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During the last five years, serial femtosecond crystallography using X-ray laser

pulses has been developed into a powerful technique for determining the atomic

structures of protein molecules from micrometre- and sub-micrometre-sized

crystals. One of the key reasons for this success is the ‘self-gating’ pulse effect,

whereby the X-ray laser pulses do not need to outrun all radiation damage

processes. Instead, X-ray-induced damage terminates the Bragg diffraction prior

to the pulse completing its passage through the sample, as if the Bragg

diffraction were generated by a shorter pulse of equal intensity. As a result,

serial femtosecond crystallography does not need to be performed with pulses as

short as 5–10 fs, but can succeed for pulses 50–100 fs in duration. It is shown here

that a similar gating effect applies to single-molecule diffraction with respect to

spatially uncorrelated damage processes like ionization and ion diffusion. The

effect is clearly seen in calculations of the diffraction contrast, by calculating the

diffraction of the average structure separately to the diffraction from statistical

fluctuations of the structure due to damage (‘damage noise’). The results suggest

that sub-nanometre single-molecule imaging with 30–50 fs pulses, like those

produced at currently operating facilities, should not yet be ruled out. The

theory presented opens up new experimental avenues to measure the impact of

damage on single-particle diffraction, which is needed to test damage models

and to identify optimal imaging conditions.

1. Introduction

X-ray free-electron laser (XFEL) pulses are envisioned to

probe the structures of radiation-sensitive samples, like

biological molecules, by outrunning radiation damage

processes (Neutze et al., 2000). However, current facilities

produce their brightest pulses with durations of the order of

tens of femtoseconds (Emma et al., 2010; Ishikawa et al., 2012),

which is sufficient time for ionization to become widespread

and for ions to move several ångströms (Caleman et al., 2009,

2011). In spite of this, the first applications of XFELs to serial

crystallography have been highly successful (Chapman et al.,

2011; Boutet et al., 2012). It turns out that, even for longer

pulses (� 50–100 fs), Bragg diffraction probes the undamaged

structure in the first few femtoseconds of the pulse–sample

interaction, turning off at later times when radiation damage

distributes the diffraction signal as a diffuse background

(Barty et al., 2012). In this way, XFEL Bragg diffraction is

effectively gated by damage, because the expected number of
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photons scattered to a Bragg peak is equivalent to that

produced by a shorter pulse with the same intensity.

Despite the great progress in coherent imaging using XFEL

sources, the holy grail – atomic resolution of a single (non-

crystalline) biomolecule (Neutze et al., 2000; Miao et al., 2001)

– has not yet been realised. Nevertheless, the potential reward

for success has kept this pursuit at the forefront of research in

XFEL imaging science. One of the limiting factors is radiation

damage. For non-crystalline samples, diffraction from the

undamaged structure is not enhanced by periodicity and is

mixed indistinguishably with the diffraction of a damaged

structure. This seems to be a major setback from the devel-

opment of three-dimensional single-particle imaging into a

high-resolution technique for single molecules. For example,

Hau-Riege et al. (2005) found that radiation damage causes

large discrepancies from the ideal diffracted intensities, which

led them to conclude that pulses must be no more than a few

femtoseconds in duration to avoid severe resolution loss. A

more recent study with more detailed scattering models

reached a similar conclusion (Ziaja et al., 2012). However,

these studies assessed feasibility with metrics inspired by

crystallography whose suitability for single-molecule imaging

is disputed (Quiney & Nugent, 2011). Without accounting in

detail for the way that structural information is extracted from

single-molecule diffraction data, the issue of damage limits for

single-molecule imaging remains inconclusive.

One of the most actively pursued routes to single-molecule

imaging involves measuring diffraction from thousands of

copies of a molecule one by one. The resulting data are

extremely noisy and the molecular orientations are not

known. The issue of molecular orientation must be resolved to

assemble a three-dimensional data set, which can be

performed by several algorithms (Loh & Elser, 2009; Fung et

al., 2009; Giannakis et al., 2012; Kassemeyer et al., 2013;

Yefanov & Vartanyants, 2013). The hallmark of these methods

is that they are able to cope with signals as low as 0.01 photons

per Shannon–Nyquist pixel (Tegze & Bortel, 2012). After the

three-dimensional data set has been assembled, the atomic

structure is recovered via coherent diffractive imaging (CDI)

methods (Miao et al., 1999; Marchesini, 2007). Since the first

demonstration of CDI with an X-ray synchrotron source

around 15 years ago (Miao et al., 1999), a rich array of CDI

techniques has been developed for applications to biology and

materials science (Miao et al., 2015).

The crucial information needed to resolve the unknown

orientations and, ultimately, the structure is contained in the

modulations of the diffraction signal arising from interference

between different atoms, often called ‘speckles’ (see Fig. 1).

Radiation damage changes the structure of the sample dyna-

mically, such that the final diffraction pattern is the sum of the

diffraction from many modified structures, each with a

different distribution of ions and ion displacements. It has

been shown that averaging the diffraction over different

molecular configurations (Maia et al., 2009) lowers the speckle

contrast relative to the mean scattering intensity within each

resolution shell. We expect radiation damage to cause a similar

loss of contrast. Not only is the amplitude of the speckle

structure reduced, but the speckle structure also fluctuates

from shot-to-shot due to damage, in addition to the fluctua-

tions due to changing orientation and shot noise. We will use

the term ‘damage noise’ to refer to these fluctuations of the

speckle structure due to damage. So far, damage noise has not

been considered in studies of three-dimensional data

assembly. Here, we present calculations of damage noise per

diffraction pattern due to spatially uncorrelated damage

processes, which include ionization and ion diffusion but not

the Coulomb explosion of the molecule. An analysis of

damage noise as a function of pulse duration reveals a gating

effect in single-molecule diffraction, whereby long pulses

measure an equivalent amount of information about the

average structure to shorter pulses of the same intensity.

Theoretical predictions of damage noise are also the first step

to understanding how orientation determination and three-

dimensional data assembly can be performed with data

affected by radiation damage.

It is important to clarify how the gating effect for single-

molecule diffraction compares with the case of crystal

diffraction. In the gating effect for crystal diffraction, the

Bragg peaks accumulate intensity until a resolution-depen-

dent cutoff time determined by damage, while a diffuse

background continues to increase until the pulse has left the

sample while gradually degrading the signal-to-noise ratio. In

single-molecule diffraction, the initial part of the pulse

produces a speckle pattern that encodes the initial ion posi-

tions, up to a cutoff time determined by damage. The speckle

amplitude derived from early pulse times thus carries analo-

gous information to the Bragg scattering from crystals. As with

crystals, the diffraction from the damaged sample by the tail of

the pulse continues to scatter a diffuse speckled pattern.
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Figure 1
A graphical representation of ion diffusion in GroEL, where ion locations
are chosen stochastically using the time-dependent temperature. Simula-
tion parameters are: 8 keV, 5.0 � 1020 W cm�2 and 100 nm pulse
diameter. Ionized hydrogen (white) moves much faster than ions of
other elements. The accumulated diffraction pattern for each pulse time is
shown below and these were generated by randomly assigning each atom
an ionization state and a displacement according to the rate-equations
model described in Appendix A. The effect of shot noise is shown on the
right-hand half of each diffraction image. Intensities are normalized with
the same number of incident photons (1012) prior to calculating shot
noise. There are correlations between the speckle structure at early and
late pulse times due to the gating effect, as shown by the inset regions.



Without the coherent amplification of a crystal, the pristine

signal from early pulse times will be of a similar order of

magnitude to the diffraction from the damaged molecule at

later pulse times. If the damage processes are uncorrelated

between measurements, so that diffraction from the damaged

molecule at later pulse times is noise-like, then it will contri-

bute a featureless background to the merged three-dimen-

sional intensity. In these circumstances, the speckle structure

of the merged three-dimensional intensity will still encode

structural information about the initial ion positions, and the

amplitude of the merged speckle structure will be relatively

insensitive to pulse duration due to the gating effect.

