwise. How-
ever, since on a log scale the origin can be moved as
far as we please from the region of the empirical data
simply by changing units, a linear relation between s
and In q can be forced by measuring rates in sufficiently
extreme units. In this case the "point" through which
the lines all go is nothing but the region of possible
rates, which is limited at the top by physiological
limitations and at the bottom by the time during which
behavior is sampled. Since Nevin's (1974b) data cover
almost the full range of the In x axis on the right of
Figure 1, the convergence shown there is not forced in
this way.
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convergence may be termed the null point,
since it represents that pair of response rates
that is unaffected by changes in a. If there
were no preference for one color over the other
and if the situation were symmetrical in every
other way, one might expect K\ and KI to
be equal. This does not seem to be the case in
this study: K2 was greater than Ki in absolute
magnitude, and the birds tended to respond at
higher rates on red (y) compared to green (x),
a commonly observed preference in pigeons.

The derivation of Equation 1 just described
does not depend on the form of the relation
between x and z. However, Killeen (1975), in
his discussion of Nevin's result, has assumed
a particular relation between x and z (here
considered not as a competing response but
just as time, t, in the fixed interval) of the form

x = A\ exp( — t/Ci). (8)

This result can be obtained from Equation 2
by taking /(z) = — 1; whereupon, on integra-
tion x = a exp(— aiz), which is of the same
form as Killeen's equation. Killeen suggests a
particular identification for the constants A\
and C\ that goes beyond the present deriva-
tion. Since his model can be considered as a
special case of the present one, it can make
similar predictions about the relation between
s and q in Equation 1. However, it also re-
quires an exponential relation between x and t,
and unfortunately, Nevin's data do not suggest
a simple relation. Hence, there is virtue in a
theoretical approach that is noncommittal
about the function relating x (or y) and z. We
shall see later that a similar uncertainty exists
in the case of the psychophysical law.

Interpretation of Parameters

The parameters a\ and 0,1 in Equation 4
have already been interpreted as sensitivities.
KI and Kz are scale factors. This can be shown
in two ways. First, unless x and y are con-
sidered to be dimensionless (e.g., as relative
rates), Equation 1 cannot be made to balance
dimensionally in its simple form (i.e., with q
as an independent parameter) if x and y are
measured in the same units.2 For example, if
x and y are considered as rates, having the
dimensions T~l, then q must have the dimen-
sions T*~l for dimensional balance, which im-

plies dependence of q on s. However, if in
Equation 4, the dimensions of KI and KI are
taken as In T, the proper dimensional balance
is achieved, as follows:

r-1 = expj>ln (r) - In (T)]- (r~')s;

whence, taking logarithms of both sides,

-In (T) = s In (r) - In (r) - s In (T)

= - In (T).

Hence KI and K^ can be interpreted as the
logarithms of the time bases with respect to
which x and y are measured. The same con-
clusion can be arrived at by noting the effect
of changing the units of x and y by multipliers,
such that x = ax' and y = fty'. Then, a little
algebra shows that K'\ = K\ + In a and
K\ = Kz + In ft.

Rate-Dependent Drug Effects

Many drugs produce effects on responding in
operant conditioning situations that are well
described by Equation 1 (Dews, 1958, 1964;
Gonzalez & Byrd, 1977). Since there is growing
evidence that in such situations there is com-
petition between the recorded operant response
and other "schedule-induced" activities, the
present analysis can be applied.

The usual procedure in these experiments is
to compare response rates at equivalent points
in a periodic schedule, such as fixed interval,
between 2 days: a day on which no drug, or
a control injection, is administered, and a
second day (typically the next day) when a
given drug dose is administered before the
experimental session. (A few studies have
compared response rates in the presence of
different stimuli that sustain different rates
under control conditions.) Traditionally, the
results have been displayed as a plot of control
data versus the ratio of drug and control rates
for each segment of the fixed interval, col-
lapsed over all the intervals in each experi-
mental session. Such plots are linear in log-log
coordinates, which implies a power relation of
the same form as Equation 1 between drug

21 am indebted to J. A. Nevin and M. C. Davison
for pointing out the dimensional problem with Equa-
tion 1.
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Figure 2. The right-hand panel shows lines fitted from Barrett (1974) to the logarithms of response rates
of a single pigeon under drug (Ro; pentobarbital) and no-drug (Re) conditions at comparable points
in a periodic schedule. (Each line is the result of a different drug dose.) The lines in the left-hand panel
show the relation between the slopes (s) and intercepts (In q) of the fitted lines, both for responding on
a key associated with a fixed-interval schedule (FI) and for responding on a key associated with a
fixed-ratio schedule (FR).

and control rates plotted directly (Gonzalez &
Byrd, 1977).

