MODULE STRUCTURE OF CELLS IN UNEQUAL PARAMETER HECKE ALGEBRAS

THOMAS PIETRAHO

ABSTRACT. A conjecture of C. Bonnafé, M. Geck, L. Iancu, and T. Lam parameterizes Kazhdan-Lusztig left cells for unequal parameter Hecke algebras in type B_n by families of standard domino tableaux of arbitrary rank. We complete the reduction of this conjecture to a family of statements conjectured by G. Lusztig and describe the structure of each cell as a module for the underlying Weyl group.

1. Introduction

Consider a Coxeter system (W, S), a positive weight function L, and the corresponding generic Iwahori-Hecke algebra \mathcal{H} . As detailed by G. Lusztig in [19], a choice of weight function gives rise to a partition of W into left, right, and two-sided Kazhdan-Lusztig cells, each of which carries the structure of an \mathcal{H} - as well as a W-module. The cell decomposition of W is understood for all finite Coxeter groups and all choices of weight functions with the exception of type B_n . We focus our attention on this remaining case and write $W = W_n$. A weight function is then specified by a choice of two integer parameters a and b assigned to the simple reflections in W_n :



Given $a, b \neq 0$, we write $s = \frac{b}{a}$ for their quotient. We have the following description of cells due to C. Bonnafé, M. Geck, L. Iancu, and T. Lam. It is stated in terms of a family of generalized Robinson-Schensted algorithms G_r which define bijections between W_n and same-shape pairs of domino tableaux of rank r.

Conjecture ([4]). Consider a Weyl group W_n of type B_n with a weight function L and parameter s defined as above.

- (1) When $s \notin \mathbb{N}$, let $r = \lfloor s \rfloor$. Two elements of W_n lie in the same Kazhdan-Lusztig left cell whenever they share the same right tableau in the image of G_r .
- (2) When $s \in \mathbb{N}$, let r = s 1. Two elements of W_n lie in the same Kazhdan-Lusztig left cell whenever their right tableaux in the image of G_r are related by moving through a set of non-core open cycles.

Significant progress has been made towards the verification of the above, which we detail in Section 3.3. Most recently, C. Bonnafé has shown that if a certain family

²⁰⁰⁰ Mathematics Subject Classification. 20C08, 05E10.

Key words and phrases. unequal parameter Hecke algebras, Kazhdan-Lusztig cells, domino tableaux.

of statements conjectured by G. Lusztig is assumed to hold, then the conjecture holds if $s \notin \mathbb{N}$, and furthermore, if $s \in \mathbb{N}$, then Kazhdan-Lusztig left cells are unions of the sets described [2]. We sharpen this result, and verify that the conjecture holds in the latter case as well.

We concurrently describe the structure of Kazhdan-Lusztig left cells as W_n -modules. The canonical parameter set for irreducible W_n -modules consists of ordered pairs of partitions (d, f) where the the parts of d and f sum to n. As detailed in Section 4.1, there is a natural identification of this parameter set with the set of partitions $\mathcal{P}_r(n)$ of a fixed rank r. Since $\mathcal{P}_r(n)$ corresponds exactly to the shapes of rank r domino tableaux, the parametrization of Kazhdan-Lusztig left cells via standard tableaux of fixed rank in the above conjecture suggests a module structure for each cell for every choice of weight function. Mainly, the irreducible constituents of the module carried by each cell should correspond to the shapes of the rank r tableaux of its elements, with r determined from the parameter s as in the conjecture. We verify that this suggested module structure is indeed the one carried by each cell.

Our approach is based on M. Geck's characterization of left cells as constructible representations; that is, those representations which are obtained by successive truncated parabolic induction and tensoring with the sign representation, see [11]. In Section 2, we detail the general construction of Kazhdan-Lusztig cells in an unequal parameter Hecke algebra and extend a result of G. Lusztig on the intersection of left and right cells to the unequal parameter setting. In Section 3, we detail the situation in type B_n and the relevant combinatorics. Section 4 examines constructible representations and provides a combinatorial description of truncated parabolic induction and tensoring with sign, mimicking the work of W. M. McGovern in the equal parameter case [20]. The final section contains the proof of the main results.

2. Unequal Parameter Hecke Algebras

We briefly recount the definitions of unequal parameter Hecke algebras and the corresponding Kazhdan-Lusztig cells, following [19].

2.1. **Kazhdan-Lusztig Cells.** Consider a Coxeter system (W,S) and let ℓ be the usual length function. A weight function $L:W\to\mathbb{Z}$ satisfies L(xy)=L(x)+L(y) whenever $\ell(xy)=\ell(x)+\ell(y)$ and is uniquely determined by its values on S. We will consider those weight functions which take positive values on all $s\in S$.

Let \mathcal{H} be the generic Iwahori-Hecke algebra over $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$ with parameters $\{v_s \mid s \in S\}$, where $v_x = v^{L(x)}$ for all $x \in W$. The algebra \mathcal{H} is free over \mathcal{A} and has a basis $\{T_x \mid x \in W\}$. Multiplication in \mathcal{H} takes the form

$$T_s T_x = \begin{cases} T_{sx} & \text{if } \ell(sx) > \ell(x), \text{ and} \\ T_{sx} + (v_s - v_s^{-1}) T_x & \text{if } \ell(sx) < \ell(x) \end{cases}$$

As in [19](5.2), it is possible to construct a Kazhdan-Lusztig basis of \mathcal{H} which we denote by $\{C_x \mid x \in W\}$. In terms of it, multiplication has the form

$$C_x C_y = \sum_{z \in W} h_{xyz} C_z.$$

for some $h_{xyz} \in \mathcal{A}$. Although we suppress it in the notation, all of these notions depend on the specific choice of weight function L.

Definition 2.1. Fix (W, S) a Coxeter system with a weight function L. We will write $y \leq_{\mathcal{L}} x$ if there exists $s \in S$ such that C_y appears with a non-zero coefficient in C_sC_x . By taking the transitive closure, this binary relation defines a preorder on W which we also denote by $\leq_{\mathcal{L}}$. Let $y \leq_{\mathcal{R}} x$ iff $y^{-1} \leq_{\mathcal{L}} x^{-1}$ and define $\leq_{\mathcal{L}\mathcal{R}}$ as the pre-order generated by $\leq_{\mathcal{L}}$ and $\leq_{\mathcal{R}}$.

Each of the above preorders defines equivalence relations which we denote by $\sim_{\mathcal{L}}$, $\sim_{\mathcal{R}}$, and $\sim_{\mathcal{LR}}$ respectively. The resulting equivalence classes are called the left, right, and two-sided Kazhdan-Lusztig cells of W.

As described in [19](8.3), Kazhdan-Lusztig cells carry representations of \mathcal{H} . If \mathfrak{C} is a Kazhdan-Lusztig left cell and $x \in \mathfrak{C}$, then define

$$[\mathfrak{C}]_{\mathcal{A}} = \bigoplus_{y \leq_{\mathcal{L}} x} \mathcal{A}C_y \Big/ \bigoplus_{y \leq_{\mathcal{L}} x, y \notin \mathfrak{C}} \mathcal{A}C_y.$$

This is a quotient of two left ideals in \mathcal{H} and consequently is itself a left \mathcal{H} -module; it does not depend on the specific choice of $x \in \mathfrak{C}$, is free over \mathcal{A} , and has a basis $\{e_x \mid x \in \mathfrak{C}\}$ indexed by elements of \mathfrak{C} with e_x the image of C_x in the above quotient. The action of \mathcal{H} on $[\mathfrak{C}]_{\mathcal{A}}$ is determined by

$$C_x e_y = \sum_{z \in \mathfrak{C}} h_{xyz} e_z$$

for $x \in W$ and $y \in \mathfrak{C}$. A Kazhdan-Lusztig left cell gives rise to a W-module $[\mathfrak{C}]$ by restricting $[\mathfrak{C}]_{\mathcal{A}}$ to scalars. The same construction can be used to define module structures on the right and two-sided cells of W.

