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Abstract

We propose the new Top-Dog-Index to quantify the his-
toric deviation of the supply data of many small branches
for a commodity group from sales data. On the one hand,
the common parametric assumptions on the customer de-
mand distribution in the literature could not at all be sup-
ported in our real-world data set. On the other hand, a
reasonably-looking non-parametric approach to estimate
the demand distribution for the different branches directly
from the sales distribution could only provide us with statis-
tically weak and unreliable estimates for the future demand.
Based on real-world sales data from our industry partner
we provide evidence that our Top-Dog-Index is statistically
robust. Using the Top-Dog-Index, we propose a heuristics
to improve the branch-dependent proportion between sup-
ply and demand. Our approach cannot estimate the branch-
dependent demand directly. It can, however, classify the
branches into a given number of clusters according to an
historic oversupply or undersupply. This classification of
branches can iteratively be used to adapt the branch distri-
bution of supply and demand in the future.

1. Introduction

Many retailers have to deal in their daily businesses with
small profit margins. Their economic success lies mostly in
the ability to forecast the customers’ demand for individual
products. More specifically: trade exactly what you can
sell to your customers. This task has two aspects if your
company has many branches in different regions: trade what
your customers would like to buy because the product as
such is attractive to them and provide a demand adjusted
number of items for each branch or region.

In this paper we deal with the second aspect only: meet
the branch distributed demand for products as closely as

possible. The first aspect clearly also interferes with the
total demand for a product over all branches. Therfore, we
assume that we are given a fix total number of items per
product which should be distributed over the set of branches
to meet the the branch-dependent demand distribution as
closely as possible.

Our industry partner is a fashion discounter with more
than 1 000 branches most of whose products are never re-
plenished, except for the very few “never-out-of-stock”-
products (NOS products): because of lead times of around
three months, apparel replenishments would be too late any-
way. In most cases the supplied items per product and ap-
parel size lie in the range between 1 and 6.

The task can be formulated informally as follows: Given
historic supply and sales data for a commodity group, find
out some robust information on the demand distribution
over branches in that commodity group that can be used to
optimize or at least to improve the supply distribution over
all branches.

We remark that trading fashion has the special feature
that also the demand for different apparel size varies over
the branches. In this article, however, we focus on the as-
pect of improving the supply distribution over all branches.
The apparel size distribution problem is subject some other
research in progress.

1.1 Related work

Demand forecasting for NOS items is an well-studied
topic both in research and practice. The literature is over-
boarding, see, e.g., [1, 2, 3] for some surveys. For pro-
motional items and other items with single, very short life
cycles, however, we did not find any suitable demand fore-
casting methods.

The literature in revenue management (assortment op-
timization, inventory control, dynamic pricing) very often
assumes the neglectability of out-of-stock substitution ef-
fects. This out-of-stock substitution in the sales data of our
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partner, however, poses the biggest problem in our case. In
our real-world application we have no replenishment, small
volume deliveries per branch, lost sales with unknown or
even no substitution, sales rates depending much more on
the success of the individual product at the time it was of-
fered than on the size. Therefore, estimating the absolute
future demand distribution from historical sales data with
no correction for out-of-stock substitution seems question-
able.

Most demand forecasting tools used in practice are pro-
vided by specialized software companies. Quite a lot of
software packages are available, see [6] for an overview.
Our partner firm has checked several offers in the past and
did – apart from the NOS segment — not find any optimiza-
tion tools tailored to their needs.

1.2 Our contribution

We show that a reasonably-looking attempt to measure
the demand distribution over all branches by measuring for
each branch the sales over all products up to a certain day
(to avoid out-of-stock substitution) does not work because
of the high volatility in the sales rates of different products.

The key idea of this work is that estimating something
weaker than the absolute fraction of total demand of a
branch will result in stronger information that is still suf-
ficient to improve on the demand consistency of the supply
of branches.

More specifically, we propose the new Top-Dog-Index
(TDI) that can measure the branch dependent deviation of
demand from supply, even for very small sales amounts or
short selling periods. This yields, in particular, an estimate
for the direction in which the supply was different from de-
mand in the past for each branch.