There is considerable evidence that on
periodic schedules of food delivery there is
competition between the instrumental re-
sponse, which occurs with increasing frequency
as the time when food will be available ap-
proaches, and other "interim" activities, which
occur predominantly at the beginning of each
interfood interval (Staddon, 1977b; Staddon
& Ayres, 1975; Staddon & Frank, 1975). For
example, if the interim activities are prevented
in some way, instrumental responding begins
earlier in the interval. These considerations
set the stage for applying the theory to rate-
dependent effects. It is necessary only to as-
sume that the interim activities exert a sup-
pressive effect on the instrumental response
that is equivalent to the suppressive effect of
Fl-key responding on multiple-key responding
in Nevin's (1974b) experiment. If the fre-
quency of these interim activities is denoted
by z, and the rates of the instrumental re-
sponse on control and drug days are denoted
by x and y, respectively, then Equation 2 can
be applied directly. Proceeding as before,
Equation 7 then describes the relation between
the two parameters 5 and q of the power func-
tion relating drug and control response rates

on the assumption that the effect of the drug
is solely on the sensitivity parameter: a\ is
then the sensitivity parameter under control
conditions, and 02 the sensitivity parameter
under drug conditions. K\ and K% are therefore
assumed to be constant across conditions,
that is, drug doses.

The slope and intercept of the function
relating control and drug rates have been
shown in many experiments with numerous
drugs to vary with drug dose. Figure 2 shows
data from an individual pigeon in an experi-
ment by Barrett (1974). The animal was
trained on a schedule in which pecks on one
key (interval key) were reinforced with food
once every 5 min, providing at least 10 pecks
to a second key (ratio key) had occurred
(conjunctive fixed-ratio [FR] 10 - FI 5).
Various doses of pentobarbital were admin-
istered, and the response rates in successive
30-sec portions of the fixed interval on control
and drug days were compared in the way just
described. The left-hand panel of Figure 2
shows the relation between 5, the slope, and
In q, the intercept of the power functions ob-
tained by Barrett at different drug doses. Two
sets of data are shown: one for responding on
the ratio key and the other for responding on
the interval key. In both cases, the points are
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well fitted by a straight line. The right-hand
panel of Figure 2 shows the actual power
functions fitted to his data by Barrett,3 and
as implied by the linear relations in the left-
hand panel, they converge on approximately
the same point. If, as I have proposed, the
drug affects only parameter a, then with no
drug injection, «i = a?, and y should equal x.
Hence, from Equation 4, Ki should equal K%.
This is approximately true for the ratio data
in Figure 2, but lines fitted to the FI data
converge on a point quite far removed from
equality. This implies that control saline in-
jections may have had an effect on K in this
experiment.

I have examined a total of 14 studies in-
volving 21 different drugs, in which rate-
dependent relations were obtained (Barrett,
1974; Bond, Sanger, & Blackman, 1975;
Branch & Gollub, 1974; Byrd, 1975; Dews,
1964; Leander, 1975; MacPhail & Gollub,
1975; Marr, 1970; McKearney, 1970; Mc-
Millan, 1973a, 1973b; Stitzer, 1974; Wenger
& Dews, 1976; Wiittke, 1970). These studies
contain a total of 69 sets of power functions
similar to those shown in Figure 2, obtained
with six species of animals.4 Fifty-eight of
these sets comprise three or more functions,
permitting a test of the linearity prediction of
Equation 7. No study shows a systematic
deviation from linearity. Twenty-five studies
(43%) show linear fits with coefficients of
determination (r2) greater than .80; 9 were
between .60 and .79, 14 between .20 and .59,
and 10 less than .20.

Most studies therefore fit the theory quite
well. Those that do not fit (i.e., show r1 values
less than .6) can be classified into three groups,
(a) Some studies fail because the range of
drug doses used yielded only a small range of
slopes. It is clear from the geometry of the
situation that if many slopes are close to-
gether, even small errors in determining slopes
will produce large variations in the points of
intersection of the lines. Hence, a good fit to
the model is not to be expected if the range of
slopes obtained is small, (b) The geometry
also indicates that a poor fit will be obtained
if the units are such that the point of inter-
section of the lines (the null point) is in the
vicinity of a control rate of unity (zero on the
log scale). In this case, there will be variation

in slope but little variation in intercept, (c)
Finally, studies may yield an adequate range
of slopes, with no common intersection point,
that is, clear failure to agree with the model.
Careful examination of the 25 or so sets of
functions that yielded low r2 values showed
that only a handful, five or six, are clearly
discrepant with the model. The clearly dis-
crepant results are from studies by Leander
(1975, three examples), McKearney (1970,
Figure 5, SD), and McMillan (1973a, Table 2,
pentobarbital, unpunished; Table 4, imipra-
mine, unpunished). As suggested by the
studies cited previously, there are a number
of intermediate cases. All the other cases fall
into Categories a and b.

