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ABSTRACT
We address the problem of energy consumption reduction
for wireless sensor networks, where each of the sensors has
limited power and acquires data that should be transmitted
to a central node. The final goal is to have a reconstructed
version of the data measurements at the central node, with
the sensors spending as little energy as possible, for a given
data reconstruction accuracy. In our scenario, sensors in
the network have a choice of different coding schemes to
achieve varying levels of compression. The compression al-
gorithms considered are based on the lifting factorization of
the wavelet transform, and exploit the natural data flow in
the network to aggregate data by computing partial wavelet
coefficients that are refined as data flows towards the central
node. The proposed algorithm operates by first selecting a
routing strategy through the network. Then, for each route,
an optimal combination of data representation algorithms
i.e. assignment at each node, is selected. A simple heuris-
tic is used to determine the data representation technique
to use once path merges are taken into consideration. We
demonstrate that by optimizing the coding algorithm se-
lection the overall energy consumption can be significantly
reduced when compared to the case when data is just quan-
tized and forwarded to the central node. Moreover, the pro-
posed algorithm provides a tool to compare different routing
techniques and identify those that are most efficient overall,
for given node locations. We evaluate the algorithm using
both a second-order autoregressive (AR) model and empir-
ical data from a real wireless sensor network deployment.

Categories and Subject Descriptors
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1. INTRODUCTION
Wireless Sensor Networks (WSN) can offer mobility and

versatility for a variety of applications, such as object de-
tection/tracking, environment monitoring and traffic con-
trol [1]. The main challenge is that they often rely on bat-
teries for power supply and limiting energy consumption be-
comes essential to ensure network survivability.

When data is acquired at multiple correlated sources, ag-
gregation involving in-network data compression can offer
a more efficient representation of measurements. By signif-
icantly reducing the amount of information that needs to
be transmitted over the network, a potentially large reduc-
tion in energy consumption can be obtained. Prior work
has addressed a number of distributed source coding (DSC)
methods as a means to decorrelate data. While some rely
on information exchange and additional computation inside
the network to propose distributed versions of transforms,
such as Karhunen-Loève [7] and Wavelets [17], others pro-
pose schemes that do not require internode communication,
such as networked Slepian-Wolf coding [12, 6]. In general,
DSC techniques face a trade-off between the cost for i) pro-
cessing at each node to achieve compression and ii) trans-
porting information (bits) to to the sink. This trade-off has
also been addressed by previous research. For example, [11]
provides an analysis on the regions in a network that should
favor compression over routing based on the impact of spa-
tial correlation of the measurements. The performance of
aggregation under a more general data model is considered
in [8].

However, while previous works have typically provided a
number of methods to decorrelate data in a network and/or
individually analyzed their performance, to the best of our
knowledge, none have addressed the problem of finding an
optimal assignment of compression algorithms to nodes, in
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Figure 1: (a) Method “A”: a simple encoding
scheme is used; 12 bits are sent to the sink. (b)
Method “B”: a locally more expensive method is
used, but better compression is achieved; 10 bits
are sent to the sink. The cost of transmitting k bits
over a distance d was computed as kd2.

the sense of minimizing the energy consumption, when dif-
ferent methods are available. Since the distortion/energy
consumption trade-off also depends on factors such as net-
work topology and medium characteristics, different coding
methods may be better suited for different parts of the net-
work. These methods can consist of simple coding schemes
such as DPCM, or more complex ones, such as Wavelet
transforms with an arbitrary number of levels of decompo-
sition.

