
© fi

A SELECTIVE LEARNING METHOD TO IMPROVE THE
GENERALIZATION OF MULTILAYER FEEDFORWARD

NEURAL NETWORKS

I. M. GALVÁN, P. ISASI, R. ALER and J. M. VALLS
Universidad Carlos III de Madrid, Avenida de la Universidad,

30, 28911 Leganés (Madrid), Spain

Received 31 July 2000
Revised 1 March 2001

Accepted 13 March 2001

Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in
many applications. However, the level of generalization is heavily dependent on the quality of the training
data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that
with careful dynamic selection of training patterns, better generalization performance may be obtained.
Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this
paper, we present a learning method that automatically selects the training patterns more appropriate to
the new sample to be predicted. This training method follows a lazy learning strategy, in the sense that
it builds approximations centered around the novel sample. The proposed method has been applied to
three different domains: two artificial approximation problems and a real time series prediction problem.
Results have been compared to standard backpropagation using the complete training data set and the
new method shows better generalization abilities.

1. Introduction

Multilayer feedforward neural networks (MFNN)

with backpropagation algorithm are passive learners

because they passively receive information about the

problem domain and attempt to adjust the weights

to learn the training samples.1 Although backpro-

pagation neural networks have been used successfully

in many applications, they may suffer from problems

inherent to the training data used to get the network

learned.

The level of generalization, i.e., the ability to

correctly respond to novel inputs is heavily depen-

dent on the quality of the training data. In the

traditional way, the neural network is trained with

available samples about the domain and the training

set is generally chosen in such a way that it repre-

sents most widely the problem. Thus, the average

amount of novel information per sample decreases as

learning proceeds. The reason for this is that as the

size of the training set grows, the knowledge of the

network about large regions of the input space

become more and more confident; so, additional

samples from these regions are basically redun-

dant, as they do not contribute considerable to an

improvement in generalization ability.

Much research has been done to improve genera-

lization and to reduce the convergence time. This

research has mostly been focused on optimal

setting of initial weights of perceptron multilayer;2

optimal learning rates and momentum;3 finding

optimal architectures using pruning and construction

techniques;4 and on sophisticated weight modifica-

tion rules and optimization techniques;5,6 and tech-

niques based on mixture of experts, in which several

expert networks trained on different partitions of the

input space.7,8

While techniques previously mentioned are useful

for a variety of problems, other authors have paid

attention to other additional factors which influence

the learning speed and the generalization ability of

1

Referencia bibliográfica
Published in:
International Journal of Neural Systems, 11, 2 (2001), 167-177



´

the networks. One of them is the nature and size

of the training set. There is no guarantee that the

generalization performance is improved by increas-

ing the training set size.9 In general, one should

choose those examples which are most likely to help

the network to solve the problem. It has been

shown that with careful dynamic selection of train-

ing patterns, better generalization performance may

be obtained.10 This has given rise to new methods

named active learning methods in the literature. Ac-

tive methods consist of any form of learning in which

the learning process has some control over the train-

ing patterns it is trained with.10,11 Those strategies

allow to dynamically select training patterns from a

candidate training set in order to reduce the conver-

gence time and to increase the generalization ability

of MFNNs.

Following this approach, different works have

appeared in the literature. For classification pro-

blems, the selected examples are the border patterns,

i.e., the patterns that lie closest to the separating

hyperplanes. In Ref. 12, it is shown that a network

trained on border patterns generalizes better than

a network trained on the same number of examples

chosen at random. In Ref. 13, the nearest neighbor

criterion is used to distinguished between typical

samples and confusing samples. Other works in

which different criteria are used for selecting critical

examples.14–16

The idea of selecting dynamically or actively the

patterns to train the network from the available data

about the domain is close to our approach. How-

ever, the aim in this work is to develop learning

mechanisms such that the selection of patterns used

in the training phase is based on the novel sample,

instead of based on other training patterns. Thus,

the network will use its current knowledge of the

new sample to have some deterministic control about

what patterns should use for training. In addition,

novel samples which are not represented in the avail-

able training data about the domain could be used

in future training of the MFNN.