For most sets of functions, K\ and KI are
within 20% of each other, as implied by the
assumption that different drug doses affect
only parameter a. However, the null point is
usually different for different drugs, implying
a dose-independent effect of the drug on K.
These characteristics are illustrated by data
from an extensive study by Leander (1975),
which are shown in Figure 3. The figure shows
log (control rate) versus log (drug rate) func-
tions fitted by Leander to data produced
under different doses of 11 major tranquilizers.
Three of the drugs (triflupromazine, trifiuo-
perazine, and fluphenazine) fit the model
poorly; the remaining 8 (and the three injec-
tion vehicles) show the predicted linear rela-
tions. The null points for the different drugs
are clearly different. Other studies show that
the null point depends on whether responding
is punished or unpunished (McMillan, 1973a,
1973b), whether it is associated with a positive
(reinforcement associated) or negative (as-
sociated with the absence of reinforcement)

3 Barrett's (1974) data were plotted in the usual
form: log (drug rate/control rate) versus log (control
rate). I estimated slopes and intercepts from the fitted
lines in his Figure 3 and then transformed the functions
to yield the log (drug rate) versus log (control rate)
lines shown in Figure 2.

4 In the Wiittke (1970) study, power functions were
not given. I read off the relevant data from his Figure
5 and fitted power functions in the usual way. All the
other studies presented linear fits of data in log-log
plots, usually of control rate versus drug rate/control
rate, occasionally of drug rate versus control rate. I
estimated .s and In q (or log q) from these lines or
computed them from tables, if available.
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Figure 3. The relation between the logarithm of drug rate (log RU) and control rate (log Re) in a periodic
schedule for a number of tranquillizers studied by Leander (1975). [The lines are derived from the
slopes and intercepts of lines fitted to plots of 100 log (Ro/Rc) versus log RC by Leander (his Table 1).]

stimulus (McKearney, 1970), and on the type
of reinforcement schedule associated with the
response (see Figure 2). Generally, the null
point is higher on both axes for unpunished
conditions, but this is reversed for some drugs,
most notably, morphine. The null point is
higher for responding in the positive stimulus
(S°). Individual animals also show different
null points. Of course, no experiment has at-
tempted explicitly to study the effects of these
or any other variables on the null point, so
that these correlations must be accepted with
caution. For example, in most experiments,
different doses of the same drug are admin-
istered in succession rather than being inter-
mixed with doses of other drugs. Hence, effects
of drug type are usually confounded with
time of administration and order: If K values
change slowly over time, then the sets of dose-
response power functions obtained with differ-

ent drugs will tend to show different null
points.

The identification of the a and K parameters
with sensitivity and scale factors, respectively,
provides an objective basis for the distinction
between rate-dependent and rate-independent
effects. If there is a fixed null point, and more-
over, K\ and Kt are equal, then the effect of
the drug is strictly on the a parameter, a pure
rate-dependent effect. However, if K\ and K^
are not equal, then in addition to a dose-
related rate-dependent effect, there is a dose-
independent and rate-independent effect. Fi-
nally, if there is no fixed null point, the differ-
ent drug doses have dose-related effects that
are both rate dependent (on the a parameter)
and rate independent (on the K parameter).
K\ and KZ are approximately equal for most
of the studies discussed here, so that the drug
effects are indeed rate dependent.
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The competition model appears to fit most
of the available data on rate-dependent drug
effects. Most of the apparently discrepant
data can be attributed either to a limited range
of slopes for the log (control rate) versus log
(drug rate) functions or to an infelicitous
choice of units. Most results show a dose-
independent effect of drug type on the null
point, and data that fail to fit may perhaps be
attributable to a dose-dependent effect of the
drug on the null point. The null point appears
to depend on a number of situational factors,
but controlled experiments are obviously re-
quired to map out these relations in detail.

Psychophysical Law

The sensation produced by a stimulus such
as a sound or a light is not simply proportional
to the stimulus intensity measured in physical
units. For most stimulus dimensions, the re-
sponse measure grows more slowly than phys-
ical intensity. On so-called prothetic (intensive)
continua, the appropriate relation appears to
be a power function of the same form as
Equation 1, where y is the response measure,
* the physical stimulus measure, and s an
exponent characteristic of the stimulus dimen-
sion (Richardson & Ross, 1930; Stevens,
1957).6 In a long series of papers, S. S. Stevens
(e.g., 1957, 1975) presented evidence and argu-
ments for the power relation and established
that comparisons between different modalities
(stimulus dimensions) generally behave as
predicted by the law. For example, if the rela-
tion between perceived intensity and physical
stimulus intensity for continuum A isyA = XAS,
and for continuum B, is yB = x/ir, then the
relation between A and B when the level of A
is adjusted so that A and B have the same
perceived intensity should be XA = XBrla- In
cross-modality matching experiments, the ap-
propriate relations between exponents have
been frequently demonstrated.

The relation of S. S. Stevens' law to two
other types of psychophysical measurement,
scales based on just-noticeable differences
(JNDS) and so-called partition scales, is still a
matter of debate. The present theory has
straightforward implications for these ques-
tions. In some measure, it is a restatement in
a convenient form of previous proposals. How-

ever, in this form, it can account for convergent
power functions. It also makes clear the rela-
tions between Fechnerian and magnitude scales
implied by different assumptions about the
mapping of stimuli onto sensations.

