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Abstract. AMS02 experiment has collected data on Cosmic Rays for three years on the

International Space Station, since its installation on May, 19 2011. The fluxes of elec-

trons, positrons and protons, together with the results on Boron and Carbon ratio, will be

discussed, as well as their implication in terms of Cosmic Ray propagation and in terms

of limits on the existence of Dark Matter in the electroweak energy range.

1 Introduction

The AMS-02 experiment is a multi-purpose particle detector experiment mounted on the International

Space Station (ISS). It has been gathering data since May 2011 detecting and identifying cosmic-ray

electrons, positrons, protons, anti-protons, heavy nuclei up to Zinc (Z=30) and photons. Recently,

first results on the measurement of the cosmic-ray positron fraction and on the absolute fluxes of

electrons and positrons have been published [1–4] and will be reviewed in this presentation. The

positron fraction has been measured with unprecedented accuracy up to 500 GeV and emphasizes the

need of a primary source of positrons to explain the rise of the positron fraction at high energies.

Investigation of such a source must include a description of the individual fluxes of cosmic ray

(CR) electrons and positrons, but also protons and Helium, which are the most abundant component

of the global CR flux. At the same time, understanding the propagation of CR in the galaxy is fun-

damental to establish the behaviour of the standard secondary production. Particularly sensitive to

this is the ratio B/C, being Boron an almost pure product of the interaction of primary nuclei, mostly

Carbon, with the Interstellar Medium (ISM).

In section 2 the AMS02 Detector and its capability of discriminating positrons from protons as

well as positive from negative charges is described. Section 3 reports the spectrum of electrons and

positrons, while section 4 is dedicated to hadron physics: protons, Helium and B/C.

2 The AMS-02 Detector

The AMS-02 detector consists of nine planes of precision silicon tracker, with 6 planes of the inner

tracker located inside the bore of a permanent magnet, a transition radiation detector (TRD), four

planes of time of flight counters (TOF), an array of anti-coincidence counters (ACC) surrounding the

inner tracker, a ring imaging Cherenkov detector (RICH) and an electromagnetic calorimeter (ECAL).
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For a detailed description of the detector see [1] and references therein. Here only the parameters

relevant for the different analyses will be described. In particular, the TRD and ECAL capabilities of

discriminating positrons from protons, the tracker capability in determining the charge sign and the

charge (Z) resolution of the various subdetectors will be discussed in the next sub-sections.

2.1 ep rejection

There are three main detectors which allow for a significant reduction of the tremendous proton back-

ground in the positron and electron samples, the so called ep rejection. These are the TRD, the ECAL

standalone and the ECAL in conjuction with the tracker through the comparison of the independent

measurements of Energy and Momentum (E/p ratio).

2.1.1 ep rejection with TRD

The TRD measures the transition radiation which is emitted by relativistic particles when crossing

boundaries between materials having a different dielectric constant [5].

In order to differentiate between electrons and protons, up to 20 signals from TRD layers are com-

bined in a TRD estimator formed from the ratio of the log-likelihood probability of the e± hypothesis

to that of the p hypothesis. The probabilities are calculated from the probability density function f (s)

of the TRD signals s for each species as Px =
n
√
Πi fx(si), with x = e±, p. The resulting rejection

power for a 90% efficiency for e± measured in orbit is shown in fig.1 and it exceeds 103 for most of

the momentum range. Note that the proton rejection power can be readily improved by tightening the

selection criteria with reduced e± efficiency, as shown by the line at 1 TeV in the same figure.

Figure 1. Proton rejection power at 90% signal efficiency with TRD detector.
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2.1.2 ep rejection with ECAL

The discrimination between electrons and protons in ECAL is based on the different characteristics

of electromagnetic and hadronic showers. For this reason, ECAL is segmented in cells of 9 × 9 mm2,

corresponding to 0.94 X0 (radiation lengths) in the longitudinal direction and to 0.5 RM (Moliére radii)

in the transveral one.

A set of variables which describe the shower development, like the transversal width, the number

of hits, the fraction of energy per layer, etc., are combined together by means of a multivariate analysis

in order to provide the ECAL estimator shown in fig.2.a . The statistical technique used for combining

the input variables into a single estimator is the Boosted Decision Tree (BDT) [6].

In addition, leptons and hadrons can be discriminated by the ratio E/p, where E is the energy

measured by the ECAL and p the momentum measured by the tracker. In fact hadron showers tend to

have a larger leakage than the electromagnetic ones, and therefore a smaller value of E/p.

By combining a cut on the ECAL BDT at 90% efficiency on the signal with a cut on E/p > 0.75,

the ep rejection of fig.2.b is obtained. When combined with the TRD rejection of fig.1, the required

ep rejection of 105 − 106 is reached.