In the equal parameter case, that is when L is a multiple of the length function ℓ , a number of results abount Kazhdan-Lusztig cells depend on positivity results whose verification uses methods of intersection cohomology. This positivity does not hold for unequal parameter Hecke algebras; for examples see [18, §6] and [9, 2.7]. Lusztig has conjectured that a related set of properties nevertheless do hold in this more general setting and has verified them in the equal parameter case for integral W [19, §15]. To state them, we must first define two integer-valued functions on W.

For any $z \in W$, let $\boldsymbol{a}(z)$ be the smallest non-negative integer so that $h_{xyz} \in v^{\boldsymbol{a}(z)}\mathbb{Z}[v^{-1}]$ for every x and y in W and write $\gamma_{xyz^{-1}}$ for the constant term of $v^{-\boldsymbol{a}(z)}h_{xyz}$. If p_{xy} is defined by $C_y = \sum_{x \in W} p_{xy}T_x$, then [19](5.4) shows that p_{1z} is non-zero. We write

$$p_{1z} = n_z v^{-\Delta(z)} + \text{ terms of smaller degree in } v$$

thereby defining a constant n_z and integer $\Delta(z)$ for every $z \in W$. Finally, let

$$\mathcal{D} = \{ z \in W \mid \boldsymbol{a}(z) = \Delta(z) \}.$$

Lusztig has conjectured the following statements are true in the general setting of unequal parameter Hecke algebras:

- **P1.** For any $z \in W$ we have $a(z) \leq \Delta(z)$.
- **P2.** If $d \in \mathcal{D}$ and $x, y \in W$ satisfy $\gamma_{x,y,d} \neq 0$, then $x = y^{-1}$.
- **P3.** If $y \in W$, there exists a unique $d \in \mathcal{D}$ such that $\gamma_{y^{-1},y,d} \neq 0$.
- **P4.** If $z' \leq_{\mathcal{LR}} z$ then $a(z') \geq a(z)$. Hence, if $z' \sim_{\mathcal{LR}} z$, then a(z) = a(z').
- **P5.** If $d \in \mathcal{D}$, $y \in W$, $\gamma_{y^{-1},y,d} \neq 0$, then $\gamma_{y^{-1},y,d} = n_d = \pm 1$.
- **P6.** If $d \in \mathcal{D}$, then $d^2 = 1$.
- **P7.** For any $x, y, z \in W$, we have $\gamma_{x,y,z} = \gamma_{y,z,x}$.

- **P8.** Let $x, y, z \in W$ be such that $\gamma_{x,y,z} \neq 0$. Then $x \sim_{\mathcal{L}} y^{-1}$, $y \sim_{\mathcal{L}} z^{-1}$, and
- **P9.** If $z' \leq_{\mathcal{L}} z$ and a(z') = a(z), then $z' \sim_{\mathcal{L}} z$.
- **P10.** If $z' \leq_{\mathcal{R}} z$ and a(z') = a(z), then $z' \sim_{\mathcal{R}} z$.
- **P11.** If $z' \leq_{\mathcal{LR}} z$ and a(z') = a(z), then $z' \sim_{\mathcal{LR}} z$.
- **P12.** Let $I \subseteq S$ and W_I be the parabolic subgroup defined by I. If $y \in W_I$, then a(y) computed in terms of W_I is equal to a(y) computed in terms of W.
- **P13.** Any left cell \mathfrak{C} of W contains a unique element $d \in \mathcal{D}$. We have $\gamma_{x^{-1},x,d} \neq 0$ for all $x \in \mathfrak{C}$.
- **P14.** For any $z \in W$, we have $z \sim_{\mathcal{LR}} z^{-1}$.
- **P15.** If v' is an indeterminate and h'_{xyz} is obtained from h_{xyz} via the substitution $v \mapsto v'$, then whenever $\boldsymbol{a}(w) = \boldsymbol{a}(y)$, we have

$$\sum_{y'} h'_{wx'y'} h_{xy'y} = \sum_{y'} h_{xwy'} h'_{y'x'y}.$$

The statements **P1-P15** are known to hold for finite Weyl groups in the equal parameter case by work of Kazhdan-Lusztig [15] and Springer [24]. If the Coxeter system is of type $I_2(m)$, H_3 , or H_4 , they follow from work of Alvis [1] and DuCloux [5]. In the unequal parameter case, P1-P15 have been verified by Geck in types $I_2(m)$ and F_4 [10], and in the so-called asymptotic case of type B_n by Geck-Iancu [13] and Geck [12]. In the latter, only a weaker version of **P15** is actually verified, but it is sufficient to construct the asymptotic ring which we will consider in the next section.

2.2. The Asymptotic Ring J. The goal of this section is to verify Lemma 12.15 of [17] in our more general setting. We begin with a brief discussion of Lusztig's ring J which can be viewed as an asymptotic version of \mathcal{H} . Although originally defined in the equal parameter case, its construction also makes sense in the setting of unequal parameter Hecke algebras under the the assumption that the conjectures **P1-P15** hold. Using the methods developed in [19], J provides us with a way of studying the left-cell representations of \mathcal{H} .

Recall the integers γ_{xyz} defined for all x, y, and z in W as the constant terms of $v^{a(z)}h_{xyz^{-1}}$. Then J is the free abelian group with basis $\{t_x \mid x \in W\}$. To endow it with a ring structure, define a bilinear product on J by

$$t_x \cdot t_y = \sum_{z \in W} \gamma_{xyz} t_{z^{-1}}$$

for x and y in W. Conjectures **P1-P15** allow us to state the following results.

Theorem 2.2 ([19]). Assuming conjectures P1-P15, the following hold:

- (1) J is an associative ring with identity element 1_J = ∑_{d∈D} n_dt_d.
 (2) The group algebra C[W] is isomorphic as a C-algebra to J_C = C ⊗_Z J.

Following [19, §20.2], we will write E_{\blacktriangle} for the $J_{\mathbb{C}}$ -module corresponding to a $\mathbb{C}[W]$ -module E. It shares its underlying space with E, while the action of an element of $J_{\mathbb{C}}$ is defined by the action of its image under the isomorphism with $\mathbb{C}[W]$. Consider a left cell \mathfrak{C} of W and define $J_{\mathbb{C}}^{\mathfrak{C}}$ to be $\bigoplus_{x \in \mathfrak{C}} \mathbb{C}t_x$. By **P8**, this is a left ideal in $J_{\mathbb{C}}$. Furthermore,

Theorem 2.3 ([19]). Assuming that the conjectures P1-P15 hold, the $J_{\mathbb{C}}$ -modules $J_{\mathbb{C}}^{\mathfrak{C}}$ and $[\mathfrak{C}]_{\blacktriangle}$ are isomorphic.

We are ready to address Lemma 12.15 of [17]. Its original proof relies on a characterization of left cells in terms of the dual bases $\{C_x\}$ and $\{D_x\}$ stated in [17](5.1.14). This result in turn relies on positivity properties which do not hold in the unequal parameter case and therefore a new approach to the lemma is required. We owe the idea of using J in the present proof to M. Geck.

Lemma 2.4. Assume that conjectures **P1-P15** hold. If \mathfrak{C} and \mathfrak{C}' are two left cells in W with respect to a weight function L, then

$$\dim \operatorname{Hom}_W([\mathfrak{C}], [\mathfrak{C}']) = |\mathfrak{C} \cap \mathfrak{C}'^{-1}|.$$

Proof. Let $x \in \mathfrak{C}^{-1} \cap \mathfrak{C}'$ and define a map ϕ_x on $J_{\mathbb{C}}^{\mathfrak{C}}$ via $\phi_x(t_y) = t_y t_x$. With x and y as above, we can write

$$t_y t_x = \sum \gamma_{yxz} t_{z^{-1}}.$$

For $\gamma_{yxz} \neq 0$, **P8** implies $x \sim_{\mathcal{L}} z^{-1}$. Since $x \in \mathfrak{C}'$, this forces $t_y t_x$ to lie in $J_{\mathbb{C}}^{\mathfrak{C}'}$, and we have in fact defined a map $\phi_x : J_{\mathbb{C}}^{\mathfrak{C}} \to J_{\mathbb{C}}^{\mathfrak{C}'}$.