Most of the supervised learning methods can be

considered as eager learning methods, in the sense

that generalization is carried out beyond the train-

ing data before observing the new sample. When a

new pattern is received, eager methods have already

chosen their global approximation. That global ap-

proximation over the training data representing the

domain can lead to poor generalization proper-

ties. An alternative approach in supervised learning

that tries to solve this problem is to defer the gene-

ralization phase until a new sample is obtained,

using a selection of patterns of the training set.

Thus, the learning methods construct local approxi-

mations using a selection of training data instead of

using the total set in which irrelevant or redundant

information could be given.

These ideas are known in the literature as lazy

learning methods17,18 because they defer the decision

of how to generalize beyond the training data until

each new sample is encountered. These methods

usually involve finding relevant data to answer a

particular novel pattern. Thus, the decision about

how to generalize is carried out when a test pattern

needs to be classified constructing local approxima-

tions. The relevance of a pattern in the training data

is often measured using a distance function, with

nearby points having high relevance. Once relevant

patterns are selected, novel samples are answered by

combining the most relevant training data and dis-

carding data that could worsen the generalization

of the new pattern. In that sense, it is said that

lazy methods construct local approximations because

only local data is taken into account in the genera-

lization. Using lazy techniques, better generalization

capabilities could be expected, because only relevant

patterns are used.

The most basic form of lazy learning is the

k-nearest neighbor classifier.19 It simply stores the

entire training set and postpones all effort towards

inductive generalization until classification time.

That method works by retrieving the k least distant

input patterns of the novel sample, i.e., the most

similar; afterwards the approximation of those

patterns is just the most common value of out-

put patterns among the k training examples near-

est to the new sample. Variant of this basic method

have been developed improving its accuracy on some

learning tasks (e.g., Refs. 20 and 21).

Other form of lazy learning is locally weighted

regression.17,22,23 This method constructs an explicit

approximation of the target function over a local

region surrounding the new sample. That local

approximation might be built up using a linear

function, quadratic function or some other func-

tional form. Locally weighted regression uses nearby

or distance-weighted training examples to form this
2



local approximation, and the contribution of each

training example is weighted by its distance to the

novel pattern. The regression of the local function

coefficients is based only on data near the novel

pattern. That local approximation is then applied

to that new pattern, for classification or prediction

purposes.

The learning method proposed in this work to

train MFNNs is inspired on lazy strategies. Perhaps,

the most basic idea — and following the main ideas

developed on lazy methods — is to select from the

whole training data the k-nearest patterns to the

novel pattern and to train the MFNN with these k

patterns. This is, when the new sample is found, the

subset of the k nearest patterns could be used to train

the MFNN. After that, the trained network would

be used to approximate the new sample. However,

in this work the idea of selecting the k-nearest pat-

terns has been rejected mainly because of two factors.

First, determining the best value for k might be a

problem which might be solved by a trial and error

mechanism. In addition, the k parameter will prob-

ably depend on the given problem. Secondly, and

the most important issue, the network will always

be trained with the same amount of training data

for each new sample. That may be a disadvantage

because each novel pattern could require a different

amount of training data.

The lazy method proposed in this work at-

tempts to solve this problem by selecting, for each

new sample, the training patterns in an automatic

way. The method selects the most similar train-

ing patterns to the new pattern received and dis-

cards those useless patterns that may not provide

useful knowledge to approximate that new pattern.

The selection is based on the inverse of Euclidean

distance, thus neighboring patterns will be selected

and farther ones will be discarded. The number of

selected trained patterns can be different for each

new sample. In addition, the method follows the

principle that the closer to the novel sample a learn-

ing pattern is, the more important it should be con-

sidered for learning. This is achieved by replicating

it according to its closeness to the novel pattern.