To illustrate how the network topology can influence the
performance of a given coding scheme, consider a simple ex-
ample, illustrated in Fig. 1. A group of 3 sensors in an array
of equally spaced nodes (at a distance d of each other) is sep-
arated from the sink by N hops, and might choose between
two coding schemes to decorrelate data. Method “A” is
limited in terms of performance, but requires a smaller local
cost (that takes into account additional transmissions and
local computation) from the group. Method “B” is locally
more expensive energy-wise, but achieves better decorrela-
tion, i.e., requires fewer bits. It is easy to show that, in this
example, if the three sensors are more than 4 hops away from
the sink, method “B” will lead to a lower energy consump-
tion. In general, it is expected that while sensors that are far
from the sink will benefit from using schemes that require
a smaller average number of bits per sensor for a given dis-
tortion, sensors closer to the sink should use coding schemes
that offer smaller local cost.

A similar conclusion is reached in [6], where a model is
chosen for the data and the coding performance used in the
analysis is based on entropy. A significant contribution of
our work is that i) it makes no modeling assumptions about
the underlying data statistics (instead all is required is train-
ing data) and ii) the algorithm directly compares the per-
formance of actual coding schemes (instead of considering
entropy) and provides more realistic network cost estimates.

In [2, 3] we introduced energy-aware distributed wavelet
compression algorithms for WSN [2] that aimed at exploit-
ing the spatial redundancy in sensor data. These algorithms
could be easily extended to exploit any existing temporal
redundancy as well. This could be accomplished by using a
separable implementation of the wavelet transform (such as
those typically used when applying the wavelet transform
to images), which incorporates temporal filtering in addi-
tion to the spatial filtering we describe in this paper. In
our previous work we also introduced a partial coefficient
approach based on the lifting implementation [3]. Our goal
was to generate the wavelet transform coefficients at sensors,
at the expense of energy spent for a few “local” transmis-

sions, i.e., data transmissions between neighboring nodes
that are needed to actually compute the wavelet transform
coefficients, since the transform operates by filtering “across
nodes”. If the original data has sufficient spatial correlation,
after quantization the wavelet coefficients can represent the
original measurements using fewer bits, and the overall en-
ergy consumption in the network is lowered by reducing the
amount of information that has to be transported. The pro-
posed partial coefficient approach [3] essentially allows all
wavelet transform operations to be causal, in the sense of
that data is processed as it is being forwarded to the cen-
tral node, so that only data from nodes already traversed
is used to compute the wavelet coefficients. This requires
the computation and quantization of “partial” coefficients,
which are transmitted over a few hops, before being used to
generate the final wavelet coefficients. In future discussions,
we refer to partial coefficients as the coefficients that were
computed at a node with insufficient data, and still need
to be refined at other nodes until they become final, or full

coefficients.
In this work, we consider networks where each sensor can

use one of several different compression schemes, which in-
clude wavelet transforms with different number of levels of
decomposition, or simpler approaches, like raw (quantized)
data transmission or DPCM. We provide a framework that
allows finding, for a given network topology, which among
the available coding methods is more suitable for each of
the sensors, such that the whole network operates with a
minimum cost to achieve a desired distortion level. Our
method is flexible enough to accommodate any network con-
figuration (topology). We believe that the basic principles
of our approach could be applied to other data representa-
tion selection among other sets of coding schemes (i.e., not
limited to wavelets) that operate by exploiting spatial re-
dundancy (in methods that do not involve data exchanges
between nodes in the compression process, the optimization
becomes straightforward). However, the exact formulation
of the optimization problem, and the suitability of dynamic
programming techniques to solve it, will depend on the spe-
cific algorithms involved.

1.1 Related Work
One of the first works to propose combining routing with

standard vector compression techniques was [16]. The cor-
related data gathering problem and the need for jointly op-
timizing the coding rate at nodes and routing structure is
also considered in [13]. The authors provide analysis of
two strategies: the Slepian-Wolf or DSC model, for which
the optimal coding is complex(needs global knowledge of
correlations)and optimal routing is simple(always along a
shortest path tree) and a joint entropy coding model with
explicit communication for which coding is simple and op-
timizing routing structure is difficult. For the Slepian-Wolf
model, a closed form solution is derived while for the ex-
plicit communication case it is shown that the optimization
problem is NP-complete and approximation algorithms are
presented. In [11], the approach is to simplify the opti-
mization for the explicit communication case by using an
empirically obtained approximation for the joint entropy of
sources. The optimal routing structure is then analyzed
under this approximation. The analysis demonstrates that
the optimal routing structure also depends on where the
actual data compression is performed; at each individual
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Figure 2: Data transitions for partial coefficient ap-
proach.