On the one hand, the TDI is a rather coarse measurement;
on the other hand, we can show that on our real-world data
set it is statistically robust in the sense that the TDIs of the
branches relative to each other are surprisingly similar on
several independent samples from the sales data and their
complements.

To show the value of the information provided by the
TDI, we propose a dynamic optimization procedure that
shifts relative supply among branches until the deviation
measured is as small as possible.

Of course, the impact of such an optimizaton procedure
has to be evaluated in practice. This is subject of future
research.

1.3 Outline of the paper

In Section 2 we state the real-world problem we are in-
terested in. Moreover, we give an abstract problem formu-
lation. An obvious approach of determining the demand

distribution of the branches directly from historic sales data
is shown to be inappropriate on our given set of sales data
in Section 3. We propose our new Top-Dog-Index in Sec-
tion 4. We analyze its statistical robustness and its distinc-
tive character in clustering branches according to the devi-
ation of the historic ratio between supply and demand. In
Section 5 we describe an heuristic iterative procedure that
uses the information from the Top-Dog-Indices to alter the
supply distribution towards a suitable distribution that more
or less matches the demand distribution over branches. An
outlook and a conclusion will be given in Section 6.

2 The real-world problem and an abstract
problem formulation

Our industry partner is a fashion discounter with over
1 000 branches. Products can not be replenished and the
number of sold items per product and branch is rather small.
There are no historic sales data for a specific product avail-
able since every product is sold only for one selling period.
The challenge for our industry partner is to determine a
suitable total amount of items of a specific product which
should be bought. For this part the knowledge and expe-
rience of the buyers employed by a fashion discounter is
used. We seriously doubt that a software package based
on historic sales data can do better. But there is another
task being more accessible for computer aided forecasting
methods. Once the total amount of sellable items of a spe-
cific product is determined, one has to decide how to dis-
tribute this total amount to a set of branches B which differ
in their demand. The remaining part of this paper addresses
the latter task.

In the following, we formulate this problem in a more
abstract way. Given a set of branches B, a set of prod-
ucts P , a function S(b, p) which denotes the historic supply
of product p for each branch b, and historic sales transac-
tions from which one can determine how many items of a
given product p are sold in a given branch b at a given day
of sales d. The target is to estimate a demand η(b, p̃) for a
future product p̃ /∈ P in a given branch b, where we can use∑

b∈B η(b, p̃) = 1 as normalization. This estimation η(b, p̃)
should be useable as a good advice for a supply S(b, p̃). No
further information, e.g., on a stochastic model for the pur-
chaser behavior, is available.

3 Some real-data analysis evaluating an obvi-
ous approach

The most obvious approach to determine a demand dis-
tribution over branches is to count the sold items per branch
and divide by the total number of sold items. Here we have
some freedom to choose the day of the sale where we mea-



sure these magnitudes. We have to balance two competing
influences. An early measurement may provide numbers of
sale which are statistically too small for a good estimate.
On the other hand on a late day of sales there might be too
much unsatisfied demand to estimate the demand since no
replenishment is possible in our application.

The business strategy of our partner implies to cut prices
until all items are sold. So, a very late measurement would
only estimate the supply instead of the demand. As there
is no expert knowledge to decide which is the optimal day
of sales to measure the sales and estimate the branch de-
pendent demand distribution we have adapted a statistical
test to measure the significance of the demand distributions
obtained for each possible day of counting the sold items.
Given a data set D, a day of sales d let φb,d(D) be the es-
timated demand for branch b determined using the amounts
of sold items up to day d as described above.

We normalize the values φb,d(D) so that we have∑
b∈B

φb,d(D) = 1 for each day of sales d, where B is the set

of branches. A common statistical method to analyze the
reliability of a prediction based on some data universe D is
to randomly partition D into two nearly equally sized dis-
joint samples D1 and D2 with D1∪̇D2 = D and to com-
pare the prediction based on D1 with the prediction based
on D2. If the two predictions differ substantially than the
used prediction method is obviously not very trustworthy or
statistically speaking not very robust.

