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Abstract - In this paper, we present a new automatic method 
for sleep spindle detection. It consist of a generalisation of the 
Schimicek's method [12] that takes more types of artefacts into 
account and uses variable thresholds regarding the statistical 
properties of the signal. Validity of our process is examined on 
the basis of visual spindle scoring performed by an expert. 
Results obtained are compared to those obtained by 
Schimicek's method. For a specificity of 90%, we obtain a 
sensitivity of 76.9% while Schimicek's method has a sensitivity 
of 70.4%. Moreover an increase of the area under the ROC 
curve is observed and confirms that the detection process is 
improved. 
 
 

I. INTRODUCTION 
 
Sleep spindles are transient EEG events occurring in sleep 
stages 2, 3 and 4, where highest density is observed in stage 
2. They consist in sinus-like bursts that increase and 
decrease progressively in amplitude, with minimum duration 
of 0.5 s (Figure 1). Their frequencies have been defined 
between 12 and 14 Hz in [11]. However, this interval has 
been proved to be too narrow [8] and it was extended up in 
several recent studies (11.5-15 in [12], 12-15 in [3], 11-16 in 
[1]).  

 

Figure 1: CZ-A1 EEG recording with two spindles 

 
Current research about sleep spindles includes topics such as 
localisation in the brain, sleep stages classification, 
microstructure analysis, effect of drugs on sleep spindles, 
relationship between sleep spindles and memory 
consolidation, etc. [1]-[3],[9]. 
 
Visual analysis is however time-consuming and tedious 
since there are typically 1000 spindles in a full night 
recording. Moreover, some sleep spindles are difficult to 
identify because they are borderline in frequency or 
duration, or superimposed on other waveforms. Therefore 

hardware [13] and software [5]-[7],[12] methods have been 
developed for automatic analysis. 
 
Fixed thresholds are used in some of these software methods 
[5],[12],[13] but the strong inter-patients variability of the 
spindle amplitudes remains an important problem. 
Moreover, most of these algorithms are badly adapted to 
recordings of pathological patients. Indeed, they often do 
not take care of all artefacts which are more present in 
pathological patients' recordings than in healthy subjects' 
recordings (i.e. in those from persons without any 
pathology). Schimicek and co-workers [12] have limited the 
number of false detections by rejecting segments with alpha 
interferences and muscle artefacts, but they did not consider 
other artefacts like EOG artefact, sweat, arousal, etc. 
 
In this study, we report on an extension of the Schimicek’s 
method to better fit with patients' recordings. Firstly, 
variable thresholds are used regarding the statistical 
properties of the considered signal, and secondly more types 
of artefacts are taken into account. 
 
The validity of our process is examined based on visual 
spindle scoring performed by an expert, and the results 
obtained are compared to those obtained by Schimicek's 
method. 
 
 

II. METHODS 
 
A. Recording 
 
Data used in this study were recorded at the Sleep 
Laboratory of the André Vésale hospital (Montigny-le-
Tilleul, Belgium).  They consist of six whole-night 
recordings coming from patients (3 males and 3 females 
aged between 31 and 54) with different pathologies 
(dysomnia, restless legs syndrome, insomnia, 
apnoea/hypopnoea syndrome). Two EOG channels (P8-A1, 
P18-A1), three EEG channels (CZ-A1, FP1-A1 and O1-A1) 
and one submental EMG channel were used to perform the 
whole-night polysomnography, according to the criteria of 
the Rechtschaffen and Kales [11]. The sampling rate was 
200Hz. A segment of 30 minutes was extracted from each 
night from the CZ-A1 channel for spindle scoring. A total of 
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3 hours of EEG recordings were then available for automatic 
sleep spindle detection.  
 
To check the validity of our process, visual spindle scoring 
was also performed on these signals by an expert. The total 
number of identified spindles was 575. 
 
 
B. Automatic analysis 
 
Our process is a generalisation of the Schimicek's algorithm 
[12]. In a first step, the EEG is filtered in the 11.5-15Hz 
frequency band. Spindles larger than a given threshold are 
then detected. While Schimicek et al. have used a fixed 
threshold (e.g. 25µV peak-to-peak), we have preferred a 
variable threshold completely adapted to the statistical 
properties of the signal. It is defined as:  

σµ ⋅+= Kthreshold  

where µ is the average of the signal amplitude and σ is its 
standard deviation. K will be varied in the following in order 
to illustrate its influence on the results. 
 
Next, the detected spindles are rejected each time their 
duration is shorter than 0.5 s. Pseudo-spindles superimposed 
with artefact detection are also discarded. However, in 
contrast with Schimicek’s method where only alpha activity 
interference and muscle artefacts are considered, we take 
more artefacts into account before any spindle detection, 
such as saturations, unusual increase of EEG (e.g. EOG 
interferences), abrupt transitions and movement artefacts. 
Moreover, errors due to cardiac interference and unusual 
low-frequency waveforms (caused by sweat for example) 
superimposed with EEG are also corrected (see [4] for more 
details about our artefacts detection/correction process). 
 