An alternative to alignment via post-processing is experi-

mentally to align isolated gas-phase molecules, using, for

example, quantum-state selection methods (Küpper et al.,

2014; Stern et al., 2014). A great advantage of this approach is

that multiple molecules can be illuminated simultaneously,

increasing the signal-to-noise ratio and, as supported by the

work here, reducing the impact of damage. These methods

have been demonstrated only for small (2,5-diiodobenzo-

nitrile) molecules so far (Küpper et al., 2014; Stern et al., 2014)

and extensions to larger molecules are being actively pursued.

If the molecules are aligned experimentally, the self-gating

effect still applies. Radiation damage modifies each molecule

in the beam uniquely and stochastically, so that multiple

damage scenarios are averaged in a single diffraction

measurement in an analogous way to crystallography. This

increases the signal with respect to both damage noise and

shot noise. The self-gating effect ensures that the benefits of

using multiple aligned molecules are not lost entirely by using

X-ray pulses longer than 10 fs.

Once the three-dimensional data assembly has been

performed, damage will still have a residual effect on the

resulting three-dimensional diffraction volume. Damage

reduces the contrast in the averaged diffraction volume

(Quiney & Nugent, 2011) and, depending on the theoretical

perspective, also contributes a background (Lorenz et al.,

2012). Promisingly, the reduction in contrast can be accounted

for during structure determination by treating the sample in

terms of a small number of structural modes (Quiney &

Nugent, 2011). The background contribution is expected to be

small for hard X-rays at the beam conditions currently avail-

able.

In addition to analysing the damage noise, we show how the

mean and standard deviation of the diffraction signal can be

combined into a sensitive measure of damage. An advantage

of the measure we propose is its sensitivity to both ionization

and ion motion, whereas the mean signal alone depends only

on ionization. There is a need to measure damage experi-

mentally and provide some validation and clarification for

theoretical damage modelling. Many different types of

damage model have been developed, based on rate equations

(Hau-Riege et al., 2004), molecular dynamics (Neutze et al.,

2000; Jurek et al., 2004) or plasma theory (Caleman et al.,

2009), and each has specific advantages and disadvantages. For

example, molecular dynamics models can keep track of

specific ion trajectories, but are only computationally tractable

for small molecules (Neutze et al., 2000). Rate-equations

models can simulate damage to large molecules but ignore

information about ion motion on atomic length scales (Hau-

Riege et al., 2004). Experimental measurements of damage

will provide valuable feedback on our theoretical under-

standing of the interaction between XFEL pulses and

biomolecules, which is needed to develop single-molecule

imaging techniques.

2. The effect of radiation damage on diffraction
contrast

The goal of single-molecule imaging is to recover the initial

position R of each atom in the sample. For simplicity, we will

give equations for the case of a single atomic species, noting

that the generalization to multiple atomic species for all key

results is given in Appendix E and is similar to that found in

Quiney & Nugent (2011). The intensity of a single measure-

ment of a single molecule can be written

IðqÞ ¼ r2
ePðqÞ d�I0

XN

i¼1

AiðqÞ þ 2
XN

i¼1

Xi�1

j¼1

BijðqÞ

" #
; ð1Þ

where q is the scattering vector with magnitude q, d� is the

solid-angle term, re is the classical electron radius, N is the

number of atoms and P(q) is a polarization term that will be

ignored in this discussion. To simplify the mathematical

notation, we assume that the incident intensity takes a uniform

value I0 for the duration of the pulse. We define

AiðqÞ ¼

Z T

0

fiðq; tÞ
�� ��2 dt; ð2Þ

and

BijðqÞ ¼

Z T

0

fiðq; tÞ fjðq; tÞ

� cos 2�q � Ri � Rj þ """iðtÞ � """jðtÞ
� �� �

dt; ð3Þ

where """iðtÞ is the displacement of the i-th atom from its initial

position and T is the duration of the pulse. For a single two-

dimensional measurement, it is understood that q is sampled

at points on the Ewald sphere, but in general we will use q to

be a general three-dimensional vector and I(q) is a three-

dimensional function. The atomic scattering factor f(q,t)

depends upon the ionization state of the atom, which changes

as a function of time. The ionic scattering factors can be

calculated using Slater orbitals (Slater, 1930) and we use f0(q)

to denote the atomic scattering factor of the unionized atom.

We assume that the probability of an ion having a particular

ionization state at time t is independent of where that atom is

located in the sample. Although the ionization state as a

function of time is different for each atom, statistically atoms

of the same atomic species are assumed to be equivalent. We

write A(q) and B(q) as functions of the magnitude of the

scattering vector, q, because we assume the atomic scattering

factors are spherically symmetric.

Consider an ensemble of two-dimensional diffraction

measurements, each with a unique damage scenario. For
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three-dimensional imaging, the data need to be assembled into

a three-dimensional intensity volume using an algorithm that

accounts for the unknown molecular orientations. The desired

solution of the algorithm is an average intensity, where each

two-dimensional measurement is correctly placed according to

orientation and the different damage scenarios are averaged.

As shown in Appendix B, the average intensity can be written

in the form

hIðqÞi ¼ r2
ePðqÞ d�I0

� NAðqÞ þ 2BðqÞ
XN

i¼1

Xi�1

j¼1

cos 2�q � Ri � Rj

� �� �( )
;

ð4Þ

where we have

hAiðqÞi ¼ AðqÞ � I0

Z T

0

hjf ðq; tÞj2i dt ð5Þ

and

hBijðqÞi ¼ BðqÞ cos 2�q � Ri � Rj

� �� �
; ð6Þ

where

BðqÞ �

Z T

0

hf ðq; tÞi2 exp �4�2q2"""ðtÞ2
� �

dt; ð7Þ

and """ðtÞ is the root mean square (r.m.s.) displacement of an ion

as a function of time.

If the analysis is restricted to damage processes that are

random and spatially uncorrelated, then we can treat the

terms Ai(q) and Bij(q) as random variables and study the

effect of damage statistically. We also treat the initial atomic

positions Ri as random with a uniform probability distribution,

as is done in crystallography to analyse the statistics of Bragg

intensities (Wilson statistics) at high scattering angles (q >

0.33 nm�1) (Huldt et al., 2003). Both ionization and ion

diffusion can be treated within this framework and, as we will

show, both are involved in a self-gating pulse effect. Expansion

of the molecule by Coulomb forces is not covered by the

statistical treatment presented here, but is discussed further

below.

The second term on the right-hand side of equation (4) is

sensitive to the atomic positions and accounts for the contrast

in the average diffraction pattern. We can treat this informa-

tion as the ‘signal’ we aim to measure. The contribution each

atom makes to the signal is proportional to B(q), which is

equal to the standard deviation of the diffraction in the

merged three-dimensional data set divided by the number of

atoms. The mean shot noise level, denoted by �N, is propor-

tional to the square root of the intensity. We can estimate the

mean shot noise level by considering the mean diffracted

intensity in a shell of constant q, which can be derived by

integrating equation (4) and is proportional to A(q). When the

signal is compared with the noise, the proportionality

constants have no influence on the interpretation, so we drop

them for simplicity and write

�2
NðqÞ ¼ AðqÞ: ð8Þ

In addition to shot noise, there is also the damage noise due to

the variations in how the damage manifests in each

measurement. One contribution to the damage noise is the

fluctuation of Ai(q), which is characterized by the standard

deviation of Ai(q), which we denote by �A(q). The second

contribution to damage noise is the deviation of Bij(q) from

the average speckle B(q), which has a standard deviation

�B(q). The term �B(q) is given by the difference between the

standard deviation of the second term on the right-hand side

of equation (1) minus the standard deviation of the second

term on the right-hand side of equation (4). In Appendices C

and D, we provide derivations of �A(q) and �B(q) that give the

following results:

�2
AðqÞ ¼

Z T

0

Z T

0

hf 2ðq; tÞf 2ðq; t0Þi � hf 2ðq; tÞihf 2ðq; t0Þi
� �

dt dt0;

ð9Þ

and

�2
BðqÞ ¼

Z T

0

Z T

0

n
hf ðq; tÞf ðq; t0Þi2 exp �4�2q2

j"""2
ðt; t0Þj

� �
� hf ðq; tÞi2hf ðq; t0Þi2 exp �4�2q2"""ðtÞ2

� �
� exp �4�2q2"""ðt0Þ2

� �o
dt dt0: ð10Þ

By comparing the size of the signal with the size of the shot

noise and damage noise levels (subscript ND), we can gauge

how much information on the molecule’s structure is

contained in each measurement. Here, we will study how the

diffraction pattern varies as a function of pulse duration and

pulse energy. We propose the following signal-to-noise ratio

(SNR) to characterize the diffraction

SNRNDðqÞ ¼
NBðqÞ

N�2
AðqÞ þ N2�2

BðqÞ þ N�2
NðqÞ

� �1=2
: ð11Þ

It is also interesting to compare the signal directly with the

damage noise (subscript D), ignoring shot noise, using the

following ratio

SNRDðqÞ ¼
NBðqÞ

N�2
AðqÞ þ N2�2

BðqÞ
� �1=2

: ð12Þ

To estimate SNRND(q) and SNRD(q), we need to calculate the

statistical averages of the scattering factor, including hf(q, t)i

and hf2(q, t)i, which in turn depend on the expected number of

ions in each ionization state as a function of time. To calculate

B(q) and �B(q), we also need to know the ion temperature as a

function of time. These parameters can be calculated by many

of the damage models reported in the literature so far, such as

molecular dynamics models (Neutze et al., 2000; Jurek et al.,

2004) and hydrodynamic (rate-equations) models (Hau-Riege

et al., 2004; Scott, 2001; Caleman et al., 2011). Here, we will

present the results of a rate-equations model to investigate

single-molecule diffraction contrast and to explore the extent

to which there is a self-gating pulse effect in single-molecule

diffraction.
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The term that has not been calculated before is the corre-

lation between the scattering factor at different time points,

e.g. hf(q, t) f(q, t0)i, which is needed to calculate the damage

noise levels. To calculate these correlations we need to know

the conditional probability P[fn(q, t0) | fm(q, t)], which gives

the probability of an ion being found in ionization state n at

time t 0 given that it was in ionization state m at time t. We have

developed a way of calculating these conditional probabilities,

and hence the damage noise. First the damage simulation is

carried out, generating the populations of ion states at all time

points, and the transition rates between ion states are stored as

a function of time. Starting with the mean ion population of

state m at time t, the stored transition rates can be used to

generate the fraction of these atoms in ionization state n at all

later time points t 0 > t, from which the conditional prob-

abilities can be readily inferred.

We use a damage model based on a rate-equations model

(Hau-Riege et al., 2004), which is extended to include ion

diffusion using the methods from a non-local thermal equili-

brium plasma model (Scott, 2001; Caleman et al., 2011). The

details of the model are given in Appendix A. As we closely

follow the methods of Hau-Riege et al. (2004) and Caleman et

al. (2011), we expect the results and the validity of our model

to be similar. As we will show, there are sufficient physical

processes in our model to illustrate the self-gating pulse effect

in single-molecule diffraction.

All statistical quantities are given as weighted averages over

the light elements (H, C, N, O), as described in Appendix E.

Sulfur was included in the rate-equations model of damage,

but was excluded from the average of statistical diffraction

quantities, like A(q), B(q) and �B(q), because it is computa-

tionally intensive. Sulfur has a much larger number of possible

electron configurations, and averages that depend on two time

variables [e.g. �B(q)] took too long to compute for the range of

beam conditions we study here. Since there are of the order of

100 S atoms in the molecule studied here and 104 light atoms,

our main conclusions are not expected to be affected by

neglecting the diffraction from sulfur. The inclusion of sulfur is

not problematic for performing single calculations to compare

with a specific set of experimental conditions. The approach

can be extended to heavier elements for future theoretical

studies using parallelization and high-performance computing

facilities.

We have set up our simulations using the chemical

composition and size of the protein GroEL (PDB code 1grl).

It contains a total of 5278 H, 15043 C, 4067 N, 4767 O and 119

S atoms and has an approximate average diameter of 15 nm.

This chaperonin molecule is a candidate for first tests of single-

molecule imaging because it survives intact in mass spectro-

metry experiments (Rostrom & Robinson, 1999), which

subject the molecule to similar conditions to injection at an

XFEL. It is also of sufficient size to scatter around 104 photons

per diffraction pattern, as shown in Fig. 1.

Simulations were performed at a photon energy of 8 keV

(wavelength �0.155 nm), which is sufficient resolution for

structural biology and similar to that demonstrated in simu-

lation studies of single-molecule imaging (Tegze & Bortel,

2012). The principal effects of damage on molecular diffrac-

tion can be seen in Fig. 2, which shows a simulation for a pulse

duration of 40 fs, a beam intensity of 5 � 1020 W cm�2

(corresponding to a 2 mJ pulse) and a spot size of 100 �

100 nm2. As the energy bandwidth of an XFEL is typically

around 0.2%, we expect it to have no significant impact on

damage. Without damage A(q) would be equal to f 2
0 ðqÞ, but

with damage it is reduced, attenuating the mean intensity by

the same amount. The attenuation occurs at all resolutions,

but is a greater fraction of the original signal at lower reso-

lutions. As shown in a recent damage study (Caleman et al.,

2015), this effect is due to valence-shell ionization, because the

scattering factors of valence electrons scatter at lower angles

compared with core–shell ionization or ion diffusion. Ion

diffusion attenuates preferentially at higher resolution before

lower resolution, and core–shell ionization attenuates both

high and low resolution at similar rates. The term B(q) is lower

than A(q) because of the effects of ion motion and the

discrepancy is more pronounced at higher resolution. At 40 fs,

the root mean-square (r.m.s.) displacement of ions due to

diffusion is around 11 Å for H, less than 0.1 Å for S and 0.2–

0.4 Å for C, N and O. This indicates that ion diffusion is not a

dominant process under these pulse conditions for the non-H

atoms that contribute the bulk of the scattering. The devia-

tions between A(q) and B(q) are important for accurate

structure retrieval methods (Quiney & Nugent, 2011). In this

case, the most significant damage noise term �B(q) is lower

than B(q) across all resolutions, indicating that, even for pulse

durations as long as 40 fs, damage noise does not exceed the

signal from the average molecular structure.
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Figure 2
The effects of damage on the atomic structure factor. The term f0(q) is the
undamaged atomic scattering factor for an unionized C atom, A(q) is
proportional to the mean intensity per C atom at each resolution shell,
B(q) is proportional to the speckle contrast for carbon and �B(q) is the
standard deviation of the shot-to-shot fluctuations of the speckle due to
damage. When there is no damage, A(q) and B(q) are equal to f 2

0 ðqÞ. The
simulation parameters were 8 keV photon energy, 40 fs pulse duration,
2 mJ pulse energy and spot size of 100 � 100 nm.



To illustrate the self-gating pulse effect in single-molecule

diffraction, we plot B(q) as a function of pulse duration for a

constant photon energy (8 keV) and constant beam intensity

(5 � 1020 W cm�2). We see in Fig. 3(a) that the signal level at

0.15 nm resolution rises steadily until it plateaus at a maximum

value of around 20 fs. The signal at lower resolution accu-

mulates for longer pulse times. Interestingly, the noise due to

radiation damage also rises nonlinearly, accumulating at a

slower rate at longer pulse times. This is because the random

distribution of ions in the sample has a smaller variation when

the bound electrons are almost entirely depleted from each

ion. The signal-to-noise ratios, shown in Fig. 3(b), show

strikingly that shot noise has a much greater effect than

damage noise. Although SNRD(q) improves greatly for short

pulses (< 5 fs), SNRND(q) maximizes when the signal B(q)

maximizes at around 20 fs.