The power law can be immediately derived
from the present theory, given the following
identifications: x is identified with the physical
stimulus and y with the response measure,
which may be a number (as in magnitude esti-
mation) or some other physical measure (as in
cross-modal matching). The comparison vari-
able 2 must then be identified with sensation,
that is, the level of some internal variable
that is affected by both the stimulus x and the
response y.

The suggestion that number can be con-
sidered a sensory dimension was first made by
Attneave (1962) and has recently received
considerable support from other sources (e.g.,
Rule, Curtis, & Markley, 1970; Teghtsoonian,
1974; Wagenaar, 1975). The idea that the
central sensation variable bears the same rela-
tion to stimuli as to responses has also been
frequently proposed. If that relation conforms
to Weber's law (a possibility discussed more
fully below), then, according to Teghtsoonian
(1974), "if Weber's law holds, then it applies
to both the target continuum plotted on the
abscissa, and the matching continuum plotted
on the ordinate" (p. 170). The assumption that
stimuli and responses (including number) are
related to sensation in a similar way is more
symmetrical than the alternative view that
responses are a direct measure of sensation,
but stimuli are not. While symmetry is not
proof, the fact that the present theory re-
quires a symmetrical assumption should not be
a cause for concern.

By the terms of the scaling experiment, the
subject can be assumed to adjust his response
y so that the level of sensation 2 associated
with it is the same as that associated with the
stimulus x. Thus, the expressions involving 2

61 exclude here any consideration of second-order or
molecular effects, such as the biases associated with dif-
ferent scaling methods, hysteresis, and sequential
effects. These require explanation at a different level
than that attempted here. Refinements of method such
as the widely used threshold correction are also taken
for granted.
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on the right-hand side of Equations 2a and 2b
can be set equal, and the derivation proceeds
as before. The relation between stimulus and
response dimensions is then given by Equation
4. Parameters a\ and #2 are identified with the
sensitivities of the individual to the stimulus
and response dimensions, respectively. We may
suspect that these parameters are related to
discriminability, and I return to this in a
moment. The K parameters are scale factors
as before.

It is obvious that this derivation immedi-
ately predicts the results of cross-modality
matching experiments. Every situation, in-
cluding direct magnitude estimation, is re-
garded as involving both a stimulus and a
response dimension, both of which bear a
similar relation to the central sensation vari-
able; and s, the exponent of the power func-
tion, is already expressed as the ratio of sensi-
tivities of the stimulus and response systems.

The major empirical prediction of the pres-
ent theory is that in many cases, variables that
affect both the slope and the intercept of the
power function act solely by affecting the
sensitivity parameter. Hence, the family of
power functions so produced should converge
on a null point. J. C. Stevens (1974) has re-
cently collected 13 sets of such converging
functions. One example, from a study on glare
inhibition by S. S. Stevens and Diamond
(1965), is shown in Figure 4. In this experi-
ment, three subjects adjusted the luminance
of a matching field (seen only by the right eye)
so that it matched the apparent brightness of
a target field seen by the left eye. A small,
intense glare source was also visible to the
left eye. The experimenters adjusted the
brightness of the target field and thus obtained
a series of matches. The relation between
target luminance and matching field luminance
was a power function whose slope and inter-
cept (in log-log coordinates) depended on the
visual angle between glare source and target.
5. S. Stevens and Diamond obtained a total
of 14 power functions in this way for different
glare angles. I fitted lines (by the method of
least squares) to the corrected decibel data in
their Table 1 and obtained 14 slope-intercept
pairs. Figure 4 shows that these are very well
fitted by a straight line (r2 = .995), with slope
and intercept Ki = - 109 dB, #2 = - 108 dB.
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Figure 4. The relation between the slopes (s) and inter-
cepts (10 log q) of power functions fitted by S. S.
Stevens and Diamond (1965) to matching data from
comparisons of the perceived brightness of a match
field and a target field inhibited by an adjacent glare
source.

KI and KZ are approximately equal, as they
should be for this symmetrical situation.

Data presented by Marks (1974b) and
several studies reviewed by S. S. Stevens
(1965) can also be treated in this way. How-
ever, some studies are available in which the
treatments affected only the intercepts, leaving
the slopes unchanged (e.g., Babkoff, 1976). In
terms of the present theory, this corresponds
to a change in one or both of the K parameters.
In other studies (e.g., Pollack, 1949; replotted
in Stevens, 1965), the convergence is less
perfect than that shown in Figure 4, perhaps
reflecting some effect on the K parameters.
Nevertheless, when there is an effect on slope,
the intercept usually changes in the way to be
expected from Equation 7, and the conver-
gence prediction is amply confirmed.