node or at “micro-servers” acting as intermediate data col-
lection points. In [15], “self-coding” and “foreign-coding”
are differentiated. In self-coding, a node uses data from
other nodes to compress its own data, while in foreign-
coding a node can also compress data from other nodes.
With foreign-coding, the authors show that energy-optimal
data gathering involves building a directed minimum span-
ning tree (DMST). For self-coding, it is shown in [13] that
the optimal solution is NP-complete. Also, it is expected to
be a tradeoff between a SPT and a TSP (traveling salesman
path). Both these works assume that the data is compressed
only once, after which it is decompressed at the sink. Tech-
niques such as those described in this paper (and earlier
in [3]) and [9] allow compression at several hops, poten-
tially leading to greater reductions in transported data. In
[11], the authors explore compression at several hops and
only at cluster heads and conclude that there exist efficient
correlation independent routing structures. Some recent re-
search [19] argues that the improvement from correlation
aware routing is limited. Using a correlation model proposed
in [14], it is shown that in terms of energy efficiency, a short-
est path tree has at least 0.5 times performance compared
to an optimal correlation aware routing structure. How-
ever, this result is contingent on a limited data compression
model - compression gain independent of number of neigh-
bors and distances between nodes. In [11], [15] and [14],
the details of how compression is achieved and the accom-
panying cost for the computation required is not taken into
account. Depending on the signal field and the degree of
spatial correlations, this cost can significantly impact the
routing structure. To illustrate this impact, we present some
initial results on a variety of network topologies and routing
structures.

In closely related work [9], the authors propose using
different data gathering algorithms for different classes of
signal fields. They state that wavelet based processing is
well-suited for deterministic signals such as piecewise con-
stant signals and prediction based DPCM processing is opti-
mal for random Gaussian correlated fields. The algorithms
presented account for the combined costs of both commu-
nication (for data transport) and computation (for decorre-
lating i.e. compressing raw data). Distributed and power-
optimal operation of these algorithms results in division of
the network into segments (or clusters) within which incur-
ring the cost for compression is efficient. In contrast, we
consider a scenario where a number of different compres-
sion schemes are available at each node. In this case, the
problem is one of making a decision at each node on which
compression scheme to use based on the expected computa-
tion/communication cost tradeoff. Currently, we have ad-
dressed the assignment in a two dimensional field assuming

the routing structure is known, using a heuristic extension of
the dynamic programming based optimal solution for a one
dimensional network presented earlier in [4]. An important
problem is to optimize jointly for the scheme assignment and
routing structure.

This paper is organized as follows. In Section 2 we briefly
describe the partial coefficient data representation and in-
troduce the optimization framework, and describe states,
transitions and costs for the state machine considered. The
proposed algorithm is described in Section 3, and section 4
describes the routing strategies used in the simulation. Sec-
tion 5 provides simulation results. We conclude the paper
with a summary in Section 6.

2. DATA REPRESENTATION AND OPTIMI-
ZATION

2.1 Partial Coefficient Approach Overview
In this paper, we assume that a sensor network acquires

measurements from a correlated data field. We consider
data aggregation (compression) along a 1-D path from an
edge to the sink, and define a heuristic approach to repre-
sent data at merging points. This path is assumed known,
which implies that a routing algorithm has been applied
to the network first. Each sensor is assigned a number n,
starting from the edge. The network topology (and there-
fore internode distance) is known, and each node in the 1-D
path can operate using a coding scheme chosen from a pre-
defined set of available coding schemes. In this paper, avail-
able schemes are discrete wavelet transforms that use the
same filter bank but employ a different number of levels of
decomposition: when the number of levels decomposition is
increased, the potential compression efficiency also increases
(if data is highly correlated across sensors), but at the cost
of more local information exchange (because data from more
nodes is needed to compute some of the wavelet coefficients).