To sum up, instead of using the whole training

data, a variable portion of the training data is se-

lected when a new sample is received. This selection

depends on the incoming test pattern. Then, a com-

plete neural network is trained from scratch for every

new pattern, and then that network is applied to

the new sample to predict. It is very important to

remark that any lazy strategy — like ours — implies

a bigger computational effort than an eager strategy,

because a local approximation based on the novel

sample must be built for every novel sample, instead

of building a global approximation once and for all.

However, in most real applications this is not a prob-

lem because the available time between the arrival

of novel samples is enough to train the network.

Besides, if novel samples arrive incrementally and

it is desired to use those samples for training pur-

poses, then lazy methods are not worse than eager

methods, because both have to generate a network

everytime a new pattern arrives. Actually, in that

case, lazy methods are better in terms of computa-

tional cost, because they use fewer patterns to train

the network, hence training time will be smaller.

The purpose of this paper is to empirically show

that automatic selection of training patterns helps

to improve the generalization capabilities of MFNN

when the training input space is not uniformly dis-

tributed. That is, when there are few patterns in

some regions while there is redundant data in other

regions of the input space. The rest of the paper is

organized as follows. Section includes a complete

description of the lazy training method proposed in

this work to train MFNN in order to improve the

generalization ability of these networks. Experimen-

tal results are presented in Sec. 3. The lazy method

is applied to three different domains: two artificial

approximation problems and a real time series pre-

diction problem. The first two domains have been

considered in order to show the effectiveness of a

selection of patterns based on test samples to obtain

better network answers and to reduce the error over

unknown samples during the training phase. The

third domain is a real problem in which the perfor-

mance of MFNN must be improved. The proposed

method is compared against the traditional way of

training MFNN that uses the complete training data

available. Finally, some conclusions are drawn in

Sec. 4.

2. Lazy Learning Method to Train

Multilayer Feedforward Neural Networks

The learning method proposed in this work to train

MFNN consists in selecting, from the whole training

data, an appropriate subset of patterns in order to
3



´

improve the answer of the network for a novel

pattern. Afterward, the MFNN is trained using this

new subset data. The goal is to show that if the

MFNN is trained with the most appropriate training

patterns, the generalization on the new sample can

be improved.

The general idea for the pattern selection is to

include several times those patterns close — in terms

of the Euclidean distance and some frequency mea-

sure — to the novel sample. Thus, the network is

trained with the most useful information, discard-

ing those patterns that not only do not provide any

knowledge to the network, but might confuse the

learning process.

To develop this idea, let us consider q an arbitrary

novel pattern described by an n-dimensional vector,

q = (q1, . . . , qn), where qi represents the attributes of

the instance q. Let X be the whole available training

data set:

X = {(xi, yi) i = 1 · · ·N ; xi = (xi1, . . . , xin) ;

yi = (yi1, . . . , yim)}

where xi are the input patterns and yi their respec-

tive target outputs. When a new sample q must be

predicted, the MFNN is trained with a subset, which

is named Xq, from the whole training data X. The

steps to select the training setXq are the following:

1. A real value, dk, is associated to each training

pattern (xk, yk). That value is defined in

terms of the standard Euclidean distance from

the pattern q to each input training pattern.

More precisely, it is defined as:

dk = d(xk, q) =

√√√√ n∑
i=1

(xki − qi)2

k = 1 · · ·N .

That distance provides a measure to deter-

mine the nearest training patterns to the novel

pattern.

2. A measure of frequency, fk, is associated to

each training pattern (xk, yk). That frequency

value is inversely proportional to dk and it is

calculated as follows:

fk =
1

dk
k = 1 · · ·N .

In order to obtain a relative frequency, the

values fk are normalized in such a way that

the sum of the frequencies equals the number

of training patterns in X. The relative

frequencies, named as fnk, are obtained by:

fnk =
fk

S
where S =

1

N

N∑
k=1

fk .