In the following part of this section we analyze the ro-
bustness of the prediction φb,d(D) for every possible sales
day, meaning that even an optimal sales day for the mea-
surement does not provide a prediction being good enough
for our purpose. To measure exactly by how much two pre-
dictions φ·,d(D1) and φ·,d(D2) differ we introduce the fol-
lowing:

Definition 1 For a given sales day d and two samples D1

and D2 we define the discrepancy δd as

δd(D1, D2) :=
∑
b∈B

|φb,d(D1)− φb,d(D2)| . (1)

Similarly we define a discrepancy between supply and
demand. We compare both discrepancies in Figure 1. The
result: there is no measuring day for which the discrepancy
between two samples is smaller than the discrepancy be-
tween a sample and the supply. In other words, if we con-
sider the discrepancy between supply and demand as a mea-
sure for the inconsistency of the supply distribution with
the demand distribution, then either the supply is not sig-
nificantly inconsistent with demand (i.e., we should better
change nothing) or the measurements on the various sam-
ples are significantly different (i.e., nothing can be learned
about how to correct the supply distribution).
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Figure 1. Discrepancy for the first 60 days.

An explanation why this obvious approach does not
work well in our case is due to the small sale numbers and
the interference of the demand of a branch with product at-
tractivity and price cutting strategies. In Figure 2 we depict
the change of prediction φb,d(D) over time for five charac-
teristic but arbitrary branches
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Figure 2. Prediction φb,d(D) over time.

We would like to remark that one of the authors cur-
rently advises two diploma theses which check some com-
mon parametric models for demand forecasting on historic
sales data from literature. None of them gives significant in-
formation of the demand distribution over branches of our
data set because the data does not exhibit any similarity to
the parametric distributions coming from economic theory
and the like. This may be due to the fact that the contaminat-
ing effects of promotion, mark-downs, openings/closings of
competing stores prohibit a causal model for the demand.
We do not claim that the assumptions of parametric demand
models never hold, but in our application they are most cer-
tainly not met.

4 The Top-Dog-Index (TDI)

In the previous section we learned that in our applica-
tion we cannot utilize the most obvious approach of look-
ing at the sales distribution over the different branches on



an arbitrary but fixed day of the selling period of each in-
dividual product. Since there is also no indication that any
of the common parametric models for the demand estima-
tion directly from sales data fit in our application we make
no assumptions on a specific stochastic distribution of the
purchaser behavior.

Our new idea dismisses the desire to estimate an absolute
percental demand distribution for the branches. Instead we
develop an index measuring the relative success of a branch
in the competition of all branches that can be estimated from
historic sales data in a stable way.

To motivate our distribution free measurement we con-
sider the following thought experiment. For a given branch
b and given product p let θb(p) denote the stock-out-day.
Let us assume that we have θb(p) = θb′(p) for all products
p and all pairs of branches b, b′. In this situation one could
certainly say that the branch-dependent demand is perfectly
matched by the supply. Our measure tries to quantify the
variation of the described ideal situation.

Therefore, we sort for each product p the stock-out-days
θb(p) in increasing order. If for a fixed product p a branch b
is among the best third according to this list it gets a winning
point for p. If it is among the last third it is assigned a losing
point for p. With Bp being the set of branches which trade
product p and P being the set of the products traded by the
company we can define more precisely:

Definition 2 Let b be a branch. The Top-Dog-Count is de-
fined as W (b) :=∣∣∣∣{p ∈ P ∣∣∣ 1

3
|Bp| ≥ |{b′ ∈ Bp | θb′(p) ≤ θb(p)}|

}∣∣∣∣ (2)

and the Flop-Dog-Count is defined as L(b) :=∣∣∣∣{p ∈ P ∣∣∣ 1
3
|Bp| ≥ |{b′ ∈ Bp | θb′(p) ≥ θb(p)}|

}∣∣∣∣ . (3)

For a fix dampening parameter C > 0 let

TDI(b) :=
W (b) + C

L(b) + C
(4)

be the Top-Dog-Index (TDI) of branch b.