Since the wavelet transform is critically sampled, the num-
ber of wavelet coefficients generated is equal to the num-
ber of nodes. Using the partial coefficient approach [3], the
wavelet coefficient corresponding to node n is computed in
steps: at node n a partial version of the coefficient is first
generated, which becomes a full coefficient as it “incorpo-
rates” additional data from future nodes (i.e., nodes closer
to the sink). The number of hops required until a partial
coefficient becomes full depends on the specific transform
filters being used - refer to [3] for details.

2.2 1D Path Optimization
In order to find the best coding scheme for each of the sen-

sors, we propose representing the network as a graph. Fig. 2
illustrates the graph associated to a 1D path including M+1
sensors (the last one being the sink), where each sensor can
use one of three available coding schemes. Each edge in the
graph reflects a possible transition from one coding scheme
to another, and has an associated weight that represents
the transmission cost to continue in a determined scheme
or the extra processing/transmission cost to change coding
schemes. Each possible path in the graph is associated with
one choice of coding scheme for each node in the routing
path from a leaf to the sink.

We assume that the coding schemes that can be chosen
from in Fig. 2 are wavelet transforms with progressively
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Figure 4: Data transitions for partial coefficient ap-
proach.

larger number of levels of decomposition, and that as a node
gets closer to the sink it can only choose between staying on
the same scheme as the previous node or encoding its data
using a simpler scheme, specifically one that uses one fewer
level of decomposition than the current node. As motivated
by the example in Section 1, the intuition behind this limi-
tation is that as nodes get closer to the sink, simpler coding
schemes tend to be more efficient energy-wise. This idea can
also be linked to results obtained in [6].

Let cn(i, j) be the cost of the transition from method i at
node n to method j at node n+1, n = 1, . . . , M , where i, j ∈
S = {A, B, C, . . .}, with A,B, C, . . . representing the coding
schemes considered. Let ln(i) denote the local processing
cost for sensor n to encode its data using coding scheme i.
Our goal is to find the sequence {i1, i2, . . . , in, . . . , iM} of
coding schemes associated with each of the nodes such that
P

n
(cn(in, in+1) + ln(in)) is minimum.

2.2.1 State/Transition Descriptions
A state can be described by two parameters: the node’s

position in the 1-D path to the sink (n), and the coding
scheme being used (j). Each state in the graph corresponds
to a series of computations that depend on the node and
coding scheme represented by the state. These computa-
tions are: receiving partial coefficients from previous nodes,
updating them, and generating the node’s partial coefficient
based on the available information (see Fig. 3). Each state
adds to the current path cost the costs associated with i)
the corresponding partial coefficient generation and update
and ii) forwarding any newly computed full coefficients to
the sink.

We can take advantage of the embedded nature of the
wavelet transform structure (octave tree) to calculate the
overhead involved in changing the number of levels of de-
composition in the transform. In particular, we know that
the transform coefficients generated by a wavelet transform
with j−1 levels of decomposition can be obtained from those
generated with j levels. Therefore, if W j

n corresponds to the
set of wavelet coefficients for all nodes up to n for the j-th
level of decomposition, we can say that · · · ⊂ W j−1

n ⊂ W j
n ⊂

W j+1
n ⊂ · · · . The information that is conveyed in each of

the transition scenarios corresponding to different branches
of the state machine can be seen in Fig. 4.

The transition costs reflect the transmission cost of send-
ing partial data either i) over one hop in case the data can
be refined at future nodes (i.e. next node operates in the
same scheme as before), or ii) over all hops until the sink, in
case it cannot be refined (future nodes use a simpler wavelet
transform). A more detailed description of state and tran-
sitions can be found in [4].