We will show that as x runs over the set $\mathfrak{C}^{-1} \cap \mathfrak{C}'$, the maps ϕ_x are linearly independent. So assume that for some constants a_x we have

$$\sum_{x\in\mathfrak{C}^{-1}\cap\mathfrak{C}'}a_x\phi_x=0 \text{ and, consequently } \sum_{x\in\mathfrak{C}^{-1}\cap\mathfrak{C}'}a_xt_yt_x=0$$

for all $y \in \mathfrak{C}$. In particular, if d is the unique element in $\mathcal{D} \cap \mathfrak{C}$ guaranteed by **P13** then we also have

$$\sum_{x \in \mathfrak{C}^{-1} \cap \mathfrak{C}'} a_x t_d t_x = \sum_{y \in \mathfrak{C}^{-1} \cap \mathfrak{C}'} \pm a_x t_x = 0,$$

where the first equality follows from **P2**, **P5**, **P7**, and **P13**. But this means that $a_x = 0$ for all relevant x, or in other words, that the ϕ_x are linearly independent. We can therefore conclude that dim $\operatorname{Hom}_{J_{\mathbb{C}}}(J_{\mathbb{C}}^{\mathfrak{C}}, J_{\mathbb{C}}^{\mathfrak{C}'}) \geq |\mathfrak{C}^{-1} \cap \mathfrak{C}'|$. Since this inequality is true for all pairs of left cells \mathfrak{C} and \mathfrak{C}' in W, we have

$$\sum_{\mathfrak{C},\mathfrak{C}'} \text{ dim } \operatorname{Hom}_{J_{\mathbb{C}}}(J_{\mathbb{C}}^{\mathfrak{C}},J_{\mathbb{C}}^{\mathfrak{C}'}) \geq \sum_{\mathfrak{C},\mathfrak{C}'} |\mathfrak{C}^{-1} \cap \mathfrak{C}'|.$$

The right side of this inequality is just the order of W since each of its elements lies in a unique left and a unique right cell. On the other hand, by the correspondence resulting from Theorem 2.3 the left side is

$$\dim \operatorname{Hom}_{J_{\mathbb{C}}}\left(\sum_{\mathfrak{C}}J_{\mathbb{C}}^{\mathfrak{C}},\sum_{\mathfrak{C}'}J_{\mathbb{C}}^{\mathfrak{C}'}\right)=\dim \operatorname{Hom}_{W}(\operatorname{Reg}_{W},\operatorname{Reg}_{W})=|W|.$$

Hence the original inequality must be in fact an equality and the lemma follows. \Box

We immediately obtain the following corollary, whose proof is identical to that of [17](12.17).

Corollary 2.5. Assume that conjectures **P1-P15** hold and that the left cell modules of W with respect to a weight function L are multiplicity-free. Then $\mathfrak{C} \cap \mathfrak{C}^{-1}$ is the set of involutions in \mathfrak{C} .

3. Type
$$B_n$$

The goal of this section is to detail the combinatorics of arbitrary rank standard domino tableaux necessary to describe Kazhdan-Lusztig cells in type B_n .

3.1. **Domino Tableaux.** Consider a partition p of a natural number n. We will view it as a Young diagram Y_p , a left-justified array of squares whose row lengths decrease weakly. The square in row i and column j of Y_p will be denoted s_{ij} and a pair of squares in Y_p of the form $\{s_{ij}, s_{i+1,j}\}$ or $\{s_{ij}, s_{i,j+1}\}$ will be called a domino. A domino is removable from Y_p if deleting its underlying squares leaves either another Young diagram containing the square s_{11} or the empty set.

Successive deletions of removable dominos from a Young diagram Y_p must eventually terminate in a staircase partition containing $\binom{r+1}{2}$ squares for some nonnegative integer r. This number is determined entirely by the underlying partition p and does not depend on the sequence of deletions of removable dominos. We will write $p \in \mathcal{P}_r$ and say that p is a partition of rank r. The core of p is its underlying staircase partition.

Example 3.1. The partition $p = [4, 3^2, 1]$ lies in the set \mathcal{P}_2 . Below are its Young diagram Y_p and a domino tiling resulting from a sequence of deletions of removable dominos exhibiting the underlying staircase partition.

Consider $p \in \mathcal{P}_r$. It is a partition of the integer $2n + \binom{r+1}{2}$ for some n. A standard domino tableau of rank r and shape p is a tiling of the non-core squares of Y_p by dominos, each of which is labeled by a unique integer from $\{1, \ldots, n\}$ in such a way that the labels increase along its rows and columns. We will write $SDT_r(p)$ for the set of standard domino tableaux of rank r of shape p and $SDT_r(n)$ for the set of standard domino tableaux of rank r which contain exactly n dominos.

For $T \in SDT_r(n)$, we will say that the square s_{ij} is variable if $i + j \equiv r \mod 2$ and fixed otherwise. As discussed in [6] and [21], a choice of fixed squares on a tableau T allows us to define two notions, a partition of its dominos into cycles and the operation of moving through a cycle. The moving through map, when applied to a cycle c in a tableau T yields another standard domino tableau MT(T,c) which differs from T only in the labels of the variable squares of c. If c contains D(l,T), the domino in T with label l, then MT(T,c) is in some sense the minimally-affected standard domino tableau in which the label of the variable square in D(l,T) is changed. We refer the reader to [21] for the detailed definitions.

If the shape of MT(T,c) is the same as the shape of T, we will say that c is a closed cycle. Otherwise, one square will be removed from T (or added to its core) and one will be added. In this case, we will say the c is open and denote the aforementioned squares as $s_b(c)$ and $s_f(c)$, respectively. Finally, if $s_b(c)$ is adjacent to the core of T, we will say that c is a core open cycle. We will write OC(T) for the set of all open cycles of T and $OC^*(T)$ the subset of non-core open cycles.

3.2. Generalized Robinson-Schensted Algorithms. The Weyl group W_n of type B_n consists of the set of signed permutations on n letters, which we write in one-line notation as $w = (w_1 w_2 \dots w_n)$. For each non-negative integer r, there is an injective map

$$G_r: W_n \to SDT_r(n) \times SDT_r(n)$$

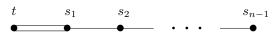
which is onto the subset of domino tableaux of the same-shape, see [6] and [25]. We will write $G_r(x) = (S_r(x), T_r(x))$ for the image of a permutation x and refer to the two components as the *left* and *right tableaux of* x.

Definition 3.2. Consider $x, y \in W_n$ and fix a non-negative integer r. We will say that

- (1) $x \approx_{\mathcal{L}}^{\iota} y$ if $T_r(y) = T_r(x)$, and
- (2) $x \approx_{\mathcal{L}} y$ if $T_r(y) = MT(T_r(x), C)$ for some $C \subset OC^*(T_r(x))$.

We will call the equivalence classes defined by $\approx_{\mathcal{L}}^{\iota}$ irreducible combinatorial left cells of rank r in W, and those defined by $\approx_{\mathcal{L}}$ its reducible combinatorial left cells of rank r. In the irreducible case, we will say that the combinatorial left cell is represented by the tableau $T_r(x)$. In the reducible case, we will say that the combinatorial left cell is represented by the set $\{MT(T_r(x), C) \mid C \subset OC^*(T_r(x))\}$ of standard domino tableaux.

3.3. Cells in type B_n . Consider the generators of W_n as in the following diagram:



Define the weight function L by L(t) = b and $L(s_i) = a$ for all i and set $s = \frac{b}{a}$. The following is a conjecture of Bonnafé, Geck, Iancu, and Lam, and appears as Conjectures A, B, and D in [4]:

Conjecture 3.3. Consider a Weyl group of type B_n with a weight function L and parameter s defined as above.

- (1) When $s \notin \mathbb{N}$, the Kazhdan-Lusztig left cells coincide with the irreducible combinatorial left cells of rank |s|.
- (2) When $s \in \mathbb{N}$, the Kazhdan-Lusztig left cells coincide with the reducible combinatorial left cells of rank s-1.

This conjecture is well-known to be true for s=1 by work of Garfinkle [8], and has been verified when s>n-1 by Bonnafé and Iancu [3]. It has also been shown to hold for all values of s when $n \leq 6$, see [4]. Furthermore, assuming **P1-P15**, C. Bonnafé has shown the conjecture to be true in the irreducible case, and that in the reducible case, Kazhdan-Lusztig left cells are unions of the reducible combinatorial left cells [2].