The results are interesting when there is an experimental

trade-off between pulse duration and pulse energy. For

example, the Linac Coherent Light Source (LCLS, Menlo

Park, California, USA) can produce 2 mJ pulses with pulse

durations of 30–50 fs for hard X-rays (Emma et al., 2010).

Pulses shorter than 5 fs can be produced by the LCLS using a

low-charge method or a slotted-foil method, but at the

expense of around a factor of ten in pulse energy. Given such a

choice, the analysis presented here suggests that the gain in

signal from a longer pulse with higher pulse energy compen-

sates for the increase in damage. We note, though, that this

conclusion only applies to spatially uncorrelated damage

processes like ionization and ion diffusion (not a Coulomb

explosion). Fig. 4 shows that SNRND(q) and SNRD(q) have a

weak dependence on pulse duration at constant pulse energy.

This suggests that maximizing pulse energy has a greater

influence on the success of single-molecule imaging than pulse

duration with respect to the spatially uncorrelated damage

mechanisms considered here.

If multiple molecules were simultaneously aligned and

exposed to the X-ray pulse (as described in the Introduction),

we would still expect a gating effect qualitatively similar to

that shown in Fig. 2. However, we would expect SNRND(q)

and SNRD(q) to scale as (Nmol)
1/2, where Nmol is the average

number of molecules in the beam for each exposure. This is

because the signal is proportional to Nmol, while standard

deviations of the damage noise and shot noise scale as

(Nmol)
1/2. This analysis lacks the additional fluctuations due to

coherent interference between molecules, which have been

considered in the context of angular correlation methods

(Kirian, 2012).

3. A method of measuring damage experimentally

The statistical analysis of diffraction contrast can be used to

measure the amount of damage in single-molecule experi-
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Figure 3
(a) Scattering and noise levels (due to damage only) as a function of pulse
duration for constant incident intensity (5 � 1020 W cm�2) at 8 keV
photon energy and 100 � 100 nm spot size. B(q) is proportional to the
speckle contrast and we define N(q) � ½�2

AðqÞ=N þ �2
BðqÞ�

1=2
, which is the

denominator in equation (12) and measures the average contribution to
the damage noise per atom. (b) Signal-to-noise ratios with and without
shot noise for a resolution of 0.15 nm.

Figure 4
Maximum signal-to-noise ratios with and without shot noise for a
resolution of 0.15 nm for 8 keV photon energy, 100 � 100 nm spot size
and constant pulse energy of 2 mJ.



ments. The average change to the atomic structure factors,

characterized by A(q), can readily be measured by summing

diffraction patterns. This provides some information about

ionization levels but not ion motion. There is more informa-

tion to be gained by analysing the fluctuations of the diffrac-

tion signal. It is not convenient to measure SNRND(q), because

B(q) cannot be measured directly without resolving the issue

of unknown orientations and assembling a three-dimensional

data set, effectively accomplishing a full imaging experiment.

An experimentally simpler proposition, which is independent

of the imaging experiment, is to measure the standard devia-

tion of the signal within each resolution ring, averaged over all

of the measured diffraction patterns. The standard deviation is

proportional to hB2
ijðqÞi and is a measure of the speckle

contrast. It will contain contributions from both the average

structure of the sample and the damage noise. Unfortunately it

is not clear how to separate those two contributions experi-

mentally. Nevertheless, the standard deviation is a sensitive

measure of any dynamic change in the sample structure

because it will drop relative to the mean scattering signal, as

has been shown for averages of molecular conformation (Maia

et al., 2009). To isolate the effect of damage-induced structural

change, we create a measure that first subtracts the expected

contribution of shot noise, which is equal to �pix(q), and then

normalizes by the mean intensity as follows

DðqÞ ¼
�2

pixðqÞ � �pixðqÞ

�2
pixðqÞ

; ð13Þ

where �pix(q) is the average intensity at a pixel in resolution

ring q averaged over the whole data set and �pix(q) is the

corresponding standard deviation. The mean and standard

deviation are calculated from the ensemble of experimental

data of molecules measured individually in random orienta-

tions. It possible to show that

DðqÞ 	
hB2

ijðqÞi

A2ðqÞ
; ð14Þ

where hB2
ijðqÞi is given in Appendix D. It is possible to show

that 0 < D(q) < 1, because hf(q, t) f(q, t 0)i2 < hf2(q, t)i

hf 2(q, t 0)i. Fig. 5 shows D(q) for variations in pulse duration at

constant pulse energy (2 mJ). The large variations at high

scattering angle indicate the sensitivity of D(q) to ion motion

and inner shell ionization, thereby providing complementary

information to a measurement of A(q). The term D(q)

provides a new means of comparing damage simulations with

experiment, and testing the assumptions that underpin

damage models for the single-molecule case.

For low diffraction intensities, the dominant error in the

calculation of D(q) from experimental data is the error in

�pix(q), given by

��pixðqÞ ¼
�pixðqÞ
� �1=2

NDATAð Þ
1=2

MðqÞ½ �
1=2
; ð15Þ

where NDATA is the number of diffraction patterns recorded.

The term M(q) is the number of speckles in resolution ring q,

which is estimated by dividing the circumference of the ring by

the expected speckle width 1/d, where d is the width of the

molecule. Assuming D(q) is of the order of 1, the error in D(q)

varies as �D(q) ’ |��pix(q)|/|�pix(q)|. For the test molecule

quoted above and a photon energy of 8 keV, a pulse energy of

2 mJ and a spot size of 100 � 100 nm at a resolution of q =

6.67 nm�1, an accuracy of �D(q) = 0.01 can be achieved in of

the order of 103 patterns, which is at least an order of

magnitude less than the number required to achieve the same

resolution in a three-dimensional imaging experiment (Tegze

& Bortel, 2012). This analysis could be used to gain early

feedback about the data used in an imaging experiment.

4. Expansion of the molecule

It is predicted from both molecular dynamics (Neutze et al.,

2000) and hydrodynamics simulations (Hau-Riege et al., 2004)

that ions will move due to electrostatic forces for pulse

durations longer than 10 fs. This process is sometimes referred

to as a Coulomb explosion. The Coulomb explosion is one

example of a spatially dependent damage process, as ions at

the surface are predicted to move first, while ions near the

centre are shielded by the trapped electrons and remain

relatively stationary. Unlike the spatially uncorrelated damage

processes considered above, the effect of the explosion on the

diffraction signal is not readily analysed in terms of signal and

noise. Instead, we are in a regime of imaging a dynamic

sample. This has been achieved in coherent imaging techni-

ques by modelling the diffraction as a series of modes (Quiney

& Nugent, 2011; Lorenz et al., 2012; Thibault & Menzel, 2013)

rather than as a single coherent wave, which is the classic

assumption underpinning traditional coherent imaging

methods. In modal form, the diffracted intensity is written in

the form

IðqÞ ¼
X

n

�n 


nðqÞ nðqÞ: ð16Þ
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Figure 5
The function D(q) for different pulse durations for 8 keV photon energy,
100 � 100 nm spot size and constant pulse energy of 2 mJ.



When imaging a dynamic sample, the modes  n(q) represent

the dominant structural correlations that arise during the

dynamic evolution of the sample and �n is the corresponding

weight. For three-dimensional single-molecule imaging, it is

already known that a modal description will be needed to

describe the variation in ionization rates between different

elements (Quiney & Nugent, 2011; Lorenz et al., 2012).

Although a full reconstruction accounting for expansion is

beyond the scope of this work, we will explore the issues

surrounding a modal description of the expansion of a bare

molecule and also make some remarks about how this changes

if there is a buffer layer around the molecule.