2.2.2 Optimization
The partial coefficient approach guarantees that any com-

putation at any given node requires only data from previous
nodes. Also, due to the wavelet property discussed in Sec-
tion 2.2.1, any node always has access to the past coefficients
it needs to compute its own partial coefficient, regardless of
whether the data it is receiving was generated from the same
wavelet transform as itself or from one with a larger number
of decomposition levels. As a result, transition costs depend
only on the present state: the physical position of the node
in the network and the coding scheme being used, and, since
the output of a node (its coefficient) is the same regardless
of the previous path, costs up to a particular node do not
influence the cost for a future transition. Therefore, choos-
ing a best path arriving to a specific state does not eliminate
optimal paths. Hence a path that minimizes the path metric
(lowest cost) can be found using a shortest-path algorithm.
At each stage n of the decision, the algorithm computes the
best transition coming into each state at that stage by com-
puting the metrics of all the possible paths coming into the
state, and then selecting the path with the minimum met-
ric as the survivor path coming into that state. At the last
stage, the survivor path with the minimum path metric is
selected as the optimum path. Since each state describes the
coding scheme used at each of the nodes, the optimum path
also provides the optimal selection of coding schemes for
each sensor in the network, such that the energy consump-
tion is minimized. A more detailed description of dynamic
programming and the shortest-path algorithm can be found
in [5], and we refer to [4] for further details on our proposed
1D optimization.

2.3 2D Path Merging
In the 2D networks we are considering, individual 1D

paths may merge before reaching the sink. We now extend
our 1D wavelet representation algorithms to the 2D case.
Referring to Fig. 5, assume that the same wavelet transform
is used along both paths. The node information captured
along Paths 1 and 2 may be correlated but is not expected to
be identical. Thus, the wavelet coefficients received by node
n, from the two paths will be different in general. Assume
first that we continue processing both paths independently,
i.e., the coefficients received from Path 1 and Path 2 are
updated to incorporate nodes n, n + 1, and so on. Since
these new coefficients are generated with common informa-
tion, and our wavelet filters have finite memory, after several
iterations, say at node n + k (where k will depend on the
filter length), the newly produced wavelet coefficients will
be identical regardless of whether the data was originated
from Path 1 or Path 2. Taking this into account, from that
point forward the two sets of data can be merged, so only
one set of wavelet coefficients needs to be sent from node
n + k onwards.

In addition, Paths 1 and 2 up to node n are generally
correlated and even if the correlation was not high, the pairs
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Figure 5: Multiple coefficients are generated at
merge points.

of coefficients (one per path) generated in nodes n through
n + k − 1 will become increasingly similar. This suggests a
simple approach to further reduce the cost incur in merging
paths. At any node where multiple coefficients are generated
(due to two or more path mergings), we encode this array
of coefficients using DPCM, i.e., we compute and quantize
the difference between consecutive values in the array. If
the values are similar, this difference is small, and can be
more efficiently represented by DPCM. This additional data
is forwarded to the sink without being modified by future
nodes.

3. PROPOSED ALGORITHM
The proposed algorithm assumes a routing topology has

been selected (in future work we will consider a joint selec-
tion of route and coding algorithm). Given the topology,
we apply the 1D optimization of Section 2.2 (based on the
partial coefficient approach [3]) independently to each of the
paths connecting an edge to the sink, where we consider
complete paths from edge to sink, i.e., we optimize the data
representation for some nodes multiple times (e.g., selection
for nodes n, n+1, etc in Fig. 5 will be considered twice cor-
responding to Paths 1 and 2). Thus, some specific nodes,
e.g., node n in Fig. 5, could be assigned different data rep-
resentations when optimized under different path configura-
tions. When this happens we assign to the node the simplest
representation (i.e., least number of levels in the wavelet de-
composition). With this heuristic we force the merged paths
to use the least computationally intensive among candidate
algorithms.