J. C. and S. S. Stevens have provided inter-
pretations for the null point in various experi-
ments. For example, in the S. S. Stevens and
Diamond (1965) study, the coordinates of the
null point are approximately equal to the
luminance of the glare source, which was 118
dB. In other cases, the null point is identified
with the stimulus level at which a qualitative
change in sensation occurs, as from loudness
to tickle or pain, or with the system's physio-
logical limit, as in maximum heft. In some
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cases, however, the interpretation is less plau-
sible. For example, the family of power func-
tions obtained by J. C. Stevens and S. S.
Stevens (1963) in a study of adaptation
converges on a null point whose luminance
coordinate is between 150 and 160 dB. This
approximately matches the luminance of the
solar disc, but J. C. Stevens (1974) acknowl-
edges that this identification is far from
compelling. The present derivation does not
preclude any particular interpretation for the
null point. However, it also allows for the pos-
sibility that the null point may have no uni-
versal significance and is simply a consequence
of constant scale factors and the generating
process described by Equation 2.

Relation to Weber's and Fechner's Laws

Setting /(z) = 1 in Equation 2 yields the
equations dx/x — a\dz and dy/y = a^dz, which
are simply the familiar Fechnerian expressions
of Weber's law, with ai and a^ proportional to
the Weber fractions for the stimulus and re-
sponse dimensions.6 When integrated, these
equations yield Fechner's logarithmic relation
between stimulus intensity and sensation (see
the Appendix ). Thus, Equation 2 embraces
the derivation of S. S. Stevens' law from
logarithmic functions applied to both input
and output (Ekman, 1964; MacKay, 1963;
Treisman, 1964; see also Fechner, cited in
Stevens, 1957). However, this derivation does
not require that f(z) = 1; hence, it is con-
sistent with Phillips' (1964) logical demon-
stration that no two-stage (i.e., stimulus-
sensation-response) power law model can
uniquely define the relation between stimulus
(or response) and sensation.

Brentano (e.g., see Stevens, 1975, p. 234)
suggested that JNDS yield a sensation that is
proportional to the initial sensation level
rather than being constant. This implies that
in Equation 2, f(z) = 1/z. Integrating both
sides of Equation 2a then yields In z = (1/fli)
X In x + Ki — (l/fli)^C2, which is a power
function but now relating stimulus and sensa-
tion (rather than response). It is noteworthy
that the same slope-intercept relation holds
for this one-stage derivation as for the two-
stage derivation. Hence, if the response mea-
sure is identified directly with a sensation,

as S. S. Stevens (1957) proposed for magni-
tude estimation, the convergence property can
be deduced directly. Unfortunately, the simple
one-stage model cannot easily accommodate
the relations between different types of psy-
chophysical scales. However, Brentano's as-
sumption reappears in the two-stage analysis
of these relations, as we shall see.

The Fechner's law form for Equation 2
[i.e., f(z) = 1] suggests the hypothesis that
the sensitivity parameter may be proportional
to the Weber fraction (cf. Teghtsoonian, 1974),
although this is not logically forced. It might
be that JNDS on one continuum, electric shock,
say, have a larger effect on sensation than
JNDS on another, say, luminance. This proposi-
tion is readily tested, since if at bears a fixed
proportion to the corresponding Weber frac-
tion, then for any pair of stimulus and re-
sponse dimensions, s = a<ija\ = W*/W\; hence,

sWi = Wi, (9)

where 5 is the exponent of the power function,
and Wi and W-i are the Weber fractions for
the stimulus and response dimensions, respec-
tively. If number is the fixed response dimen-
sion (as in magnitude estimation), Equation 9
implies that the product of the exponent times
the Weber fraction for the stimulus dimension
should be constant. Teghtsoonian (1974) has
provided evidence that it is. For example, in
his Table 1, he presents values of W and s for

8Auerbach (1971; see also Luce & Edwards, 1958)
has shown by adding up JNDS that if Weber's law
applies to both dimensions in the cross-modality
matching experiment, then the power law exponent
will be s = In (1 + Wi)/ln (1 + W,), where Wi and
W2 are the Weber fractions for the two dimensions.
The present derivation yields s = Wi/Wi (= Oi/ds).
This apparent contradiction is due simply to the differ-
ence between adding up discrete JNDS and adding up
JDNS that are assumed to be infinitesimal, as implied by
Fechnerian integration. The contradiction is imme-
diately resolved by noting that the series expansion of
ln(\ + W) = W- W*/2 + W/3 - ..., (-K W ̂  1),
since when W is small, terms in W and above can be
neglected; whereupon, In (1 + W) = W. Since the
actual value for W depends on the percentile criterion
used, and this is simply a matter of convention, W can
in practice be made as small as we please (cf. Eisler,
1963b). If the criterion is chosen to be within the
linear range of the psychometric function, relative
values of W for different continua will be independent
of the criterion.
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nine perceptual continua. The value of sW\
computed from these data ranges from .026 to
.034 (compared to a range from .026 to .033
for a comparable quantity computed using
Auerbach's method [see Footnote 6]). Note,
however, that in terms of the present theory,
Teghtsoonian's finding implies only that Wi
= kdi, where k is approximately constant
across perceptual dimensions; the finding does
not require that Fechner's law hold, since /(z)
need not be denned for the relation between
Wi and the exponent of the power function to
be fixed.