If the TDI of a branch b is significantly large compared
to the TDIs of the other branches then we claim that branch
b was undersupplied in the past. Similarly, if the TDI of
branch b is significantly small compared to the TDIs of the
other branches then we claim that branch b was oversup-
plied in the past. We give an heuristic optimization proce-
dure past on this information in the section. The effect of
the dampening parameter C is on the one hand that the TDI
is well defined since division by zero is circumvented. On
the other hand, and more important, the influence of small
Top-Dog- or Flop-Dog-Counts, which are statistically un-
stable, is leveled to a decreased importance.

4.1 Statistical significance of the TDI

Similarly as in Section 3 we want to analyze the signif-
icance of the proposed Top-Dog-Index on some real sales
data. Instead of two data sets D1 and D2 we use seven such
samples Di. Therefore we assign to each different product
p ∈ P a equi-distributed random number rp ∈ {1, 2, 3, 4}.
The samples Di are composed as summarized in Table 1.

D1 :=
{
p| ∈ P

∣∣ rp ∈ {1, 2}}
D2 :=

{
p| ∈ P

∣∣ rp ∈ {3, 4}}
D3 :=

{
p| ∈ P

∣∣ rp ∈ {1, 3}}
D4 :=

{
p| ∈ P

∣∣ rp ∈ {2, 4}}
D5 :=

{
p| ∈ P

∣∣ rp ∈ {3}}
D6 :=

{
p| ∈ P

∣∣ rp ∈ {1, 2, 4}}
D7 :=

{
p| ∈ P

∣∣ rp ∈ {1, 2, 3, 4}}
Table 1. Assignment of test sets.

For the interpretation we remark that the pairs (D1, D2),
(D3, D4), and (D5, D6) are complementary. The whole
data population is denoted by D7 and equals P . We use
TDI(b,Di) as an abbreviation of TDI(b) where P is re-
placed by Di.

Since the Top-Dog-Index is designed as a non-
quantitative index we have to use another statistical test to
assure ourselves that it gives some significant information.
We find it convincing to regard the Top-Dog-Index as sig-
nificant and robust whenever we have

TDI(b,Di)
TDI(b,Dj)

≈ TDI(b′, Di)
TDI(b′, Dj)

(5)

for each pair of branches b, b′ and each pair of samples
Di, Dj . In words we claim that the Top-Dog-Index is a rel-
ative index which is independent of the underlying sample
if we consider a fixed universe D7.
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Figure 3. Relative distribution of the Top-
Dog-Index on different data samples and
branches.



Our first aim is to provide evidence that the TDI(b) val-
ues are robust measurements. There is a nice way to look
at equation (5) graphically. For each branch b let us plot a
column of the the relative values TDI(b,Di)P

j
TDI(b,Dj)

for all i. The

result for our data set is plotted in Figure 3.
To get the correct picture in the interpretation of the plot

of Figure 3 we compare it to the extreme cases of determin-
istic numbers (i.e., TDI(b,Di)

TDI(b,Dj)
= cij = c for all i and j), see

Figure 4, and random numbers, see Figure 5.
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Figure 4. Relative distribution of determinis-
tic numbers.

As a matter of fact, the regions of same color in the plot
of the relative distribution of deterministic numbers in Fig-
ure 4 are formed by perfect rectangles, which are not forced
in general to have equal height.
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Figure 5. Relative distribution of in [0.5,1.5]
equi-distributed random variables.

As an example for a random plot we depict in Figure
5 the relative distribution of random numbers being equi-
distributed in the interval [0.5, 1.5].

In the plots of Figure 3, 4, and 5 we can see that that the
TDI on the given data set behaves more like a perfect de-
terministic estimation than a random number distribution.
(Ideally, one should now quantify how large the probabil-
ity is to obtain a TDI chart as in Figure 3 by a random

measurement.) So there is empirical evidence that the TDI
gives some stable information. As a comparison of the TDI
and the method described in Section 3 we depict the corre-
sponding relativ distribution for measuring day 5 in Figure
6. Although a measurement on this day was the best we
could find, it still produces more severe outliers than the
TDI measurement.
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Figure 6. Relative distribution of φ·,5.