4. Constructible Representations in Type B_n

M. Geck has shown that if Lusztig's conjectures **P1-P15** hold, then the W-modules carried by the Kazhdan-Lusztig left cells of an unequal parameter Hecke algebra are precisely the constructible ones [11]. Defined in the unequal parameter setting by Lusztig in [19](20.15), constructible modules arise via truncated induction and tensoring with the sign representation. The goal of this section is to give a combinatorial description of the effects of these two operations on W-modules in type B_n . Our approach is based on the equal-parameter results of [20].

4.1. Irreducible W_n -modules. Let us restrict our attention to type B_n , write W_n for the corresponding Weyl group, and define constants a, b, and s, as in Section 3.3. We begin by recalling the standard parametrization of irreducible W_n -modules.

Let \mathcal{P}^2 be the set of ordered pairs of partitions and $\mathcal{P}^2(n)$ be the subset of \mathcal{P}^2 where the combined sum of the parts of both partitions is n.

Theorem 4.1. The set of irreducible representations of W_n is parametrized by $\mathcal{P}^2(n)$. If we write [(d, f)] for the representation corresponding to $(d, f) \in \mathcal{P}^2(n)$, then

$$[(f^t, d^t)] \cong [(d, f)] \otimes \operatorname{sgn},$$

where p^t denotes the transpose of the partition p.

In this form, the connection between irreducible W_n -modules and the description of left cells in Conjecture 3.3 is not clear. To remedy this, we would like to restate Theorem 4.1 in terms of partitions of arbitrary rank which arise as shapes of the standard domino tableaux in this conjecture. Thus let $r = \lfloor s \rfloor$ if $s \notin \mathbb{N}$, r = s - 1 otherwise, and write $\epsilon = s - \lfloor s \rfloor$. As an intermediary to this goal, we define the notion of a *symbol of defect t and residue* ϵ for a non-negative integer t and $0 \le \epsilon < 1$. It is an array of non-negative numbers of the form

$$\Lambda = \begin{pmatrix} \lambda_1 + \epsilon & \lambda_2 + \epsilon & \dots & \lambda_{N+t} + \epsilon \\ \mu_1 & \mu_2 & \dots & \mu_N \end{pmatrix}$$

where the (possibly empty) sequences $\{\lambda_i\}$ and $\{\mu_i\}$ consist of integers and are strictly increasing. If we define a related symbol by letting

$$\Lambda' = \begin{pmatrix} \epsilon & \lambda_1 + 1 + \epsilon & \lambda_2 + 2 + \epsilon & \dots & \lambda_{N+t} + N + t + \epsilon \\ 0 & \mu_1 + 1 & \dots & \mu_N + N \end{pmatrix}$$

then the binary relation defined by setting $\Lambda \sim \Lambda'$ generates an equivalence relation. We will write Sym_t^{ϵ} for the set of its equivalence classes.

We describe two maps between symbols and partitions. A partition can be used to construct a symbol in the following way. If $p = (p_1, p_2, \dots, p_k)$, form $p^{\sharp} = (p_1, p_2, \dots, p_{k'})$ by adding an additional zero term to p if the rank of p has the same parity as k. Dividing the set $\{p_i + k' - i\}_{i=1}^{k'}$ into its odd and even parts yields two sequences

$${2\mu_i + 1}_{i=1}^N$$
 and ${2\lambda_i}_{i=1}^{N+t}$

for some non-negative integer t. A symbol Λ_p of defect t and residue ϵ corresponding to p can now be defined by arranging the integers λ_i and μ_i into an array as above.

Given a symbol of defect t and residue ϵ , it is also possible to construct an ordered pair of partitions. With Λ as above, let

$$d_{\Lambda} = \{\lambda_i - i + 1\}_{i=1}^{N+t} \text{ and } f_{\Lambda} = \{\mu_i - i + 1\}_{i=1}^{N}.$$

Both constructions are well-behaved with respect to the equivalence on symbols defined above. The next theorem follows from [14](2.7).

Theorem 4.2. The maps $p \mapsto \Lambda_p$ and $\Lambda \mapsto (d_{\Lambda}, f_{\Lambda})$ define bijections

$$\mathcal{P}_r \to Sym_{r+1}^{\epsilon} \to \mathcal{P}^2$$

for all values of r and ϵ . Consequently, their composition yields a bijection between $\mathcal{P}_r(n)$ and $\mathcal{P}^2(n)$.

This result allows us to custom tailor a parametrization of irreducible W_n -modules to each value of the parameter s by defining r and ϵ as above. Together with Lusztig's Lemma 22.18 of [19], the present theorem implies the following alternate parametrization of the representations of W_n in terms of symbols. A parametrization in terms of partitions of rank r follows.

Corollary 4.3. If we fix values of the defect r and residue ϵ , then the set of irreducible representations of W_n is parametrized by the set of equivalence classes of symbols $\{\Lambda \in Sym_{r+1}^{\epsilon} \mid \text{parts of } d_{\Lambda} \text{ and } f_{\Lambda} \text{ sum to } n\}$. Writing $[\Lambda]$ for the representation corresponding to Λ , we have

$$[\bar{\Lambda}] = [\Lambda] \otimes \operatorname{sgn}$$

where the symbol $\bar{\Lambda}$ is defined from Λ by the following procedure. Write Λ as above and let τ be the integer part its largest entry. Then the integer parts of the top and bottom rows of $\bar{\Lambda}$ consist of the complements of $\{\tau - \mu_i\}_i$ and $\{\tau - \lambda_i\}_i$ in $[0, \tau] \cap \mathbb{Z}$, respectively.

Corollary 4.4. If we fix a non-negative integer r, then the set of irreducible representations of W_n is parametrized by $\mathcal{P}_r(n)$. Writing [p] for the representation corresponding to $p \in \mathcal{P}_r(n)$, we have

$$[p^t] \cong [p] \otimes \operatorname{sgn},$$

where p^t is the transpose of the partition p.

Example 4.5. Let $s = 3\frac{1}{2}$, so that r = 3 and $\epsilon = \frac{1}{2}$, and consider the irreducible representation $[((1^3), (1))]$ of W_4 . Then according to the above parametrizations, $[((1^3), (1))] = [(4, 3, 2^2)] = [\Lambda_{(4,3,2^2)}]$ where

$$\Lambda_{[(4,3,2^2)]} = \left(\begin{array}{ccc} \frac{1}{2} & 2\frac{1}{2} & 3\frac{1}{2} & 4\frac{1}{2} \\ & 1 & \end{array}\right)$$

is a symbol of defect 3 and residue $\frac{1}{2}$. Note that $((1^3),(1)) \in \mathcal{P}^2(4), (4,3,2^2) \in \mathcal{P}_2(4)$, and $\Lambda_{(4,3,2^2)}$ is a representative of a class in Sym_3^{ϵ} for $\epsilon = 1/2$. Furthermore, $[((1^3),(1))] \otimes sgn = [((1),(3))] = [(4,3,2^2)] \otimes sgn = [(4^2,2,1)] = [\Lambda_{(4,3,2^2)}] \otimes sgn = [\Lambda_{(4^2,2,1)}]$, where

$$\Lambda_{[(4^2,2,1)]} = \left(\begin{array}{cc} \frac{1}{2} & 1\frac{1}{2} & 2\frac{1}{2} & 4\frac{1}{2} \\ & & 3 \end{array} \right).$$

We will need the following lemma, which holds for finite W whenever **P1-P15** hold. It is a combination of [19](11.7) and [19](21.5).

Lemma 4.6. Consider a Kazhdan-Lusztig left cell $\mathfrak{C} \subset W$ and let w_0 be the longest element of W. Then $\mathfrak{C}w_0$ is also a left cell in W, and $[\mathfrak{C}w_0] \cong \mathfrak{C} \otimes \operatorname{sgn}$ as W-modules.