Obviously, in cases where nodes are assigned the same
algorithm by all 1D optimization, we use the chosen al-
gorithm and compress the merged path information as de-
scribed above. Our algorithm can be summarized as follows:

Algorithm 1
1) Optimization:

for each 1D path to the sink:

-assign optimum scheme to node;

if assignment conflict with previous paths:

-use simpler scheme;

end

2) Encoding:

for each path:

-encode data using optimum node assingment;

-if multiple coefficients, use DPCM

end

4. ROUTING
When the proposed approach for choosing encoding schemes

is used for a two dimensional network, an extra processing
cost is incurred whenever two different paths merge enroute
to the sink. In particular cases, as will be seen in Section 5,
the extra processing and added information needed to rep-
resent merged paths could lead to inefficiency in the data
gathering; so that a topology with fewer merges might be
preferable, even if it has overall longer transmission paths.

In order to study the impact of these merges, we consider
a variety of topologies, namely, degree-constrained trees.
These trees are generated using a modified version of Di-
jkstra’s algorithm over weighted graphs. Consider a graph
G(V, E) with edge weights EW (i, j) for nodes i, j ∈ V and
edge (i, j) ∈ E and a given degree constraint maxDegree.
Each node n maintains a value for its best weighted path
distance to the sink WPD(n) (initial value = ∞) and the
number of nodes that are its children C(n)(initial value =
0) in the tree rooted at the sink. Starting with a set T that
initially contains the sink S, at each step add to T the node
p /∈ T for which

• there is a node p′ ∈ T such that edge (p, p′) ∈ E,

• if p′ 6= S then C(p′) < maxDegree− 1, and

• the weighted path cost to the sink [= EW (p, p′) +
WPD(p′)] is minimized.

The updates are made as WPD(p) = WPD(p′)+EW (p, p′)
and C(p′) = C(p′) + 1. The algorithm stops when |S| = |V |
or when no more nodes can be added (since all their neigh-
bors have already hit the degree constraint). We avoid the
latter case by considering well-connected graphs. When
maxDegree is greater than the maximum node degree in G,
the algorithm reduces to finding the shortest weighted path
and when maxDegree = 2, it results in long paths with no
merges except at the sink. In the experiments that follow,
we generate trees using the maximum number of merges M
(= maxDegree− 1) as a tunable parameter.

5. EXPERIMENTS
In our experiments, we use both a second-order AR model

as well as empirical data from a real wireless sensor network
deployment. The simulated data consisted in generating
three 600×600 2D processes using a second order AR model
with low, medium and high data correlation. The nodes
were placed in the 600 × 600 grid, and their measurements
corresponded to the data value from the associated position
in the grid. The data is from a subset of 19 sensor nodes from
a habitat monitoring deployment [10, 18] on the Great Duck
Island. The dataset used is for 200 temperature readings
taken at each sensor location on August 1, 2003 at roughly
5 minute intervals.

The sensor locations for simulated data included random
sensor placement and square grid, both with 100 nodes. The
routing algorithm uses degree-constrained trees generated
as described in Section. 4. The branch costs used for data
representation optimization were proportional to the square
of the distance between nodes, with the constant of pro-
portionality being the number of bits allocated to the node
transmitting data towards the sink.

In Section 5.1 we analyze the performance of the pro-
posed method for a given routing topology. This allows us



to demonstrate that gains are achievable by selecting dif-
ferent data representations for different nodes. Then, in
Section 5.2, we select the data representation to be that ob-
tained with our optimization algorithm and we compare the
performance of different routing topologies, using degree-
constrained trees with varying degree. For a sufficiently
large degree value, the tunable tree reduces to the shortest-
path tree. This allows us to demonstrate that for certain
cases, shortest path routing is in fact not optimal, as it leads
to an undesirably large number of path merges.

In all network graphs that follow, nodes marked with
“×” are encoded with a 1-level wavelet algorithm and nodes
marked with “◦” are encoded with a 2-level wavelet. Raw
data transmission (i.e., no compression) is represented by
the symbol “�”, but no node was assigned to be encoded as
raw for any of the simulations performed.