Finally, the number of false detections is limited by using a 
second specific algorithm that confirms or infirms the 
presence of a spindle. This process, called "analysis by 
blocks" hereafter, examines the signal by blocks of 0.5s. For 
each block, it computes the Fourier transform of the signal 
and checks its maximum in the 7-20Hz frequency band. If 
this maximum stands between 11.5Hz and 15 Hz, the 
corresponding spindle is accepted, otherwise it is rejected. 
 
 

III. RESULTS AND DISCUSSION 
 
To assess our process performance, we have implemented 
the Schimicek's method [12] and we have observed its 
results on our database. A true positive result was counted 
when a sample was detected as a spindle by the automatic 
method and the expert simultaneously. A true negative result 
was set when a correct decision of absence of spindle was 
made. If the automatic result indicated a presence of spindle 
and there was no spindle visual scoring, a false positive 
result was counted. On the opposite, if the output indicated 
no spindle while the expert scored some, a false negative 
result was counted. 

Figure 2 displays the influence of a variable threshold on the 
results. The extraction of alpha interference or other 
artefacts is not used at this stage. The X-axis of Figure 2(a) 
corresponds to different fixed threshold value as in the 
Schimicek's method, while different variable thresholds 
(corresponding to different value of parameter K) were 
reported in abscissa of Figure 2(b). The dotted line 
corresponds to the recognition rate in percent, namely 

100(%) ⋅
+

=
positivefalsepositivetrue

positivetrue
ysensitivit . 

The other lines represent the percentage of true positive, 
false positive, false negative, and true negative decisions 
with regard to the total number of samples. We can see that 
the recognition rate obtained by setting the false negative 
equal to the false positive is already better if a variable 
threshold is used.  
 
Now, let us compare (in Figure 3) the complete Schimicek's 
method which extracts alpha interferences and muscle 
artefacts, to our own method which takes more artefacts into 
account (at this stage, the analysis by blocks is still not 
used).  
 

  

  

Figure 2: (a) The Schimicek's method without artefact 
detection and with fixed threshold; (b) generalisation of  the 

Schimicek's method without artefact detection and  with 
variable threshold 

 



 

  

Figure 3: (a) The Schimicek's method with alpha 
interference and muscle artefact extraction; (b) our method 
without the analysis by blocks but with the artefact detection 

We observe that extraction of alpha interference and muscle 
artefact indeed reduces the amount of false detections but it 
also increases the amount of false negative detections 
restricting the maximal sensitivity to 80%. Our process 
better reduces the number of false detections in the 
interesting area (where the amount of false negative and 
false positive detections are equal) but does not significantly 
reduce the number of correct detections.  
 
If we include our analysis by blocks (Figure 4), we can 
observe a further decrease in the amount of false detections 
without much increase in the false negative detections. For 
the same specificity of 90%, we obtain a sensitivity of 
76.9% while Schimicek's method had a sensitivity of 70.4% 
(Figure 5). 
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This method also allows us to increase the area under the 
ROC curve (receiver operating characteristic curve which 
depicts sensitivity as a function of 1- specificity) and thereby 
improves the detection process (Figure 5).  

  

Figure 4: Our method with the second specific algorithm 
and with the artefact detection 

   

  

Figure 5: (a) ROC curve with Schimicek's method; (b) ROC 
curve with our method. The corresponding optimal point 

noted by ° 

 
Finally, we have determined the optimal parameter K by 
analysing the ROC curve. Indeed, as sensitivity improves 
towards the top and specificity improves towards the left, 
the most optimal point on the ROC is the point nearest to  
the top left corner (point noted by ° on the curves of Figure 
5). This point is obtained for a parameter K=2 and 



correspond to a sensitivity of 78.44% and a  specificity of 
88.62 %. (cf. Figure 4). 
 
 

IV. CONCLUSION 

 
In this study, we presented an improved automatic method 
for sleep spindle detection. This method, which takes more 
types of artefacts in account (saturations, unusual increase of 
EEG, abrupt transitions, movement artefacts, interference 
and unusual low-frequency waveforms) better fits with 
pathological patients' recordings that usually contain more 
artefacts. It also uses variable thresholds regarding the 
statistical properties of the signal so that it can be used for 
patients with various spindle amplitudes. The optimal 
threshold value estimated on the basis of ROC curves is: 
 

σµ ⋅+= 2threshold  

 
where µ and σ are the is the mean and the standard deviation 
of the signal amplitude, respectively. It corresponds to a 
sensitivity of 78.44% and a specificity of 88.62 %. 
 
The results were also compared with those obtained by 
Schimicek's method on the same signals [12]. We observed 
an increase in the area under the ROC curve with our 
algorithms. This demonstrates the improvement of the 
detection process. 
 
Finally, our method presents the advantage of a rather 
simple implementation compared to much more complex 
processes that have been recently proposed [7]-[10]. Of 
particular interest, our method is not based on artificial 
neural networks and does not require any training database: 
it automatically adapts to the signals it examines. 
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