4.2. **Truncated Induction.** We now turn to a combinatorial description of truncated induction in terms of the above parameter sets. If π is a representation of W_I , a parabolic subgroup of W_n , Lusztig defined a representation $J_{W_I}^W(\pi)$ of $W = W_n$, [19](20.15). Its precise definition depends of the parameters of the underlying Hecke algebra, so it is natural to expect that this is manifested in the combinatorics studied above. Following [20, §2] and [16], we note that due to the transitivity of truncated induction and the fact that the situation in type A is well-understood, we need to only understand how truncated induction works when W_I is a maximal parabolic subgroup whose type A component acts by the sign representation on π . Henceforth, let W_I be a maximal parabolic subgroup in W_n with factors W' of type B_m and S_l of type A_{l-1} , where m+l=n; furthermore, write sgn_l for the sign representation of S_l .

Truncated induction behaves well with respect to cell structure. In fact, the following lemma holds for general W.

Lemma 4.7 ([9]). Let \mathfrak{C}' be a left cell of W_I . Then we have

$$J_{W_I}^W([\mathfrak{C}']) \cong [\mathfrak{C}],$$

where \mathfrak{C} is the left cell of W such that $\mathfrak{C}' \subset \mathfrak{C}$.

We first provide a description of the situation in type B_n in terms of symbols. Consider a symbol Λ' of defect r+1 and residue ϵ ; via the equivalence on symbols, we can assume that it has at least l entries. If the set of l largest entries of Λ' is uniquely defined, then let Λ be the symbol obtained by increasing each of the entries in this set by one. If it is not, then let $\Lambda^{\rm I}$ and $\Lambda^{\rm II}$ be the two symbols obtained by increasing the largest l-1 entries of Λ' and then each of the two lth largest entries in turn by one.

Proposition 4.8 ([19](22.17)). The representation $J_{W_I}^W([\Lambda'] \otimes \operatorname{sgn}_l)$ is $[\Lambda]$ if the set of l largest entries of Λ' is uniquely defined, and $[\Lambda^I] + [\Lambda^{II}]$ if it is not. The former is always the case if $[\Lambda']$ is a symbol of residue $\epsilon \neq 0$.

It is not difficult to reformulate this result in terms of partitions of rank r. Consider a partition $p = (p_1, p_2, \dots p_k) \in \mathcal{P}_r$. We can assume that $k \geq l$ by adding zero parts to p as necessary. Let k' be the number of parts of p^{\sharp} . Define

$$p^{I} = (p_1 + 2, \dots, p_l + 2, p_{l+1}, \dots, p_k), \text{ and}$$

 $p^{II} = (p_1 + 2, \dots, p_{l-1} + 2, p_l + 1, p_{l+1} + 1, p_{r+2}, \dots, p_k).$

Note that both p^{I} and p^{II} are again partitions of rank r.

Corollary 4.9. The representation $J_{W_I}^W([p] \otimes \operatorname{sgn}_l)$ produced by truncated induction is $[p^I]$ whenever $p_l > p_{l+1}$, $p_l + r - l$ is odd, or $\epsilon \neq 0$. Otherwise,

$$J_{W_I}^W([p] \otimes \operatorname{sgn}_l) = [p^{\mathrm{I}}] + [p^{\mathrm{II}}].$$

Proof. Using the results of the preceding proposition, we have to check under what conditions the set of l largest entries in a symbol Λ' is uniquely defined and then determine the preimages of the symbols $\Lambda^{\rm I}$ and $\Lambda^{\rm II}$ under the map of Theorem 4.2. When $\epsilon \neq 0$, the l largest entries in Λ' are uniquely determined since all of its entries must be distinct. When $\epsilon = 0$, there will be an ambiguity in determining the l largest entries iff $p_l + k' - l$ and $p_{l+1} + k' - l - 1$ are consecutive integers with the first one being odd. Together with the observation that k' is always of the opposite parity from r, this gives us the conditions of the proposition. Determining the partitions corresponding to $\Lambda^{\rm I}$ and $\Lambda^{\rm II}$ is then just a simple calculation.

Note that the parity conditions of the proposition imply that in the case when $J_{W_I}^W([p] \otimes \operatorname{sgn}_l)$ is reducible, the square s_{l,p_l+1} of the Young diagrams of p^I and p^{II} is fixed. In particular, this means that when endowed with the maximal label, the domino $\{s_{l,p_l+1},s_{l,p_l+2}\}$ constitutes an open cycle in a domino tableau of shape p^I . Its image under the moving through map is $\{s_{l+1,p_l+1},s_{l,p_l+1}\}$ with underlying partition p^{II} . This observation leads to the following lemma:

Lemma 4.10. Let n = m + l and consider $w' = (w_1 w_2 \dots w_m) \in W_m$. Write $T' = T_r(w')$ for its right tableau of rank r and define a set of partitions

$$\mathbb{P}' = \{ shape \, MT(T',C) \mid C \subset OC^*(T') \} \subset \mathcal{P}_r(m).$$

Define the set $\mathbb{P} = \{p^{\mathrm{I}} \mid p \in \mathbb{P}'\} \cup \{p^{\mathrm{II}} \mid p \in \mathbb{P}' \text{ and } p_l = p_{l+1} \text{ with } p_l + r - l \text{ even}\}.$ If $w = (w_1 w_2 \dots w_m \ n \ n-1 \dots m+1) \in W_n$ with right tableau $T = T_r(w)$, then

$$\mathbb{P} = \{ shape MT(T, C) \mid C \subset OC^*(T) \} \subset \mathcal{P}_r(n).$$

Proof. The lemma relates the non-core open cycles in T' to the non-core open cycles in T, hence it follows from the description of the behavior of cycles under domino insertion in [21](3.6). However, things are really simpler than that, and we describe the situation fully. Note that T is obtained from T' by placing horizontal dominos with labels m+1 through n at the end of its first l rows. Essentially, there are four possibilities. We write s_{ij} for the left square of the domino added to row i and let p = shape T'.

- (1) $s_{ij} = S_f(c)$ for a cycle c of T'. Then the domino joins the cycle c and the final square of the new cycle is $s_{i,j+2}$.
- (2) $s_{i,i-1} = S_b(c)$ for a cycle c of T'. Then the domino joins the cycle c and the beginning square of the new cycle is $s_{i,j+1}$.
- (3) $p_{i-1} = p_i$ with $p_i + r i$ odd. Then the dominos with labels m + i 1 and m+i in T form a closed cycle in T.
- (4) $p_l = p_{l+1}$ with $p_l + r l$ even. Then the domino with label n forms a singleton non-core open cycle in T which does not correspond to a cycle in

If $C \subset OC^*(T')$ and \widetilde{C} is the set of the corresponding cycles in T, then it is clear from the above description that $\{shape\ MT(T,\widetilde{C}) \mid C \subset OC^*(T')\} = \{p^{\mathrm{I}} \mid p \in \mathbb{P}'\}.$ If case (4) arises and T has an additional non-core open cycle $c = \{n\}$, then $\{shape\ MT(T,\widetilde{C}\cup c)\mid C\subset OC^*(T')\}=\{p^{\mathrm{II}}\mid p\in\mathbb{P}'\}.$ The lemma follows.

Example 4.11. Let s=3, so that r=2 and $\epsilon=0$, and consider the partition $(4,3,2^3) \in \mathcal{P}_2(5)$. It corresponds to the symbol

$$\Lambda_{[(4,3,2^3)]} = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ & 1 & \end{array} \right) \in Sym_3^0$$

For l=4, we have $J_{W_I}^W([(4,3,2^3)] \otimes \operatorname{sgn}_4) = [(6,5,4,3^2)] + [(6,5,4^2,2)]$. Note that both partitions lie in $\mathcal{P}_2(9)$. In terms of symbols,

$$J_{W_{I}}^{W}([\Lambda_{(4,3,2^{3})}] \otimes \operatorname{sgn}_{4}) = \left[\left(\begin{array}{ccc} 2 & 3 & 4 & 5 \\ & 1 & \end{array} \right) \right] + \left[\left(\begin{array}{ccc} 1 & 3 & 4 & 5 \\ & 2 & \end{array} \right) \right]$$

5. W_n -module structure and standard domino tableaux

Viewing cells as constructible representations allows us to examine their structure inductively. Using the description of truncated induction and tensoring with sign derived in the previous section we describe the W_n -module carried by each cell in terms of the parametrization of irreducible W_n -modules of Section 4.1. We begin with a few facts about combinatorial cells.