We have performed a hydrodynamic simulation of the

expansion of one-dimensional radial layers of the sample,

following the methods developed by Hau-Riege et al. (2004)

and detailed in Appendix A. The simulation includes the

forces due to ions and trapped electrons and the radiation

pressure of the trapped electrons. The radial distribution of

trapped electrons is calculated in order to estimate the forces.

Fig. 6 shows the movement of layers for a spherical molecule

with the same chemical composition and approximate size

(7.5 nm radius) as GroEL for a 40 fs pulse at 8 keV. The model

shows the shielding of the inner part of the molecule by the

trapped electrons, and those ions within 0.7 of the initial radius

move less than 3 Å, but this only accounts for 37% of the ions.

The outer layers, which are poorly shielded by trapped elec-

trons, start to move at 10 fs and contain the remaining 63% of

ions that move more than 3 Å. These qualitative features are

in good agreement with the results of Hau-Riege et al. (2004).

To give an indication of how radial expansion affects the

diffraction, we analyse the interference between a C atom in

an outer layer with a time-dependent position r(t) and a C

atom at the centre of the molecule that is assumed to be

stationary at position r0 for the duration of the pulse. When

the scattering vector and the radial motion direction are

parallel, the expectation value of the interference term

between these two atoms is given by

BEðqÞ ¼ I0

Z
hf ðq; tÞi2 exp �4�2q2"""ðtÞ2

� �
� cos 2�q rðtÞ � r0

� �� �
dt: ð17Þ

We can evaluate BE(q) by setting r(t) to be the radial motion

predicted by the one-dimensional layer simulation. Since

BE(q) is an oscillatory function of q, we evaluate the amplitude

of the fluctuations over a range of q values as follows

�2
BE
ðqÞ ¼

1

qmax � qmin

Z qmax

qmin

jBEðqÞj
2 dq: ð18Þ

In Fig. 6(b), we plot �BE
ðqÞ for q = 5.7 nm�1 (qmin = 5.4 nm�1,

qmax = 6.0 nm�1) as function of pulse duration at constant

intensity for ions in three different shells. The ion with initial

position x = 4.5 nm does not move appreciably during 40 fs

and the accumulation of �BE
ðqÞ is the same as that of B(q) in

Fig. 5(a) up to an overall scaling. The initial ion position x =

5.4 nm moves by about 3 Å by 40 fs and we see that the

accumulation of �BE
ðqÞ slows as the ion starts to move at

around 15 fs. In this case, �BE
ðqÞ is not monotonic but fluc-

tuates when the radial displacement of the ion approaches

1.5 Å (� 1/q), and these oscillations dampen as the radial

displacement exceeds 1.5 Å. For the ion in the outermost layer

(x = 7.5 nm), �BE
ðqÞ reaches its asymptotic value much sooner

at 6 fs, consistent with the very rapid acceleration of the ions

closest to the surface.

The tentative conclusion that we can draw from this analysis

is that a surface ion only contributes to the contrast of the

merged three-dimensional intensity up until the time that it

starts to move appreciably. Once it does move, it effectively

becomes an incoherent source, at least for high-angle

diffraction (i.e. length scales smaller than the total displace-

ment of the ion during the pulse). The accumulation of �BE
ðqÞ

during the pulse resembles the gating effect for spatially

uncorrelated damage processes, except that now the cutoff

time (at which point the amplitude stops increasing) depends

on both the radial position of the ion and the magnitude of the

scattering vector, i.e. tc(q, R). In contrast, the gating effect for
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Figure 6
(a) The radial position of layers as a function of pulse time. 20 out of 100
layers are shown. (b) The amplitude of the interference term for a
stationary atom and atoms with initial positions (x) of 4.5, 5.4 and 7.5 nm,
evaluated at 1.5 Å resolution.



spatially uncorrelated sources only depends on the magnitude

of the scattering vector tc(q). A spatially dependent cutoff

time, tc(q, R), is not consistent with the assumption of a single

coherent scattered wave, but may be amenable to a modal

treatment. It is critical for the feasibility of this approach to

identify the number of modes that are required, but we have

not been able to do this from the one-dimensional simulation.

The development of such a modal reconstruction method is

beyond the scope of this work, but we hope that this discussion

is helpful for the reader to appreciate the outstanding issues

around reconstruction of an exploding molecule. We note also

that if there are spatially dependent effects in ionization

processes, due to the charging of the molecule, these would

need to be handled by a similar modal treatment.

An alternative proposal for handling a Coulomb explosion

is to use a tamper layer of water or buffer to cover the

molecule (Hau-Riege et al., 2007). The idea is that the tamper

layer undergoes most of the expansion, leaving the molecule

intact for the duration of the pulse. This assumes that the

molecule is evenly coated with a water layer or sits centrally in

a small droplet. It has been concluded from simulation that a

40 Å layer of water provides an effective tamper (Hau-Riege

et al., 2007). The buffer layer increases noise and background,

as the positions of most buffer molecules are uncorrelated

between measurements. The increase in noise from water

scattering may be preferable to the explosion of a bare

molecule, as a modal reconstruction of the expansion would

not be needed. Noise will be suppressed with many

measurements merged into a three-dimensional intensity. The

extra noise is not expected to prevent the determination of

molecular orientations, because it is still of similar order to the

shot noise from diffraction of the bare molecule. We are not

aware of a lower limit on signal-to-noise for Bayesian orien-

tation methods, so long as a sufficient number of measure-

ments can be obtained. Indeed, a two-dimensional orientation

experiment succeeded with an average of only 2.5 photons per

frame (Philipp et al., 2012), which is extremely low. Some of

the buffer molecules may bond to the target molecule’s

surface with preferential position and orientation, producing

diffraction that is correlated between independent measure-

ments. These molecules may be reconstructed as lower-reso-

lution surface features. The technical challenge of producing

tamper layers of a controlled appropriate thickness remains

outstanding.

5. Discussion

The results presented here on damage noise have implications

for the feasibility of determining the assembly of the three-

dimensional diffraction volume from the ensemble of noisy

two-dimensional measurements. The data-assembly algo-

rithms use information common to different diffraction

measurements to resolve unknown information about mol-

ecular orientation. Predicting the level of damage noise in

individual two-dimensional diffraction measurements is a first

step towards understanding how damage affects these algo-

rithms. The prediction that SNRD is greater than 1 even for

longer pulse durations (> 20 fs) is a preliminary indication that

damage noise will not prevent data assembly under conditions

currently available experimentally. This is because the

contribution to the diffraction from the average molecular

structure is greater than the shot-to-shot fluctuations of the

diffraction, and it is the contribution from the averaged

structure that is used to resolve the problem of unknown

molecular orientations. That SNRND(q) is lower than

SNRD(q) by more than an order of magnitude (see Fig. 4)

shows that shot noise dominates damage noise. This can be

viewed positively because data-assembly algorithms can

already cope with very low shot noise levels when assisted by a

priori knowledge about the shot noise statistics (Loh & Elser,

2009; Fung et al., 2009). However, shot noise applies per pixel

and is well understood to be a Poisson process, whereas

damage noise consists of fluctuations in the width of a speckle

and the underlying distribution is hard to predict analytically.

Detailed studies of the effects of damage on the performance

of data-assembly algorithms are still required.

Since damage has been measured in nanocrystallography

experiments, it is worth drawing a distinction between damage

in crystals and in single molecules. In a crystal, damage ionizes

and displaces ions differently in each unit cell, so that the

diffraction contains an average over many different damage

scenarios. For a single molecule, there is only one damage

scenario per measurement and hence we expect a bigger

standard deviation of diffraction of single molecules than of

nanocrystals. Additionally, nanocrystals are much larger than

single molecules, so that the rate at which electrons are

trapped is different and the time it takes for a photoelectron to

escape is longer. The water that surrounds a nanocrystal

injected via a liquid jet (DePonte et al., 2008) also contributes

to the damage in the form of additional photoelectrons and

secondary electrons. It is proposed to inject single molecules

via aerosol injection (Bogan et al., 2010), so that they are

surrounded by vacuum, because the background water scat-

tering from a liquid jet would dominate the diffraction from

the molecule. For these reasons, damage experiments on single

molecules, independent of those on crystals, are needed to

draw conclusions for single-molecule imaging.