Thus
N∑
k=1

fnk = N .

3. The values fnk previously calculated will be

used to indicate how many times the training

pattern (xk, yk) is repeated into the new train-

ing subset. Hence, they must be transformed

to natural numbers. The most intuitive way to

perform that transformation is to take the in-

teger part of the real value fnk. Thus, the

times that the pattern (xk, yk) is repeated,

named nk, is calculated as: nk = Int(fnk).

At this point, each training pattern in X has

an associated natural number, nk, which indi-

cates how many times the pattern (xk, yk) has

been used to train the MFNN when the new

instance q is reached.

4. A new training pattern subset associated to

the novel pattern q, Xq, is built up. Given a

pattern (xk, yk) from the original training set

X, that pattern is included in the new subset

if the value nk is higher than zero. In addi-

tion, the pattern (xk, yk) is placed nk times

randomly in the training set Xq.

5. Once the training patterns are selected, the

MFNN is trained using the backpropaga-

tion algorithm. The network weights can be

randomly initialized or they can be fixed to

the weights obtained for the training of the

previous sample test. At this point it is nec-

essary to establish a criterion to stop the

network training. Since the target output for

the new sample is unknown, that criterion

must be established using the training pat-

terns. It is difficult to determine when is the

most convenient moment to stop the training

of the network because it is well known that

backpropagation networks could fall down in

local minima in the earlier training cycles or

they can specialize in the training patterns if

the training is carried out during a large pe-

riod. In this work, three criteria have been

combined to decide when to stop the network.
4



On one hand, a maximum number of learning

cycles has been fixed. In real applications,

that number must be in accordance with the

available time among samples as they are

received. On the other hand, the derivative of

the training error is measured and the training

is stopped when that derivative does not suffer

important changes. And finally, the training

is also stopped when the answer of the net-

work for the test sample does not suffer im-

portant changes. That criterion may avoid an

excessive specialization of the network in the

training patterns.

3. Experimental Results

Experiments using the lazy method to train MFNN

have been carried out with three different problems:

two artificial approximation problems and a real pre-

diction problem. First, a theoretical function — a

piecewise-defined function — has been chosen as a

study case. That function has been chosen because

there are a few patterns for which the traditional

backpropagation algorithm finds difficulties to gene-

ralize them. The goal is to show that with a selection

of patterns, the approximations of those patterns

can be improved. Secondly and with the purpose of

showing that selective learning could improve the ap-

proximation capabilities of MFNN, another artificial

example has been used. Finally, real data has been

used to validate the proposed lazy learning method.

The data represents a real time series describing the

behavior of the water level at Lagoon Venice and the

lazy method is used for the purpose of one-step pre-

diction problem, that is to predict the next sample

of data based on previous samples. In addition, that

study case is also appropriate to show that the pro-

posed method scales well with the complexity of the

problem by considering a learning problem in high-

dimensional spaces. The two artificial examples are

one-dimensional problems, but to succeed in the pre-

diction of the water level at Lagoon Venice the di-

mension of the input space must be higher than one.

In order to show the effectiveness of the lazy

method proposed in this work, MFNN has also been

trained as usual, that is, the network is trained using

the whole available training data set, and then it is

used to approximate the novel samples.

Fig. 1. Piecewise-defined function.

In the next subsections the experimental set-up

description and results are presented.

3.1. Artificial Example 1:

A piecewise-defined function

The piecewise-defined function (see Fig. 1) is a single

variable function given by Eq. (1).

f(x)=


−2.186x− 12.864 if − 10 ≤ x < −2

4.246x if − 2 ≤ x < 0

10e−0.05x−0.5 sin((0.03x+0.7)x) if 0 ≤ x ≤ 10

.