Lemma 5.1. Consider two combinatorial left cells \mathfrak{C} and \mathfrak{C}' in W_n of rank r represented by sets \mathbb{T} and \mathbb{T}' of rank r standard domino tableaux. Then

$$|\mathfrak{C} \cap \mathfrak{C}'^{-1}| = M$$

where M is the number of tableaux in \mathbb{T} whose shape matches the shape of a tableau in \mathbb{T}' .

Proof. Suppose first that \mathfrak{C} and \mathfrak{C}' are irreducible so that $\mathbb{T} = \{T\}$ and $\mathbb{T}' = \{T'\}$. If they are of the same shape, then the intersection $\mathfrak{C} \cap \mathfrak{C}'^{-1} = G_r^{-1}(T', T)$; otherwise, it is empty.

On the other hand, if $\mathfrak C$ and $\mathfrak C'$ are reducible, then let J consist of the tableaux in $\mathbb T$ whose shape matches the shape of a tableau in $\mathbb T'$ and define |J|=M. Recall that by the definition of a combinatorial left cell, $\mathbb T=\{MT(T,C)\mid C\in OC^*T\}$ for some tableau T and therefore $\mathbb T$ consists of only tableaux of differing shapes. If $T\in J$, write T' for the the unique tableau in $\mathbb T'$ of the same shape as T. Then

$$\mathfrak{C} \cap \mathfrak{C}'^{-1} = \bigcup_{T \in J} G_r^{-1}(T', T).$$

We can obtain a slightly better description of the intersection of a combinatorial left cell and a combinatorial right cell by recalling the definition of an extended open cycle in a tableau relative to another tableau of the same shape. See [7](2.3.1) or [22](2.4) for the details. In general, an extended open cycle is a union of open cycles.

Corollary 5.2. Consider two reducible combinatorial left cells \mathfrak{C} and \mathfrak{C}' in W_n of rank r represented by sets \mathbb{T} and \mathbb{T}' of rank r standard domino tableaux. If $T \in \mathbb{T}$ and $T' \in \mathbb{T}'$ are of the same shape and m is the number of non-core extended open cycles m in T relative to T', then

$$|\mathfrak{C} \cap \mathfrak{C}'^{-1}| = 2^m.$$

Proof. An extended open cycle in T relative to T' is a minimal set of open cycles in T and T' such that moving through it produces another pair of tableaux of the same shape. Consequently, moving through two different extended open cycles are independent operations. Noting that

$$\mathbb{T} = \{ MT(T,C) \mid C \subset OC^*(T) \} \text{ and } \mathbb{T}' = \{ MT(T',C) \mid C \subset OC^*(T') \},$$

we have that a tableau-pair $(S, S') \in \mathbb{T} \times \mathbb{T}'$ is same-shape iff it differs from (T, T') by moving through a set of non-core extended open cycles in T relative to T'. Thus, if E is the set of non-core extended open cycles in T relative to T', then

$$\mathfrak{C}\cap\mathfrak{C}'^{-1}=\bigcup_{D\subset E}G_r^{-1}\big(MT((T',T),D)\big),$$

from which the result follows.

Recall the parameter s derived from a weight function L in type B_n . We will call a Kazhdan-Lusztig left cell in this setting a *left cell of weight* s. If we assume that statements **P1-P15** of Section 2.1 hold, then C. Bonnafé [2] has shown that:

- when $s \notin \mathbb{N}$, left cells of weight s are the irreducible combinatorial left cells of rank $r = \lfloor s \rfloor$, and
- when $s \in \mathbb{N}$, left cells of weight s are unions of reducible combinatorial left cells of rank r = s 1.

In this way, as in Definition 3.2, we can say that a left cell of weight s is represented by a set of standard domino tableaux of rank r. In the former case, this is the unique tableau representing the combinatorial left cell, and in the latter, this is the union of the sets of tableaux representing each of the combinatorial cells in the Kazhdan-Lusztig cell.

Lemma 5.3. Suppose that \mathfrak{C} is a left cell of weight s and $\mathfrak{C} = \coprod_i \mathfrak{D}_i$ is its decomposition into combinatorial left cells of rank r. If we let \mathbb{T}_i be the set of domino tableaux representing \mathfrak{D}_i , then the set of shapes of tableaux in \mathbb{T}_i is disjoint from the set of shapes of tableaux in \mathbb{T}_j whenever $i \neq j$.

Proof. By Corollary 2.5, $\mathfrak{C} \cap \mathfrak{C}^{-1}$ consists of the involutions in \mathfrak{C} . The set of involutions in each combinatorial cell \mathfrak{D}_i consists of $\mathfrak{D}_i \cap \mathfrak{D}_i^{-1}$. This forces $\mathfrak{D}_i \cap \mathfrak{D}_i^{-1} = \emptyset$ whenever $i \neq j$, which can only occur if the set of shapes of tableaux in \mathbb{T}_i is disjoint from the set of shapes of tableaux in \mathbb{T}_j , by Lemma 5.1.

We first show that the shapes of the standard domino tableaux of rank r representing a left cell of weight s determine its W_n -module structure:

Definition 5.4. Suppose \mathbb{T} is a set of standard domino tableaux of rank r. For $T \in \mathbb{T}$, we will write $p_T \in \mathcal{P}_r(n)$ for its underlying partition, and define

$$[\mathbb{T}] = \bigoplus_{T \in \mathbb{T}} [p_T].$$

Lemma 5.5. Suppose that \mathfrak{C} and \mathfrak{C}' are left cells of weight s in W_n and

$$\mathfrak{C} = \coprod_{i \leq c} \mathfrak{D}_i \text{ as well as } \mathfrak{C}' = \coprod_{i \leq d} \mathfrak{D}'_i$$

are their decompositions into combinatorial left cells of rank r. Suppose that each \mathfrak{D}_i and \mathfrak{D}'_i is represented by the set of rank r tableaux \mathbb{T}_i and \mathbb{T}'_i , respectively. Then $[\mathfrak{C}] \cong [\mathfrak{C}']$ iff c = d and, suitably ordered, $[\mathbb{T}_i] \cong [\mathbb{T}'_i]$ for all i.

Proof. For clarity, we treat the integer and non-integer values of s separately. First assume $s \notin \mathbb{N}$ so that c = d = 1 and take $\{T\} = \mathbb{T}_1$ and $\{T'\} = \mathbb{T}'_1$. By Lemmas 2.4 and 5.1, we have $\dim \operatorname{Hom}_W([\mathfrak{C}], [\mathfrak{C}]) = \dim \operatorname{Hom}_W([\mathfrak{C}'], [\mathfrak{C}']) = 1$. Furthermore, we have that dim $\operatorname{Hom}_W([\mathfrak{C}], [\mathfrak{C}']) = |\mathfrak{C} \cap \mathfrak{C}'^{-1}| = 1$ if and only if the shapes of T and T' coincide; otherwise, dim $\operatorname{Hom}_W([\mathfrak{C}], [\mathfrak{C}']) = 0$. The lemma follows.