Thus, neither the power law data nor
Teghtsoonian's invariance can uniquely define
the form of /(z) in the present theory. How-
ever, a choice between the two simple possi-
bilities can be made by looking at the differ-
ences between what Marks (1974a) has re-
cently termed Type I (ratio) and Type II
(partition) scales.

Partition Scales

The experiments from which power law re-
sults have been produced—magnitude estima-
tion and production and cross-modal matching
—have been analyzed here as instances of
matching: The subject is presumed to match
the sensation produced by a stimulus to that
produced by another stimulus, either a number
or a stimulus on another dimension. This ap-
proach allows for the possibility that other
instructions may induce the subject to perform
other operations with his sensations. The
simplest such operation is "differencing," that
is, the equation of perceptual differences along
a single stimulus dimension.

A more complicated possibility is the com-
putation by the subject of sensation ratios.
S. S. Stevens, because of his theory of measure-
ment, has tended to assume that magnitude
estimation, because it yields a ratio scale,
must therefore involve actual judgments of
stimulus or sensation ratios. However, the
present theory shows that the power law can
be derived by assuming only matching by the
subject. Wagenaar (1975) has also argued for
the matching interpretation on purely em-
pirical grounds. Moreover, Schneider, Parker,
Farrell, and Kanow (1976), in an experiment
explicitly designed to require judgments of

loudness ratios, showed that their subjects
were actually judging sensation differences.
Hence, the assumption that subjects can com-
pute sensation ratios is neither required by
theory nor well supported by experiment.

Partition scales are produced when subjects
are required to place stimuli into a fixed
number of categories (category scaling) or
to divide a stimulus interval into equal-
appearing parts (equisection). The scales that
result from these operations are nonlinearly
related to magnitude scales, as well as being
especially subject to memory-related "hys-
teresis" and stimulus-spacing effects (Ander-
son, 1974; Marks, 1974a; Parducci, 1974;
Stevens, 1975).

S. S. Stevens and others (e.g., Indow, 1974;
Marks, 1974a; Torgerson, 1961) have sug-
gested that partition scales are the result of a
differencing operation by the subject. That is,
instead of matching sensations (as implied by
Equation 2 here) or matching response ratios
to stimulus ratios, perhaps the subject is
equating sensation differences. Equation 2
makes quite definite predictions about the
form of the category scale to be expected,
given the differencing assumption and an as-
sumption about the form of /(z). In the
simplest case, where /(z) = 1, the predicted
relation is logarithmic (cf. Torgerson, 1961).
This can be seen as follows for the case of
bisection :

Let Zi, zs, and zs be the sensation values
produced by three stimuli, where Si and st are
the anchor stimuli, and s% is the variable
stimulus. Then, if the subject responds to the
terms of the bisection experiment by differenc-
ing, s% is adjusted so that zi — z-i = 22 — Zj.
Integrating both sides of Equation 2a and re-
arranging then yields

In x\ — In Xi = In x^ — In x*. (10)

Hence, equal stimulus ratios yield equal sensa-
tion differences, a logarithmic scale.

If /(z) = 1/z, a similar set of manipulations
yields

Xi X% ===~ A/2 $" j V -^ *•)

that is, equal sensation differences are defined
by equal differences between stimulus values
raised to a power. Equation 10 is consistent
with Fechner's version of Weber's law, and
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Equation 11 with Brentano's version or with
a Fechnerian version of the "near-miss" power
function form of the law (see the Appendix).

These results, and others for different as-
sumptions about /(z), can be obtained more
directly by noting that the differencing as-
sumption implies that the category scale is
linearly related to sensation. Hence, simply
integrating Equation 2a for a given /(z) at
once yields the form of the category scale. For
example, if /(z) = 1/z, then,

z = - K0), (12)

where K\ and KQ are constants of integration.
The translation from 2 to a particular category
scale requires a further arbitrary constant K
added to z to allow for the fact that subjects
will partition stimuli into categories labeled
1 — N in the same way as they will into
categories labeled M + 1 — M + N.

These conclusions about the relations be-
tween category, JND, and magnitude scales are
also compatible with a general model for intra-
individual scale relations proposed by Eisler
(1963a; see the Appendix).

Partly because of the sensitivity of partition
scales to context and time effects7 and partly
because of their equivocal conceptual status (at
least within S. S. Stevens' scheme), there has
been disagreement on the proper form for
partition scales. Earlier workers plumped for
the logarithmic form (e.g., Luce & Galanter,
1963; Titchener, 1905). However, more recent
work (e.g., Marks, 1968, 1974a; Schneider &
Lane, 1963; Ward, 1975) favors a power func-
tion of the form

C + K = Ax'', (13)

where C is the category value, sc is the "virtual
exponent" (generally smaller than the magni-
tude estimation exponent), and A and K are
constants. Given that by the differencing
assumption, C is linearly related to sensation
level z, Equation 13 is then equivalent to
Equation 12 and also to Equation A4 (see the
Appendix), which is derived from the near-
miss power function version of Weber's law.