At X-ray energies approaching 10 keV, Compton scattering

becomes another significant source of background scattering

(Slowik et al., 2014). The background is predicted to depend

on the magnitude of q, and would increase the noise level �N

by adding to the right-hand side of equation (8). It has been

predicted that, for the beam intensities currently available at

hard X-ray energies, the Compton background only becomes

significant at resolutions greater than 2 Å (Slowik et al., 2014).

Hence, Compton scattering is not expected to influence the

results presented here significantly.

6. Conclusion

We have analysed shot-to-shot damage noise fluctuations for

single-molecule diffraction. For spatially uncorrelated damage

processes, our simulations show a damage gating effect for the

average diffraction contrast, whereby the amplitude of the
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contrast increases with pulse time until a resolution-depen-

dent cutoff time determined by damage. In our simulations,

the damage noise introduced by uncorrelated damage

processes is much less than shot noise, which provides a

preliminary indication that there are favourable prospects for

resolving molecular orientations to assemble in a three-

dimensional diffraction volume in the presence of damage

with data from current facilities. We have also proposed a

statistical measure of damage that could be applied experi-

mentally to provide valuable feedback for modelling XFEL

damage to single biological molecules. The expansion of the

molecule remains an outstanding issue that could potentially

be addressed by a tamper layer or by a modal analysis of

structural correlations, as is done in other dynamic coherent

imaging applications. While both these solutions present a

formidable challenge, our preliminary analysis suggests that

both are deserving of further investigation.

APPENDIX A
Description of the rate-equations model

We use a damage model based on a rate-equations model

(Hau-Riege et al., 2004), which is extended to include ion

diffusion using the methods from a non-local thermal equili-

brium plasma model (Scott, 2001; Caleman et al., 2011). The

rates of photoionization were taken from Henke et al. (1993),

rates of Auger decay were taken from McGuire (1969) and

atomic energy levels were taken from Bearden & Burr (1967).

Secondary impact ionization rates were taken from Bell et al.

(1983) and Lennon et al. (1988). Ejected electrons are assumed

to be trapped if their kinetic energy exceeds the trapping

energy of the ionized molecule (Hau-Riege et al., 2004). We

assume a spherical geometry for this calculation, and this is the

only place where geometry is included in the calculation. Both

photoelectrons and some of the Auger electrons have suffi-

cient energy to escape at early times. All of the trapped

electrons are assumed to thermalize on a sub-femtosecond

time scale, so that the energy distribution is Maxwell–Boltz-

mann, but the mean temperature changes with time. We

include all ionization states of each element, and the electron

orbitals for each ionization state were modelled using Slater-

type orbitals (Slater, 1930).

There are some minor differences between our model and

the published models on which it is based. We include all the

shells for sulfur [in the work by Hau-Riege et al. (2004) it was

restricted to eight electrons], and this introduces high-energy

Auger electrons that are able to escape the molecule under the

same conditions as the photoelectrons. We do not consider

ionization due to potential lowering, as is done in the work by

Scott (2001). We also omit the expansion of the molecule

under electrostatic forces in order to focus on the spatially

uncorrelated motion that is implicated in the self-gating pulse

effect. The expansion of a protein molecule has been

predicted to affect atoms less than one tenth of the molecule’s

radius from the surface (Hau-Riege et al., 2004). These atoms

can move several ångströms during interaction with the pulse,

which will greatly diminish their contribution to the diffraction

contrast. The rest of the atoms are only weakly affected by

expansion because the trapped electrons effectively neutralize

the core, for which we would expect better agreement with the

theory presented here.

The simulation of the Coulomb explosion as the movement

of one-dimensional layers is based on that of Hau-Riege et al.

(2004). We briefly summarize the calculation here and refer

the reader to Hau-Riege et al. (2004) for further details. The

trapped electron density is solved at each time step as a two-

point boundary value problem, using a differential equation

that combines the Coulomb forces from the ions and trapped

electrons and the radiation pressure of the trapped electron

gas. The distribution of trapped electrons and ions is then used

to calculate the radial acceleration of each layer, using an

artificial viscosity to avoid shock waves arising from numerical

instability. The equations were solved with a time step of

10�4 fs, which is within the limits described by Hau-Riege et al.

(2004) for numerical stability.

APPENDIX B
Derivation of equation (4)

The intensity of a measurement can be written as

IðqÞ ¼ r2
ePðqÞ d�I0

 Z XN

i¼1

fiðq; tÞ
2 dt

þ 2
XN

i¼1

Xi�1

j¼1

Z
fiðq; tÞ fjðq; tÞ

� cos 2�q � Ri � Rj þ """iðtÞ � """jðtÞ
� �� �

dt

!
; ð19Þ

where the definitions of all terms are given in the main text.

We can expand the cosine term as

cos 2�q � Ri � Rj þ """iðtÞ � """jðtÞ
� �� �

¼ cos 2�q � Ri � Rj

� �� �
cos 2�q � """iðtÞ � """jðtÞ

� �� �
� sin 2�q � Ri � Rj

� �� �
sin 2�q � """iðtÞ � """jðtÞ

� �� �
:

ð20Þ

We can further expand the terms that depend upon the

displacement as

cos 2�q � """iðtÞ � """jðtÞ
� �� �

¼ cos 2�q � """iðtÞ
� �

cos 2�q � """jðtÞ
� �

þ sin 2�q � """iðtÞ
� �

sin 2�q � """jðtÞ
� �

:

ð21Þ

The ensemble averages of individual cosine and sine terms

over different random displacements are
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cos 2�q � """iðtÞ
� �	 


¼

Z
cos 2�q � """iðtÞ
� � 1

ð2�Þ1=2"""ðtÞ

� exp �
q � """iðtÞ
� �2

2"""ðtÞ2

( )
d"""i

¼ exp �2�2q2"""ðtÞ2
� �

; ð22Þ

and

sin 2�q � """iðtÞ
� �	 


¼

Z
sin 2�q � """iðtÞ
� � 1

ð2�Þ1=2"""ðtÞ

� exp �
q � """iðtÞ
� �2

2"""ðtÞ2

( )
d"""i

¼ 0: ð23Þ

We assume that ionization and atomic motion are statistically

independent, so that

fiðq; tÞ fjðq; tÞ cos 2�q � """iðtÞ
� �	 


¼ fiðq; tÞ fjðq; tÞ
	 


cos 2�q � """iðtÞ
� �	 


: ð24Þ

We assume that the ionization of different atoms is statistically

independent, so that

fiðq; tÞ fjðq; tÞ
	 


¼ hfiðq; tÞihfjðq; tÞi; ð25Þ

if i 6¼ j. We assume that all atoms of the same element are

statistically equivalent, so that averages of fi(q, t) and """iðtÞ are

independent of i. Combining the above results we obtain

fiðq; tÞ fjðq; tÞ cos 2�q � """iðtÞ
� �

cos 2�q � """jðtÞ
� �	 


¼ hf ðq; tÞi2 exp �4�2q2"""ðtÞ2
� �

: ð26Þ

Substituting equation (26) into equation (19) leads to equation

(4), using the definitions of A(q) and B(q) in equations (5) and

(6), respectively.