Next, assume $s \in \mathbb{N}$. Suppose first that $[\mathfrak{C}] \cong [\mathfrak{C}']$. Then dim Hom $(\mathfrak{C},\mathfrak{C}) =$ $\dim \operatorname{Hom}(\mathfrak{C}',\mathfrak{C}') = \dim \operatorname{Hom}(\mathfrak{C},\mathfrak{C}'), \text{ and by Lemma 2.4, } |\mathfrak{C} \cap \mathfrak{C}^{-1}| = |\mathfrak{C}' \cap \mathfrak{C}'^{-1}| =$ $|\mathfrak{C} \cap \mathfrak{C}'^{-1}|$. By Lemma 5.3, we have

$$\sum_{i \leq c} |\mathfrak{D}_i \cap \mathfrak{D}_i^{-1}| = \sum_{i \leq d} |\mathfrak{D}_i' \cap \mathfrak{D}_i'^{-1}| = \sum_{i,j} |\mathfrak{D}_i \cap \mathfrak{D}_j'^{-1}|.$$

We can now use Corollary 5.2 to examine the terms of this equality. For a combinatorial cell \mathfrak{D}_i , there is at most one cell $\mathfrak{D}'_{i'}$ such that there are $T_i \in \mathbb{T}_i$ and $T'_{i'} \in \mathbb{T}'_{i'}$ of the same shape, by Lemma 5.3. Let I be the set of i for which this occurs. Let c_i and d_i be the numbers of non-core open cycles in T_i and $T'_{i'}$ and for each $i \in I$, let m_i be the number of non-core extended open cycles in T_i relative to $T'_{i'}$. Then $m_i \leq c_i, d_{i'}$ with equality iff the non-core extended open cycles are just the non-core open cycles. By Corollary 5.2, $\sum_{i \leq c} |\mathfrak{D}_i \cap \mathfrak{D}_i^{-1}| = \sum_{i \leq c} 2^{c_i}$, $\sum_{i \leq d} |\mathfrak{D}_i' \cap \mathfrak{D}_i'^{-1}| = \sum_{i \leq d} 2^{d_i}$, and $\sum_{I} |\mathfrak{D}_i \cap \mathfrak{D}_{i'}'^{-1}| = \sum_{I} 2^{m_i}$. But the previous equation now implies that $m_i = c_i = d_{i'}$, c = d, $I = \{1, \ldots, c\}$ and by the definition of a combinatorial left cell in our setting, that $[\mathbb{T}_i] \cong [\mathbb{T}'_{i'}]$ for all $i \in I$.

Conversely, assume that c = d and $[\mathbb{T}_i] \cong [\mathbb{T}'_i]$ for all i and choose tableaux $T_i \in \mathbb{T}_i$ and $T_i' \in \mathbb{T}_i'$ of the same shape. By the definition of combinatorial cells, there is a correspondence between the non-core open cycles of T_i and those of T'_i

such that their beginning and final squares coincide, implying that the set of non-core extended open cycles in T_i relative to T_i' is precisely the set of open cycles of T_i . Therefore, for each i we have $|\mathfrak{D}_i \cap \mathfrak{D}_i^{-1}| = |\mathfrak{D}_i \cap \mathfrak{D}_i'^{-1}|$. Consequently, by Lemmas 5.3 and 2.4, and Corollary 5.2:

$$\dim\operatorname{Hom}(\mathfrak{C},\mathfrak{C}')=\sum_{i}|\mathfrak{D}_{i}\cap\mathfrak{D}'_{i}^{-1}|=\sum_{i}|\mathfrak{D}_{i}\cap\mathfrak{D}_{i}^{-1}|=\dim\operatorname{Hom}(\mathfrak{C},\mathfrak{C}).$$

Reversing the roles of \mathfrak{C} and \mathfrak{C}' above implies the desired result.

Theorem 5.6. Suppose that \mathfrak{C} is a left cell of weight s in W_n represented by a set \mathbb{T} of standard domino tableaux of rank r. Then $[\mathfrak{C}] \cong [\mathbb{T}]$ as W_n -modules.

Proof. In light of the result from Lemma 5.5, we can prove the theorem by verifying it holds for a representative of each isomorphism class of left cells. Under our assumptions, the results of [11] hold and left cell modules coincide with constructible representations of W_n . Therefore, a representative of each isomorphism class of left cells can be obtained by repeated truncated induction and tensoring with sign. Recall our description of irreducible W_n -modules by partitions of rank r. Via Corollaries 4.4 and 4.9, we have a description of both operations on the level of partitions. We verify that the effect of truncated induction and tensoring with sign on the shapes of the tableaux representing a left cell is the same, and the theorem follows by induction.

We treat the integer and non-integer values of s separately. First assume $s \notin \mathbb{N}$, so that each left cell is represented by a single tableau. We begin by investigating the effect on tensoring with sign. If $[\mathfrak{C}]$ is a left cell module and $w \in \mathfrak{C}$, then \mathfrak{C} is represented by the tableau $T_r(w)$ of shape p. By Lemma 4.6, $\mathfrak{C}w_0$ is also a left cell and $[\mathfrak{C}w_0] \cong [\mathfrak{C}] \otimes \operatorname{sgn}$. It is represented by the tableau $T_r(ww_0) = T_r(w)^t$ of shape p^t . By Corollary 4.4, if we assume that $[\mathfrak{C}]$ carries the irreducible module associated to the shape of its representative tableau, then so does $[\mathfrak{C}w_0] \cong [\mathfrak{C}] \otimes \operatorname{sgn}$.

For the case of truncated induction, consider a maximal parabolic subgroup $W_I = W_m \times S_l$ of W_n . Choose $w' = (w_1 w_2 \dots w_m) \in W_m$ and let \mathfrak{C}' be its left cell, represented by the tableau $T' = T_r(w')$. Let $p = shape\ T'$. By Lemma 4.7, $J_{W_I}^W([\mathfrak{C}'] \otimes \operatorname{sgn}_l) = [\mathfrak{C}]$ for a left cell $\mathfrak{C} \subset W_n$ and furthermore, the element $w = (w_1 w_2 \dots w_m \ n \ n-1 \dots m+1) \in \mathfrak{C}$. The left cell \mathfrak{C} is represented by the tableau $T_r(w)$ whose shape is p^I , using the notation of (4.9). By Corollary 4.9, if we assume that $[\mathfrak{C}']$ carries the irreducible module associated to the shape of its representative tableau, then so does $[\mathfrak{C}] \cong J_{W_I}^W([\mathfrak{C}'] \otimes \operatorname{sgn}_l)$.

Next assume $s \in \mathbb{N}$, so that each left cell is represented by a family of rank r standard domino tableaux. Again, we begin by investigating the effect on tensoring with sign. Suppose \mathfrak{C} is a left cell represented by the set \mathbb{T} and for each $T \in \mathbb{T}$, $w_T \in W_n$ is chosen so that $T_r(w_T) = T$. By Lemma 4.6, $\mathfrak{C}w_0$ is also a left cell and $[\mathfrak{C}w_0] \cong [\mathfrak{C}] \otimes \operatorname{sgn}$. It is represented by the set of tableaux $T_r(w_Tw_0) = T_r(w_T)^t$ (for $T \in \mathbb{T}$), which we write as \mathbb{T}^t . By Corollary 4.4, if we assume that $[\mathfrak{C}]$ carries the module $[\mathbb{T}]$ then $[\mathfrak{C}w_0] \cong [\mathfrak{C}] \otimes \operatorname{sgn}$ carries the module $[\mathbb{T}^t]$.

For the case of truncated induction, again consider a maximal parabolic subgroup $W_I = W_m \times S_l$ of W_n . Let \mathfrak{C}' be a left cell of W_m and let $\mathfrak{C}' = \coprod_i \mathfrak{D}'_i$ be its decomposition into combinatorial left cells. Suppose that \mathfrak{D}'_i is represented by the set \mathbb{T}'_i of domino tableaux and let $\mathbb{T}' = \coprod_i \mathbb{T}'_i$. By definition of combinatorial left cells, every $\mathbb{T}'_i = \{MT(T'_i, C) \mid C \subset OC^*(T'_i)\}$ for some rank r standard domino tableau T'_i . For each i, choose $\widetilde{w}^i = (w_1^i w_2^i \dots w_m^i) \in W_m$ with $T'_i = T_r(\widetilde{w}^i)$ so that

 $\widetilde{w}^i \in \mathfrak{D}_i'$. By Lemma 4.7, $J_{W_I}^W([\mathfrak{C}'] \otimes \operatorname{sgn}_l) = [\mathfrak{C}]$ for a left cell $\mathfrak{C} \subset W_n$. Furthermore, $w^i = (w_1^i \ w_2^i \dots w_m^i \ n \ n-1 \dots m+1) \in \mathfrak{C}$ and if $T_i = T_r(w^i)$, then \mathfrak{C} is represented by the set of tableaux $\mathbb{T} = \coprod_i \{MT(T_i, C) \mid C \subset OC^*(T_i)\}$. Lemma 4.10 describes the shapes of the tableaux in \mathbb{T} in terms of the shapes of the tableaux in \mathbb{T}' . This, together with Corollary 4.9 shows that if we assume that [C'] carries the module $[\mathbb{T}']$, then $[\mathfrak{C}] \cong J_{W_I}^W([\mathfrak{C}'] \otimes \operatorname{sgn}_l)$ carries the module $[\mathbb{T}]$.