Thus, the two-stage theory embodied in
Equation 2 can be developed in two parallel
directions, each internally consistent and de-
pendent on the form of /(z). On the one hand,
if Weber's law holds, JNDS are subjectively

equal \_j(z] = 1], and partition scales involve
differencing, then magnitude estimation and
cross-modal matching procedures will yield
power functions, and partition scaling will
yield a logarithmic relation between response
and stimulus variables. On the other hand, if
Brentano's version of Weber's law (sometimes
called Ekman's law) holds [/(z) = 1/z], then
magnitude estimation and cross-modal match-
ing procedures will yield power functions ; and
partition scaling, with an arbitrary constant
added to the category value, will also yield
power functions.

On the assumption that the power form is
correct, it is possible to deduce a relation be-
tween the exponent of the category scale sc and
the exponent for the magnitude estimation
(ratio) scale sm. Comparison of Equations 4 and
12 shows that

tfc, (14)

where a^ is the sensitivity parameter for num-
ber (the response dimension in magnitude esti-
mation). «2 can be estimated by the ratio
sm/sc for a variety of continua or from the sc

value for number, given that sc = \/a\. Marks
(1968) in his Table 1 gives estimates of sr, and
sm for nine pro the tic continua. The ratio
sm/sc ( = aj) ranges from 1.42 to 2.54,8 with
four of the values lying between 2.26 and 2.54.
The value of !/$„ for the dimension of number
is 1.85. The fact that sc for number is less than
unity is consistent with the fact that category
scale exponents are reliably lower than their
ratio scale counterparts. The values of sc for
loudness and brightness were estimated for a
number of conditions differing in the number
of categories used and other procedural details.
These estimates vary quite a bit depending on
the condition; for example, sc estimates for
brightness range from .055 to .22. Brightness
and loudness are the two modalities for which
most information is available, and the agree-
ment here is quite good: The median values
of sc for these two dimensions from Marks'
table are .13 and .25 compared with accepted

'This characteristic is consistent with the greater
memory load imposed by the differencing operation.

81 used the median s» estimates for brightness and
loudness and the estimate from the linear spacing con-
dition for repetition rate.
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sm values of .33 and .6, yielding a-i values of
2.54 in the first case and 2.40 in the second.
Hence, the constancy of «2 predicted by the
present model is confirmed as well as can be
expected.

The predictions of the present theory, on
the assumption that f(z) = 1/z, are in accord
with Marks' (1974a) conclusion that "the
psychophysical functions that relate Type I
and Type II scales to their corresponding
physical scales are in both cases power func-
tions, but the exponents that govern Type I
functions are typically about twice as large"
(p. 358). Thus, Equation 2 provides a natural
representation for the relations among parti-
tion, magnitude, and JND scales on the as-
sumption that Weber's law holds and that
Brentano's conjecture is correct.

The formulation has some implications for
the near-miss version of Weber's law that
appears to apply to loudness under some con-
ditions. If Fechner's assumption is correct,
then the theory predicts that the sensation
function will be a power function; if the rela-
tion between sensation and sound intensity is
to be positive, then the exponent of the JND
function should be negative, as it is (see the
Appendix). Comparison of Equations A4 and
11 or 12 shows that the exponent of the near-
miss power function should be predictable
from se, since sc = \/a\ = — n. Jesteadt, Wier,
Si Green (1977) present data on n for loudness
for their study and five others. The values
range from —.035 to —.125. The predicted
values range from —.13 to —.50, using the sc

data in Marks' (1968) Table 1; all are too
large. A possible reason is that Brentano's
assumption about the relation between stimu-
lus (x) and sensation (z) may be better than
Fechner's; it yields an expression of the form
2 = a exp(j3x~") for the near-miss form (see
the Appendix). When »| is small, as is the
case for loudness, and x ranges over two or
three log units, this function is so close to a
power function, with exponent somewhat
larger than n \ , that the two may not be
separable empirically.

The present theory shows the power law to
be quite independent of the form of /(z), and
only two simple possibilities have been con-
sidered here. Brentano's version appears to be

better than Fechner's, but it may be that still
another alternative will be better than both
and will resolve the remaining discrepancies.
It may even be that /(z) is not fixed, but
depends on contextual factors, a distressing
possibility for classical psychophysicists, but
one that is not unlikely, given the strong se-
quential and other contextual effects that can
be demonstrated in many scaling situations.

Conclusion

In operant conditioning, power function re-
lations between response rates are often found
in situations that involve successive compari-
son between each response and a third com-
peting class of activities. Examples are certain
choice studies and numerous experiments on
rate-dependent drug effects. Equation 2 pro-
vides a natural account of this comparison
process and explains the convergence property
of many sets of power functions as well as
dealing with the dimensional problems with the
simple power function (Equation 1).