APPENDIX C
Derivation of the variance of Ai(q): equation (9)

The standard deviation of the sum of Ai(q) terms in equation

(1), denoted by �A(q), is given by

�2
AðqÞ ¼

1

N

XN

i¼1

AiðqÞ

" #2* +
�

XN

i¼1

AiðqÞ

* +2( )
; ð27Þ

with

AiðqÞ ¼

Z T

0

f 2
i ðq; tÞ dt: ð28Þ

Equation (27) is scaled with the number of atoms to give the

contribution per atom. We ignore the i dependence when

writing �A(q) because we assume all atoms of the same

element are equivalent. Using the assumption that ionization

on different atoms is statistically independent, we can write

XN

i¼1

AiðqÞ

" #2* +

¼
XN

i¼1

Z T

0

f 2
i ðq; tÞ dt

XN

j¼1

Z
f 2

j ðq; t0Þ dt0

* +

¼
XN

i¼1

Z T

0

hf 2
i ðq; tÞ f 2

i ðq; t0Þi dt dt0

þ
XN

i¼1

X
j6¼i

Z T

0

Z T

0

hf 2
i ðq; tÞihf 2

j ðq; t0Þi dt dt0

¼ N

Z T

0

hf 2
i ðq; tÞ f 2

i ðq; t0Þi dt dt0

þ NðN � 1Þ

Z T

0

hf 2
i ðq; tÞi dt

� �2

:

ð29Þ

Therefore,

�2
AðqÞ ¼

1

N

XN

i¼1

AiðqÞ

" #2* +
�

XN

i¼1

AiðqÞ

* +2( )

¼

Z T

0

hf 2
i ðq; tÞ f 2

i ðq; t0Þi dt dt0 �

Z
hf 2

i ðq; tÞi dt

� �2

: ð30Þ

APPENDIX D
Derivation of the variance of Bij(q): equation (10)

The term �B(q) gauges the magnitude of the damage noise

fluctuations per atom due to the second term on the right-

hand side of equation (1). Its square is related to the differ-

ence between the variance of the second term on the right-

hand side of equation (1) and that of the second term on the

right-hand side of equation (4), which is given as follows

�2
BðqÞ ¼

1

N2
�2

SðqÞ �
1

2
ðN2
� NÞB2

ðqÞ

� �
; ð31Þ

where �S(q) is defined to be the standard deviation of the

second term on the right-hand side of equation (1) and is given

by

�2
SðqÞ ¼ 4

XN

i¼1

Xi�1

j¼1

XN

r¼1

Xr�1

s¼1

BijðqÞBrsðqÞ
	 


: ð32Þ

The second term on the right-hand side of equation (19)

contains terms with the form

BijðqÞ ¼

Z T

0

fiðq; tÞ fjðq; tÞ

� cos 2�q � Ri � Rj þ """iðtÞ � """jðtÞ
� �� �

dt

¼BcðqÞ cos 2�q � Ri � Rj

� �� �
þ BsðqÞ sin 2�q � Ri � Rj

� �� �
;

ð33Þ

where we have defined
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BcðqÞ ¼

Z T

0

fiðq; tÞ fjðq; tÞ cos 2�q � """iðtÞ � """jðtÞ
� �� �

dt; ð34Þ

and

BsðqÞ ¼

Z T

0

fiðq; tÞ fjðq; tÞ sin 2�q � """iðtÞ � """jðtÞ
� �� �

dt: ð35Þ

Using equation (23) we can show that

hBsðqÞi ¼ 0; ð36Þ

and thus write

hBðqÞi ¼ hBcðqÞi: ð37Þ

We evaluate hB2
ijðqÞi as a first step to calculating the standard

deviation

hB2
ijðqÞi ¼

	�
BcðqÞ cos 2�q � Ri � Rj

� �� �
þ BsðqÞ sin 2�q � Ri � Rj

� �� ��2

¼hB2

cðqÞihcos2 2�q � Ri � Rj

� �� �
i

þ hB2
s ðqÞihsin2 2�q � Ri � Rj

� �� �
i

¼
1

2
hB2

cðqÞi þ hB
2
s ðqÞi

� �
: ð38Þ

Going from the first to the second line of equation (38), we

have used the assumption that the positions of the atoms are

random, so that

cos 2�q � Ri � Rj

� �� �
sin 2�q � Ri � Rj

� �� �	 

¼ 0; ð39Þ

and, in the last line of equation (38), we have

cos2 2�q � Ri � Rj

� �� �	 

¼ sin2 2�q � Ri � Rj

� �� �	 

¼

1

2
: ð40Þ

To evaluate equation (38), we start by evaluating hB2
cðqÞi as

follows

hB2
cðqÞi ¼

Z T

0

Z T

0

hfiðq; tÞ fiðq; t0Þihfjðq; tÞ fjðq; t0Þi

�
	
cos 2�q � """iðtÞ � """jðtÞ

� �� �
� cos 2�q � """iðt

0Þ � """jðt
0Þ

� �� �

dt dt0: ð41Þ

Writing ciðtÞ ¼ cos½2�q � """iðtÞ�, we can write

cos 2�q � """iðtÞ � """jðtÞ
� �� �

cos 2�q � """iðt
0
Þ � """jðt

0
Þ

� �� �	 

¼ ciðtÞcjðtÞ þ siðtÞsjðtÞ

� �
ciðt
0
Þcjðt

0
Þ þ siðt

0
Þsjðt

0
Þ

� �	 

¼ hciðtÞciðt

0
ÞihcjðtÞcjðt

0
Þi þ hciðtÞsiðt

0
ÞihcjðtÞsjðt

0
Þi

þ hsiðtÞciðt
0
ÞihsjðtÞcjðt

0
Þi þ hsiðtÞsiðt

0
ÞihsjðtÞsjðt

0
Þi

¼ hcðtÞcðt0Þi2 þ hsiðtÞsiðt
0
Þi

2: ð42Þ

The term hcðtÞcðt0Þi is given by

hcðtÞcðt0Þi ¼

Z Z
cos 2�q � """ðtÞ½ � cos 2�q � """ðt0Þ½ �

� P """ðtÞ; """ðt0Þ½ � d"""ðtÞ d"""ðt0Þ: ð43Þ

The joint probability function is

P """ðtÞ; """ðt0Þ½ � ¼ P """ðtÞj"""ðt0Þ½ �P """ðt0Þ½ �: ð44Þ

Assume that t>t0. We then assume that the conditional

probability is the probability of taking a random walk from

position """ðt0Þ at time t0 to position """ðtÞ at time t and takes the

form

P """ðtÞj"""ðt0Þ½ � ¼
1

"""ðt; t0Þð2�Þ1=2
� �3

exp
�j"""t � """t0 j

2

2"""ðt; t0Þ
2

� �
; ð45Þ

where """ðt; t0Þ is given by the integral of the diffusion coefficient

as a function of time

"""2
ðt; t0Þ ¼ 2ND

Z t

t0
dðt00Þ dt00: ð46Þ

The term ND is the number of dimensions, which we will take

to be 1 because we are only interested in diffusion in the

direction of the scattering vector. The diffusion coefficient is

given by

dðtÞ ¼
kBTðtÞ

m �ðtÞ
; ð47Þ

where kB is Boltzmann’s constant, T(t) is the ion temperature,

m is the ion mass and �(t) is the collision frequency. To eval-

uate equation (43), we first write each cosine term as a sum of

exponentials

cos 2�q � """ðtÞ½ � ¼
1

2
exp 2�iq � """ðtÞ½ � þ exp �2�iq � """ðtÞ½ �
� �

¼
1

2

X1

m¼0

exp ð�1Þm2�iq � """ðtÞ½ �: ð48Þ

We then solve two integrals of the formZ 1
�1

a

�

 �1=2

exp �ax2
� bx

� �
dx ¼ exp

b2

4a

� �
: ð49Þ

The first integral is over """ðtÞ, with a = 1=½2"""2
ðt; t0Þ� and b =

½"""ðt0Þ="""2
ðt; t0Þ� þ ð�1Þm2�qi. The argument of the resulting

exponent is

b2

4a
¼

1

2

"""2ðt0Þ

"""2
ðt; t0Þ
þ ð�1Þm2�iq � """ðt0Þ � 2�2q2"""2

ðt; t0Þ: ð50Þ

The second integral over """ðt0Þ has

a ¼ �
1

2"""2
ðt; t0Þ
þ

1

2"""2
ðt; t0Þ
þ

1

2"""a2ðt0Þ
¼

1

2"""2
ðt0Þ
;

b ¼ ð�1Þm2�qiþ ð�1Þn2�qi;

b2

4a
¼ �2�2"""2

ðt0Þq2½ð�1Þm þ ð�1nÞ�
2:

ð51Þ

The final summation over m, n = 0, 1 gives the following result

for t> t0Z
cos 2�q � """ðtÞ½ � cos 2�q � """ðt0Þ½ �P """ðtÞ; """ðt0Þ½ � d"""ðtÞ d"""ðt0Þ

¼
1

2
exp �2�2q2"""2

ðt; t0Þ
� �

1þ exp �8�2q2"""2
ðt0Þ

� �� �
: ð52Þ

The corresponding sine integral evaluates to
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Z
sin 2�q � """ðtÞ½ � sin 2�q � """ðt0Þ½ �P """ðtÞ; """ðt0Þ½ � d"""ðtÞ d"""ðt0Þ

¼
1

2
exp �2�2q2"""2

ðt; t0Þ
� �

1� exp �8�2q2"""2
ðt0Þ

� �� �
:

ð53Þ

Adding the cosine and sine integrals, we get

hcðtÞcðt0Þi2 þ hsiðtÞsiðt
0Þi

2
¼

1

2
exp �4�2q2"""2

ðt; t0Þ
� �

� 1þ exp �16�2q2"""2
ðt0Þ

� �� �
ðt> t0Þ: ð54Þ

To complete the evaluation of equation (38), we still need to

evaluate hB2
s ðqÞi which is given by

hB2
s ðqÞi ¼

Z T

0

Z T

0

hfiðq; tÞ fiðq; t0Þihfjðq; tÞ fjðq; t0Þi

�
	
sin 2�q � """iðtÞ � """jðtÞ

� �� �
� sin 2�q � """iðt

0
Þ � """jðt

0
Þ

� �� �

dt dt0: ð55Þ

This equation can be written in the form

sin 2�q � """iðtÞ � """jðtÞ
� �� �

sin 2�q � """iðt
0
Þ � """jðt

0
Þ

� �� �	 

¼ siðtÞcjðtÞ � ciðtÞsjðtÞ
� �

siðt
0
Þcjðt

0
Þ � ciðt

0
Þsjðt

0
Þ

� �	 

¼ hsiðtÞsiðt

0
ÞihcjðtÞcjðt

0
Þi

þ hciðtÞciðt
0
ÞihsjðtÞsjðt

0
Þi

¼ 2hciðtÞciðt
0
ÞihsjðtÞsjðt

0
Þi: ð56Þ

Using equations (52) and (53) we can write this as

2hciðtÞciðt
0
ÞihsjðtÞsjðt

0
Þi ¼

1

2
exp �4�2q2"""2

ðt; t0Þ
� �

� 1� exp �16�2q2"""2
ðt0Þ

� �� �
ðt>t0Þ: ð57Þ

We can write the time integrals as

hB2
cðqÞi þ hB

2
s ðqÞi

¼

Z T

0

Z T

t0
hf ðq; tÞ f ðq; t0Þi2 exp �4�2q2"""2

ðt; t0Þ
� �

dt dt0

þ

Z T

0

Z t0

0

hf ðq; tÞ f ðq; t0Þi2 exp �4�2q2"""2
ðt0; tÞ

� �
dt dt0:

ð58Þ

Using the property that """2
ðt; t0Þ ¼ �"""2

ðt0; tÞ, equation (58) can

also be written as

hB2
cðqÞi þ hB

2
s ðqÞi

¼

Z T

0

Z T

0

hf ðq; tÞ f ðq; t0Þi2 exp �4�2q2
j"""2
ðt; t0Þj

� �
dt dt0

� hB2
ðqÞi: ð59Þ

Using equations (38) and (59) and the fact that hBiji ¼ 0, we

can calculate the standard deviation of Bij [denoted �2
Bij
ðqÞ] to

be

hB2
ijðqÞi ¼

1

2

Z T

0

Z T

0

hf ðq; tÞ f ðq; t0Þi2 exp �4�2q2
j"""2
ðt; t0Þj

� �
dt dt0:

ð60Þ

We have now reached a point where we can evaluate �SðqÞ,

given by equation (32). The averages of the terms

hBijðqÞBrsðqÞi are zero unless i, j = r, s, because the averages

over the positions R equal zero. Therefore,

�2
SðqÞ ¼ 4

XN

i¼1

Xi�1

j¼1

hB2
ijðqÞi

¼ 4
N2 � N

2
hB2

ijðqÞi

¼ ðN2
� NÞ

Z T

0

Z T

0

hf ðq; tÞ f ðq; t0Þi2

� exp �4�2q2j"""2
ðt; t0Þj

� �
dt dt0: ð61Þ

Using this result in equation (31), we obtain the following

result:

�2
BðqÞ ¼

1

N2
�2

SðqÞ �
1

2
N2
� N

� �
B2
ðqÞ

� �

¼ 1�
1

N

� �Z T

0

Z T

0

n
hf ðq; tÞ f ðq; t0Þi2

� exp �4�2q2
j"""2
ðt; t0Þj

� �
� hf ðq; tÞi2hf ðq; t0Þi2

� exp �4�2q2"""ðtÞ2
� �

exp �4�2q2"""ðt0Þ2
� �o

dt dt0:

ð62Þ

Assuming that N is large, the term 1/N can be ignored.

APPENDIX E
Results for multiple elements

Following the formulation of Quiney & Nugent (2011), we can

generalize the key results of this paper to multiple elements.

We have used the versions for multiple elements in our

simulation study. We use the notation fZ(q, t) to denote the

scattering factor of the element with atomic number Z. We can

then rewrite equations (5) and (6) as weighted averages over

all atomic species. Using PZ to denote the fraction of atoms of

element Z, equations (5) and (6) become

hAiðqÞi ¼ AðqÞ � I0

X
Z

PZ

Z T

0

hjfZðq; tÞj2i dt; ð63Þ

and

hBZ;Z0;ijðqÞi ¼ BZ;Z0 ðqÞ cos 2�q � Ri � Rj

� �� �
; ð64Þ

where

BZ;Z0 ðqÞ �

Z T

0

hfZðq; tÞihfZ0 ðq; tÞi

� exp �2�2q2 """ZðtÞ
2
þ """Z0 ðtÞ

2
� �� �

dt: ð65Þ

The term """ZðtÞ denotes the root mean square (r.m.s.) displa-

cement of an ion of element Z as a function of time. The
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weighted averages of �2
AðqÞ and �2

BðqÞ over multiple elements

are given by

�2
AðqÞ ¼

X
Z

PZ

Z T

0

Z T

0

h
hf 2

Zðq; tÞ f 2
Zðq; t0Þi

� hf 2
Zðq; tÞihf 2

Zðq; t0Þi
i

dt dt0; ð66Þ

and

�2
BðqÞ ¼

X
Z;Z0

PZPZ0

Z T

0

Z T

0


hfZðq; tÞ fZðq; t0ÞihfZ0 ðq; tÞ fZ0 ðq; t0Þi

� exp �2�2q2 j"""Z
2
ðt; t0Þj þ j"""Z0

2
ðt; t0Þj

� �� �
� hfZðq; tÞi2hfZ0 ðq; t0Þi2 exp �4�2q2"""ZðtÞ

2
� �

� exp �4�2q2"""Z0 ðt
0Þ

2
� ��

dt dt0: ð67Þ
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