(a) (b)

Figure 2. a) ECAL estimator for 100 GeV electrons and protons selected by TRD and tracker sign. b) Proton

rejection for a combined cut on ECAL estimator and on E/p>0.75 (energy-momentum matching).

2.2 Charge Confusion

A fraction of charged events, depending on the particle momentum, are wrongly reconstructed as

positive tracks being negative and viceversa. There are two effects which can induce this charge

confusion (CC). The first one is the finite tracker resolution in measuring the rigidity R of the track,

shown in fig.3.a. This effect, called spillover, is parametrized and it turns out to be negligible at 300

GeV, while at E=1 TeV it is 2%.

The second effect is the production of secondary tracks along the particle path, due to interactions

with the 0.6X0 of the detector material above ECAL. These secondary tracks create additional hits

close to the ones due to the main particle; as a consequence a CC due to wrong hits association can

be induced. Differently from the spillover effect, this one is different for electrons and protons, as the

synchroton emission of secondary particles is proportional to the particle mass squared. However it

can be quantified by building a tracker estimator. very similar to the one used for ECAL. It is built by
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(a) (b)

Figure 3. a) Tracker rigidity resolution on protons. b) Charge Confusion due to wrong hit association.

using a set of input variables which are sensitive to the layer activity: number and distance from the

main track of the hits in each tracker plane, χ2 of the tracker fit, number of hits in TRD, etc. These

variables are combined by the BDT technique in a single classifier, which has been tested on Test

Beam data, where the correct track sign is known A good agreement of the classifier between data

and Montecarlo (MC) is observedm as shown in fig.3.b, which allows us to use MC to determine the

fraction of CC events as a function of energy.

2.3 Z reconstruction

The value of the nuclear charge Z of incoming particles is measured, in AMS, by many subsystems.

The first tracker layer plane, on the top of the detector, determines the charge by the dE/dx released in

the silicon. The same technique, but with different materials, is used in TRD – energy loss in Xe/CO2

gas mixture – and in the TOF – two layers of plastic scintillators. The RICH, instead, determines Z

by the number of photons in the Cherenkov ring. Figure 4 shows the AMS Z-determination power for

the different subsystems for charges up to Oxigen.

3 Leptons

3.1 The positron fraction

The positron fraction is determined in ECAL energy intervals. The binning is chosen according to

the energy resolution measured at Test Beam: ΔE/E = 10.4%/
√

(E) ⊕ 1.4%, where the symbol ⊕
indicates the sum in quadrature [7].

In every energy bin, the 2-dimensional reference spectra for e± and p are fitted to data in the 2

dimensional (TRD estimator-log(E/p)) plane. The reference spectra are determined from high statis-

tics, clean electron and proton data samples, selected using ECAL information, and from Montecarlo

simulation.

This template fit method, with respect to the more standard sequential cut one, has the advantage

of using all the signal statistics thus minimizing the statistical error. It can be profitably used in the
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Figure 4. AMS Z reconstruction capability.

AMS context due to the redundancy in the detector which allows for the selection of clean samples

of electrons and protons in TRD by using ECAL and viceversa. The systematics introduced by this

procedure, as well as all the other sources of systematic errors, is discussed in detail in [1].

The measured positron spectrum is shown in fig.5.a, with a zoom of the high energy part in fig.5.b.

(a) (b)

Figure 5. a) Positron fraction. b) Positron fraction above 20 GeV

The positron fraction is steadily increasing from 10 to 200GeV, then it clearly starts to flatten out.

The AMS-02 spectrum has the unique accuracy and energy range to provide accurate information on

new phenomena.

3.2 Electron and Positron fluxes

The flux of cosmic ray electrons or positrons φ±e in energy bins ΔE can be determined as

φ±e =
N±

e

Ae f f · εtrig · εsel · T · ΔE
, (1)
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with the number of mesured electrons or positrons N±
e , the effective acceptance Ae f f , trigger efficiency

εtrig, selection efficiency εsel and measurement time T .

The width ΔE of the energy bins are chosen sufficiently large with respect to the energy resolution

of the ECAL. This minimizes necessary corrections to the fluxes by unfolding. At high energies larger

bin sizes ensure sufficient counting statistics in each bin. The number of events N±
e in each bin are

evaluated as for the positron fraction analysis.

A loose preselection is used to define stable detector operations for the whole data set. Further

quality cuts define a high quality data set with excellent and unambiguous event reconstruction. Events

are selected by requiring a track in the TRD and in the tracker, a cluster of hits in the ECAL, and a

measured velocity β > 0 in the TOF consistent with a downward-going Z = 1 particles; 30 million

events pass this selection.