Corollary 5.7. Consider a Weyl group of type B_n with a weight function L and parameter's defined as above. If statements P1-P15 hold, then

- (1) When $s \notin \mathbb{N}$, the Kazhdan-Lusztig left cells of weight s coincide with the irreducible combinatorial left cells of rank |s|.
- (2) When $s \in \mathbb{N}$, the Kazhdan-Lusztig left cells of weight s coincide with the reducible combinatorial left cells of rank s-1.

If the set \mathbb{T} of standard domino tableaux represents the left cell \mathfrak{C} in W_n , then $[\mathfrak{C}] \cong [\mathbb{T}]$ as W_n -modules. Furthermore, if $T \in \mathbb{T}$, then the number of elements of \mathfrak{C} with right tableau T is the dimension of the irreducible constituent $[p_T]$ of $[\mathfrak{C}]$.

Proof. The first part in the case $s \notin \mathbb{N}$ is a result of C. Bonnafé [2]. To verify it in the case $s \in \mathbb{N}$, write a Kazhdan-Lusztig left cell \mathfrak{C} in terms of combinatorial left cells as $\mathfrak{C} = \coprod_{i \in I} \mathfrak{D}_i$. Since $[\mathfrak{C}]$ is constructible, the main result of [23] shows that $[\mathfrak{C}] \cong [\widetilde{\mathbb{T}}]$ as W_n -modules where $\widetilde{\mathbb{T}} = \{MT(T,C) \mid C \subset OC^*(T)\}$ for some standard domino tableau T of rank r. Let each \mathfrak{D}_i be represented by $\mathbb{T}_i = \{MT(T_i, C) \mid C \subset \mathbb{T}_i \}$ $OC^*(T_i)$ and write $\mathbb{T} = \coprod_{i \in I} \mathbb{T}_i$. By Theorem 5.6, $[\mathbb{T}] = [\widetilde{\mathbb{T}}]$. This implies that for every i, the set of beginning and ending squares of non-core open cycles in T_i is contained in the corresponding set in T. However, the size of this set is constant for every partition in the set of possible shapes of tableaux in [T]. By Lemma 5.3, the only way this can occur is if |I|=1, that is, $\mathfrak C$ consists of a single combinatorial cell.

Finally, we verify the last statement of the corollary. If $s \notin \mathbb{N}$, consider a left cell \mathfrak{C} represented by the tableau T. Then $\dim[\mathfrak{C}] = \sum |\mathfrak{C} \cap \mathfrak{C'}^{-1}|$, the sum taken over all left cells \mathfrak{C}' in W_n . But $|\mathfrak{C} \cap \mathfrak{C}'^{-1}| = 1$ iff the shape of the tableaux representing \mathfrak{C} and \mathfrak{C}' are the same; otherwise it is zero. Since each left cell is represented by a unique tableau, the above sum equals the number of tableaux of the same shape as T. This is the same as the number of elements of \mathfrak{C} with right tableau T. If $s \in \mathbb{N}$, consider left cells \mathfrak{C} and \mathfrak{C}' . For $w \in \mathfrak{C} \cap \mathfrak{C}'^{-1}$, $[shape T_r(w)]$ must be a component of both $[\mathfrak{C}]$ and $[\mathfrak{C}']$. Furthermore, each $w \in \mathfrak{C} \cap \mathfrak{C}'^{-1}$ must have the right tableau of a unique shape, establishing a bijection between $\mathfrak{C} \cap \mathfrak{C}'^{-1}$ and the set of irreducible modules common to $[\mathfrak{C}]$ and $[\mathfrak{C}']$. If we let \mathfrak{C}' vary over all left cells of W_n , the statement follows by Lemma 2.4.

It should be remarked that the above statement classifying the module structure of left cells is not the strongest one could hope for. In the so-called "asymptotic" case when s is sufficiently large, M. Geck has shown that whenever the tableaux representing $[\mathfrak{C}]$ and $[\mathfrak{C}']$ equal, then not only are the underlying \mathcal{H} -modules isomorphic, but the underlying structure constants are the same. More precisely, there is a bijection $\mathfrak{C} \to \mathfrak{C}'$ sending $x \mapsto x'$ such that

$$h_{w,x,y} = h_{w,x',y'}$$
 for all $w \in W_n$ and $x,y \in \mathfrak{C}$.

It would be interesting to know under what circumstances this stronger statement holds for other values of s.

References

- [1] D. Alvis. The left cells of the Coxeter group of type H_4 . J. Algebra 107:160–168, 1987
- [2] C. Bonnafé. On Kazhdan-Lusztig cells in type B. arXiv:math.RT/0806.0214.
- [3] C. Bonnafé and L. Iancu. Left cells in type B_n with unequal parameters. Represent. Theory, 7:587–609, 2003.
- [4] C. Bonnafé, M. Geck, L. Iancu, and T. Lam. On domino insertion and Kazhdan-Lusztig cells in type B_n, Progress in Math. (Lusztig Birthday Volume). Birkhauser, to appear.
- [5] F. DuCloux. Positivity results for the Hecke algebras of noncrystallographic finite Coxeter group. J. Algebra 303:731-741, 2006.
- [6] D. Garfinkle. On the classification of primitive ideals for complex classical Lie algebras (I). Compositio Math., 75(2):135–169, 1990.
- [7] D. Garfinkle. On the classification of primitive ideals for complex classical Lie algebras (II). Compositio Math., 81(3):307-336, 1992.
- [8] D. Garfinkle. On the classification of primitive ideals for complex classical Lie algebras (III). Compositio Math., 88:187-234, 1993.
- [9] M. Geck. Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters. *Represent. Theory*, 6:1-30, 2002.
- [10] M. Geck. Remarks on Iwahori-Hecke algebras with unequal parameters arXiv:math.RT/07011.2522.
- [11] M. Geck. Left Cells and Constructible Representations. Represent. Theory, 9:385-416, 2005.
- [12] M. Geck. Relative Kazhdan-Lusztig cells. Represent. Theory., 10:481–524, 2006.
- [13] M. Geck and L. Iancu Lusztig's a-function in type B_n in the asymptotic case. Nagoya Math. J., 182:199–240, 2006.
- [14] G. James and A. Kerber. The Representation Theory of the Symmetric Group, volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981.
- [15] D. A. Kazhdan and G. Lusztig. Schubert varieties and Poincaré duality. Proc. Sympos. Pure Math. 34:185–203, 1980.
- [16] G. Lusztig. A class of irreducible representations of a Weyl group II. Indag. Math. 44:219–226,1982.
- [17] G. Lusztig, Characters of reductive groups over a finite field, volume 207 of Annals Math. Studies, Princeton University Press, 1984.
- [18] G. Lusztig. Left Cells in Weyl groups, Lie Group Representations, Lecture Notes in Mathematics 1024, 1983, pp. 99-111.
- [19] G. Lusztig. Hecke algebras with unequal parameters, volume 18 of CRM Monograph Series. American Mathematical Society.
- [20] W. M. McGovern. Left cells and domino tableaux in classical Weyl groups. Compositio Math., 101:77–98, 1996.
- [21] T. Pietraho. A relation for domino Robinson-Schensted algorithms. *Annals of Combinatorics*, to appear.
- [22] T. Pietraho. Equivalence classes in the Weyl groups of type B_n. Journal of Algebraic Combinatorics, 27(2):247–262, 2008.
- [23] T. Pietraho. Cells and constructible representations in type B_n. New York Journal of Mathematics, 14:411-430, 2008.
- [24] T. A. Springer. Quelques applications de la cohomologie d'intersection. Séminaire Bourbaki, 589:249-273, 1982
- [25] M. A. A. van Leeuwen. The Robinson-Schensted and Schutzenberger algorithms, an elementary approach. Electronic Journal of Combinatorics, 3(2), 1996.

E-mail address: tpietrah@bowdoin.edu

Department of Mathematics, Bowdoin College, Brunswick, Maine 04011