5.1 Algorithm Performance for a Given Net-
work Topology

Figs. 6, 7 and 8 illustrate the performance of the dif-
ferent algorithms; in terms of data representation distortion
(measured by Signal-to-Noise ratio, SNR) as a function of
total energy consumption in the network. In each figure we
depict the routing together with the data representation al-
gorithm used for each sensor node. The energy consumption
is averaged over multiple realizations of the data. The data
representation itself is generated taking as an input training
data generated with the AR model, i.e., we do not use the
model parameters directly and our algorithm can be applied,
as shown below, to optimize representation for any training
data set. Obverse that in all cases the optimized data rep-
resentation, as expected, outperforms configurations where
a single representation is used. Note, however, that in Figs.
6, 7 and 8 the gains provided by the optimal representation
are modest. This can also be seen by noting that only a few
nodes make use of a 2 level wavelet representation.

In Figs. 6 and 7 nodes were uniformly distributed. In-
stead, in Fig. 8 nodes were clustered to split the data field
in two regions separated by a gap, and the network sink was
placed in the region where the node density was lower. Ob-
serve that the behavior in Fig. 8 is intuitively reasonable:
in the cluster of nearby nodes on the top right region of the
sensor field a 2 level wavelet is chosen so as to minimize the
overall rate required. This is because this small cluster is
far from the sink and thus any excess rate in the represen-
tation (due to using a less efficient encoding) would result
in significant energy required for transmission.

Fig. 9 illustrates the performance of our methods with real
data. It can be seen that when no merge is allowed (Fig. 9a),
the optimum algorithm performs considerably better than
the other schemes. This confirms our initial assumption
that merging paths tend to be costly. However, as will be
seen, shortest path routing still provides overall better per-
formance.

Fig. 10 shows the optimum node assignment in the net-
work with random node placements, for different values of
data correlation and maximum number of merges per node.
It can be seen that, in general, more complex schemes (bet-
ter data decorrelation) tend to be used far from the sink,
agreeing with previous work [13, 11].

5.2 Routing Comparison With Optimum Net-
work Representation

Now that we have established that data representation
optimization leads to lower overall cost for a given net-
work topology, we compare different network topologies in
terms of their overall cost with optimized representation (see
Fig. 11). In particular we compare the performance of no-
merge and shortest-path routing. For both simulated ran-
dom network data with uniform sampling (Fig. 11a) and
real data (Fig. 11b), we can see that shortest path routing
leads to better overall performance. For the denser network
(simulated data) overall performance is very sensitive to the
average length of the 1D paths in the network, so that the
gains from using shortest-path routing are substantial. In
contrast, for the smaller real-data network (Fig. 11b), per-
formance is not as significantly affected by the routing. We
believe that in the case of Fig. 11a, given the density of
the network the cost of merging is not as significant (as
a result of the proposed DPCM coding of merged paths)
and therefore the penalty due to allowing longer paths (as
in the no-merge configuration) is too high to be compen-
sated by the reduction of merge costs. It is also interesting
to notice that the no-merge and shortest-path routing have
similar performance at low SNR (this can be seen in the
real-data case, which we operate at lower rates). This can
be explained as follows: in shortest-path routing informa-
tion needs to be sent for every merge, for a number of nodes
dependent on the filter length. At low rates this overhead
becomes more significant as the data transmission rates in
no-merge routing become lower. Fig. 11c represents results
for the clustered network scenario. Note that in this case,
unlike the two preceding ones, no-merge routing leads to the
best overall performance.

Note that in Fig. 11a, b, c the performance curve slope is
lower for no-merge routing (i.e., the quality degrades more
slowly as the transmission cost decreases). We again at-
tribute this to additional cost of data merging in the shortest
path routing case.