The ECAL estimator and energy-momentum matching are used to further reject protons. The cuts

are chosen to reduce the proton background significantly while keeping a high efficiency on signal

events. The remaining event samples of electron and positron candidates are fitted with respect to the

TRD Estimator by using templates which describe signal and background.

An example of such a fit for a particular energy interval around E = 100 GeV is shown in fig.6.

Note that the ratio between positron and proton events, originally at the 10−4 − 10−3 level, depending

on the energy, is � 1 : 1 after the preliminary cuts on ECAL variables and on E/p.

Figure 6. Separation power of the TRD estimator at energy E=100 GeV.

Details on how the geometrical acceptance and efficiencies are evaluated are reported in [2]. The

resulting fluxes, when multiplied by the third power of the energy, are shown in fig.7].

The electron flux measurement extends up to 700 GeV. When multiplied by E3, it is rising up to

10 GeV and it appears to be on a smooth, slowly falling curve above. The measurement is in good

agreement with the previous data reported by the PAMELA and HEAT experiments. The differences

at low energies can be attributed to the effect of solar modulation.

The positron flux measurement extends up to 500 GeV. When multiplied by E3, it is rising up to

10 GeV, from 10 to 35 GeV the spectrum is flat and above 35 GeV rises again. The spectral index
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Figure 7. Total flux multiplied by E3 for electrons (left) and positrons (right).

and its dependence on energy is clearly different from the electron spectrum, and it has the intriguing

feature of an index break at 35 GeV.

The total electron flux, intended as the sum of electrons plus positrons, can also be measured by

AMS. In this case, the effect of charge confusion is not relevant, therefore the quality cuts applied to

select good tracks can be realeased, increasing the efficiency of the analysis. The spectrum can thus

be extended up to 1000 GeV (see [3]). The total electron flux, multiplied by E3, is shown in fig.8. The

spectrum doesn’t show and evidence of structures and the spectral index seems to be constant above

50 GeV, differently from what observed by other experiments. We have verified that the all electron

spectrum is compatible with the sum of the positron and electron spectra, in spite of the fact that the

two analyses are completely independent and use different procedures.

Figure 8. All electron flux multiplied by E3.
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4 Hadron physics

Hadrons are the most abundant particles within the cosmic ray flux; they contribute to 99% of the

observed flux of CR.

The general formula to determine their flux is the same as the one for electrons (eq.1). The main

difference is that the flux is measured as a function of the tracker rigidity, since dimensions and weight

forbid the usage of hadron calorimetry in space. The tracker reaches its Maximum Detectable Rigidity

(MDR), defined as the rigidity at which the relative error δR/R is 100%, at R = 2.0 TeV for protons

and at R = 3.2 TeV for Helium. At these rigidities, the bin to bin migration is not negligible, therefore

an unfolding procedure is required. A preliminary plot of the measured fluxes, to be confirmed by

published papers, is shown in fig.9. Details on the selection, on the flux determination and on the

unfolding procedure, as well as a discussion of the comparison with previous data at high energies,

can be found in [10].

Figure 9. a) Proton flux, multiplied by E2.7
kin

in the kinetic energy interval [1-1800] GeV. Note that this unit has

been used, instead of rigidity, for comparison with older results, in particular in the low (<10 GeV) energy part.

b) Helium flux, multiplied by R2.7 in the rigidity interval [2-3000] GeV.

Figure 10. B/C ratio in the kinetic energy interval [0.5,670] GeV/n.
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4.1 B/C ratio

The excellent AMS ability in determining the Z charge of nuclei, together with its redundancy in this

measurement (see fig.4), allow for the measurement with high precision and in a large energy range

of the flux of nuclei above Helium.

Of particular importance is the determination of the fraction of secondary nuclei, i.e. elements

which are produced by the interaction of the primary ones with the ISM. A typical example is the

Boron (Z=5), which is mostly produced by Carbon (Z=6) interaction with ISM. The ratio B/C, as

a function of the rigidity, or kinetic energy, of the particles, provides information on the cosmic ray

diffusion properties within the galaxy.

The AMS meaurement is shown in fig.10. A discussion of the possible change of slope in the ratio

around R = 30 GeV is in [10].

5 Conclusions

Data recorded in the first two years of mission by the AMS experiment have been analyzed and the

absolute spectra of protons, Helium, electrons and positrons measured, together with the positron

fraction and the B/C ratio. All there results show the precision and the large energy range covered by

AMS. Even more, it shows that with a single detector many different channels can be determined at

the same time, thus strongly constraining the models of Cosmic Rays propagation in the galaxy and,

possibly, models of new physics, both of astrophysical and of particle physics origin.
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