Equation 2 can also provide an account of
the psychophysical power law, which is inter-
preted as the outcome of matching between
the sensations produced by the stimulus and
response. The approach immediately accounts
for converging sets of power functions and,
with the aid of a differencing assumption and
an assumption about the form of the sensation
function f(z), can also account for the ap-
proximately fixed ratio between the exponents
for magnitude (Type I) and partition (Type
II) scales. The approach may also predict
qualitative properties of the near-miss form to
Weber's law, although there are still quantita-
tive discrepancies that remain to be resolved.

Luce (1972) has pointed out the lack in
psychophysics of a system of invariant rela-
tions among the measures that might justify
the assimilation of the subject to classical
physics. The simple theory embodied in Equa-
tion 2 begins to meet this criticism. However,
the auxiliary assumptions (of matching or
differencing) required to relate the theory to
data tend to favor Luce's view of psycho-
physics as the study of a measuring instrument
rather than Fechner's more grandiose vision
of a field akin to physics.
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Appendix

Sensation Functions and Just-Noticeable Difference Functions

The relation between sensation, which is
merely an intervening theoretical variable, and
physical variables can be reduced to simple
terms if our objective is just to explain the
outcomes of various operations (i.e., scaling
tasks) applied to the subject and, particularly,
to understand the relations among them (cf.
Luce & Edwards, 1958). Consider first the
relation between the increment in a physical
stimulus that is just noticeable, dx, and the
value of the base stimulus x. Two simple pos-

sibilities have been reported. First, Weber's
law states

dx/x = A, (Al)
where A is a constant. More recently, the
following near-miss form of Weber's law has
been reported for the intensity discrimination
of pulsed sinusoids (Jesteadt et al., 1977):

dx/x = A(x/xa)
n, (A2)

where n is negative and close to zero, and XQ
is the threshold stimulus value. What do these
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two versions of Weber's law imply about the
relation between the hypothetical sensation
variable z and the value of the physical stimu-
lus xl

This question can be answered only if some
assumption is made about the relation between
a just-noticeable increment in the physical
stimulus and the increment in sensation as-
sociated with it. The simplest assumption is
Fechner's, namely, that all JNDS yield the
same constant increment in sensation level.
Given this assumption, it remains simply to
define the physically invariant unit that cor-
responds to a JND and integrate the result to
obtain the expected relation between a and x.
(Numerous papers have been written on the
legitimacy or otherwise of Fechnerian integra-
tion [e.g., Eisler, 1963b; Falmagne, 1971;
Krantz, 1971; Luce & Edwards, 1958], The
current consensus appears to be that the pro-
cedure is legitimate, subject to certain safe-
guards.) For Weber's law, Equation Al gives
this at once:

1 JND = dz = ( l / A ) ( d x / x ) ;

hence, integration yields

z+ Ci = (1/04) (In x + C2), (A3)

which is Fechner's law. For the near-miss
form, rearrangement yields

1 JND = dz = (x0
n/A)(dx/xn+1);

hence, integration yields

« + Ci = (*o"A4 )[(*-"/- ») + C»], (A4)

which is a power function of the form a + K\
= Kzxm, where K\ and KI are constants, and
m is the exponent (which is positive for loud-
ness because n is negative).

If Brentano's conjecture is correct, then dz
is replaced by dz/z, and Weber's law yields
2 = x

l<A . exp(Kt/A — K I ) , a power function.
The near-miss form yields an expression of the
form z = a exp(J3x~n), where a and /3 are
constants.

Relation to the General Psychophysical
Differential Equation

Eisler (1963a; Eisler & Montgomery, 1974)
has proposed an equation to describe the
intraindividual relation between different psy-
chological scales (e.g., magnitude and category
scales). If u and v are the scale values, and
<ru(u) and <r,(v) are the corresponding Weber
functions, estimated by the SDs of intraindi-
vidual judgments, the equation is

du
dv

(AS)

Eisler's formulation can be reconciled with the
present one as follows. First, Equation 2 is
rewritten in its most general form, which is
the following pair of separable differential
equations:

dx dz ,. , .
T7IT = TTTT (A6a)

and
dz_

h(y) (A6b)

The functions /'[= I//(a)], g, and h can be
regarded as Weber functions in Eisler's sense.
For example, if Weber's law holds for all three
variables, then/'(a) = z, g(x) = a\x, and h(y)
= aiy. (Note that Equations A6a and A6b
yield the power law for magnitude estimation
only if Weber's law holds for x and y.) We can
therefore rewrite Equation A6b as follows:

dy dz
(A7)

where <ry(y) and <r,(a) are the Weber functions
for y and z. From arguments in the text, it is
clear that y and z are represented (but for
additive constants) by the subject's magnitude
and category judgments, respectively. Hence,
granted that the trs can be estimated from
judgmental SDs, Equation A7 is equivalent to
Equation AS, the general psychophysical dif-
ferential equation.
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