6. CONCLUSION
In this work, we have provided a framework that allows

finding, for a given network topology, which among a num-
ber of available coding methods is more suitable for each
of the sensors. We have shown that by optimizing the cod-
ing algorithm selection, the overall energy consumption can
be significantly reduced when compared to the case when
data is just quantized and forwarded to the central node. In
our simulations we were able to compare different routing
techniques and identify those that are most efficient overall,
for given node locations, and for both simulated data and
from a real wireless sensor network deployment. We veri-
fied that the proposed optimum algorithm always finds the
best coding scheme that should be used by each node in the
network, and that shortest-path routing not always leads to
best performance.

A number of topics can still be addressed. While in this
work the algorithm analysis was limited to predefined rout-
ing topologies, joint selection of route and coding algorithm
seems to be a natural next step for optimization. Also, more
realistic cost functions can be incorporated to the decision
process (e.g., transmission costs a constant term in addition
to a term proportional to distance), and a more efficient
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Figure 6: Algorithm performance for random network with a) no-merge routing b) shortest-path routing
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Figure 7: Algorithm performance for square grid network with a) no-merge routing b) shortest-path routing
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Figure 8: Algorithm performance for clustered net-
work with shortest-path routing.

representation of natural phenomena (e.g. different regions
of the field are modeled with different parameters) can be
used. While in this work we assumed nodes exchanged infor-
mation by data hoping, in a practical application broadcast
capabilities could be used to improve even more the net-
work efficiency. For example, coefficients in the paths that
were already fully computed could reach the central node
by broadcasting, eventually skipping hops and saving more
energy; nodes that need a measurement from a common sen-
sor could acquire it via broadcasting in one single step, also
reducing the energy consumption.
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Figure 10: Node assignment for different values of
data correlation and maximum number of merges
per node (M).
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Karhunen-Loève transform. In International Workshop on
Multimedia Signal Processing, St. Thomas, US Virgin Islands,
December 2002.

[8] A. Goel and D. Estrin. Simultaneous optimization for concave
costs: Single sink aggregation or single source buy-at-bulk. In
SODA, pages 499–505, 2003.

[9] B. B.-L. J. Acimovic and R. Cristescu. Adaptive distributed
algorithms for power-efficient data gathering in sensor
networks. In Under Submission.

[10] H. M. on Great Duck Island. Online data-set located
at<http://www.greatduckisland.net>.

[11] S. Pattem, B. Krishnamachari, and R. Govindan. The impact
of spatial correlation on routing with compression in wireless
sensor networks. Journal version, Under Submission, 2005.

[12] S. S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed

compression in a dense microsensor network. IEEE Signal
Processing Magazine, pages 51–60, March 2002.

[13] B. B.-L. R. Cristescu and M. Vetterli. Networked Slepian-Wolf:
Theory, algorithms and scaling laws. To appear in IEEE
Transactions on Information Theory, 2005.

[14] M. V. R. Cristescu, B. Beferull-Lozano and R. Wattenhofer.
Network correlated data gathering with explicit
communication: Np-completeness and algorithms. To appear
in IEEE/ACM Transactions on Networking, 2005.

[15] P. Rickenbach and R.Wattenhofer. Gathering correlated data
in sensor networks. In DIALM-POMC Joint Workshop on
Foundations of Mobile Computing, Philadelphia, PA, USA,
pages 60–66. ACM, Oct. 2004.

[16] A. Scaglione and S. D. Servetto. On the interdependence of
routing and data compression in multi-hop networks.
International Conference on Mobile Computing and
Networking - Mobicom’02, 2002.

[17] S. D. Servetto. Sensing Lena - massively distributed
compression of sensor images. ICIP - International
Conference on Image Compression, September 2003.

[18] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An
analysis of a large scale habitat monitoring application. In
Second ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2004.

[19] K. S. Y. Zhu and R. Sivakumar. Practical limits on achievable
energy improvements and useable delay tolerance in correlation
aware data gathering in wireless sensor networks. In IEEE
Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (SECON), Santa Clara,
California, USA,, September 2005.