Now the question remains whether this information is
enough to cluster branches into oversupplied and undersup-
plied ones. More directly: is the distinctive character of the
TDI strong enough? We consider this question in the next
subsection. How the TDI information can be used to iter-
atively improve the branch dependent ratio between supply
and demand will be the topic of Section 5.

4.2 The distinctive character of the TDI

If one forces the values of the TDIs to be contained in
an interval of small length, then clearly a plot of the rela-
tive distributions would look like the plot of Figure 4. As
an thought experiment just imagine how Figure 5 would
look like, if we would use random numbers being equi-
distributed in the interval [0.9, 1.1] instead of being equi-
distributed in the interval [0.5, 1.5]

Forcing the possible values of the TDIs in an interval
of small length is feasible by choosing a sufficiently large
dampening parameter C. So this parameter has to be cho-
sen with care. We remind ourselves that we would like to
use the TDIs to cluster branches. Therefore the TDIs should
vary over a not to small range of values to have a good dis-
tinctive character. Clearly by using the TDI we can only
detect possible improvements if the supply versus demand
ratio actually inadequate in a certain level. In Figure 7 we
have plotted the occurring TDIs of our data set to demon-
strate there is indeed some variation of values in our data
set, no matter which sample we consider (let alone the data
universe). As one can see the TDIs vary widely enough
to distinguish between historically under- and oversupplied
branches.
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5 The heuristic supply optimization proce-
dure based on the TDI

So far we have developed and statistically stable index
capturing the deviation of supply from demand for each
branch. Now we have to specify how we can use this in-
formation to improve the branch dependent ratio between
supply and demand.

Let S(b) be the historic supply of branch b being normal-
ized so that we have

∑
b∈B

S(b) = 1. Our aim is to estimate

supplies S̃(b), also fullfilling
∑

b∈B

S̃(b) = 1, which are more

appropriate concerning the satisfaction of demand by using
the TDI information.

Therefore let us partition the interval (0,∞) of the posi-
tive real numbers into a given number of l appropriate cho-
sen intervals Ij . Further we need l appropriately chosen
increment numbers ∆j . Our proposed update formula for
the estimated branch dependent demand is given by

S̃(b) =
S(b) + ∆j(b)∑

b′∈B S(b′) + ∆j(b′)
(6)

for all branches b, where j(b) is the unique index with
TDI(b) ∈ Ij(b).

We do not claim that the S̃(b) are a good estimation for
the demand of all branches. Our claim is that they approach
a good estimation of the branch dependent demand if one it-
erates the described procedure over several rounds and care-
fully chooses the increment numbers ∆j , which may vary
over the time.

Once you have a new proposal S̃(b) of the relative supply
for each branch b, one only has to fit it into an integer val-
ued supply for each new product p′. Given the problem of
apparel size assortment and pre-packing, this is easier said
than done and is subject of further studies.

In contrast to the other sections here we are somewhat
imprecise and there is a lot of freedom, e.g., how to choose

the intervals Ij and increment numbers ∆j . That is for sev-
eral reasons. On the one hand that is exactly the point where
some expert form the business should calibrate the param-
eters to specific data of the company. One the other hand
there are quite a lot of possibilities how to do it in detail.
Their analysis will be a topic of future research. For the
practical application we account rather simple than sophis-
ticated variants in the first step.

6 Conclusion and outlook

We have introduced the new Top-Dog-Index which is
capable to cluster branches of a retail company into over-
supplied and undersupplied branches at a statistically robust
niveau level where more direct methods fail. The robustnest
of this method is documented by some statistical tests based
on real-world data.

We have also documented that the distinctive character
of the proposed TDI is significant for our application: for
the first time we can gain information about the demand dis-
tribution of branches from historic sales data on only few
products with volatile success in sales rates and with un-
known stock-out substitution effects, and this information
does not depend too much on the sample of the sales data
universe out of which the TDI is computed.

For the dynamic optimization of the supply distribution
among branches, some fine tuning of parameters is needed;
for a real-world implementation these details have to be
fixed. This, together with a field study of the impacts of
an improved supply distribution are research in progress.
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