(1)

The training set is composed of 120 input–output

points randomly generated by an uniform distribu-

tion in the interval [−10, 10]. Two sets of 80 input–

output points generated in the same way are used as

test and validation patterns, respectively. Data are

normalized in the interval [0,1].

After several simulations varying the number of

hidden units, 20 hidden neurons were chosen to ap-

proximate the function by a MFNN. Thirty different

experiments have been carried out, each one starting

with different random weights. The process we have

followed in each experiment is described next. First,

the MFNN has been trained using the whole training

set. In this case, the training and validation errors

are measured every learning cycle and the evolution

of those errors has been obtained for 1,000,000 cy-

cles. At this point, both training and validation

errors were stabilized and learning was stopped.

That number of learning cycles is required to get an

appropriate generalization of the network. Next,

the mean square error over a new test set com-

posed by unseen paterns is measured. The average,

standard deviation, minimum, and minimum of the

experiments are shown in Table 1.
5



´

Table 1. Performance of different training methods for the piecewise-defined
function.

Average Mean Standard
Min Max

Square Error Deviation

Traditional 0.0063734 0.004683512 0.004052 0.015315

Lazy 0.0021216 0.00048242 0.001549 0.003219

After that, the MFNN is trained with the

proposed lazy method. For each test pattern a

selection of training patterns is made and a com-

plete training phase is carried out with the train-

ing patterns selected following the steps described

in Sec. 2. In this case, the training phase for each

test sample is carried out until a maximum number

of learning cycles (500,000) is reached or until the

derivative of training error is near zero or until the

output of the network for the test input does not

undergo large changes, as it was described in Sec. 2.

The mean square error on the test patterns obtained

is shown in Table 1.

As it is shown in Table 1, the average mean

square error has been significatively reduced when

the MFNN is trained with a selection of patterns

for each test pattern. Evidently, the computational

cost is higher when the lazy method is used, be-

cause for each test pattern a complete network is

trained. However, as it was previously mentioned,

if the MFNN is trained with the whole training set

during a large number of cycles, the test error cannot

be reduced.

Most of the experiments have a similar behavior.

Figure 2 shows the error for each test pattern using

both learning methods, traditional and lazy for one

of the experiments. As it can be observed, there

are two patterns for which the MFNN trained as

usual find difficulties to approximate them. The

network trained with the whole training data has

some difficulties to approximate the points in which

the function changes their tendency. The approxi-

mation of those patterns is improved when the

MFNN is trained with a lazy learning strategy. The

use of a reduced and appropriate training set helps

the network to find a better approximation. The

approximation of the rest of the patterns is also

improved, but this is not so relevant. Thus, pat-

terns that are difficult to approximate using the

Fig. 2. Errors for each test sample for the piecewise-
defined function.

traditional method can be improved when an appro-

priate selection of patterns is made.

In Fig. 3, the evolution of the mean square

errors for the two conflictive test patterns during

the training phase of the MFNN is shown for the

previous experiment. In that case, the MFNN has

been trained using both methods, and the error for

each test sample has been measured at every learning

cycle. The goal of that experiment is to observe the

influence of the patterns used in the training phase

over the generalization capability of the network. As

it is observed, when the whole training data is used,

the test error is higher than if a selection of pat-

terns (the most relevant) is used. In addition, it

is also important to point out that the convergence

is slower. This implies that the network can easily

generalize when it is trained with the most useful

patterns and when irrelevant patterns are discarded.

3.2. Artificial Example 2: A smooth

continuous function

In this subsection the results obtained with an

artificial function are shown. The goal of this

experimental case is to show the performance of the

lazy method in those functions with several changes

of tendency (see Fig. 4). That single function is not
6



Fig. 3. Evolution of the error during the training for two conflictive patterns.

Table 2. Performance of different training methods for the Smooth Conti-
nuous Function.

Average Mean Standard
Min Max

Square Error Deviation

Traditional 0.0393358 0.00445235 0.033005 0.046313

Lazy 0.0063768 0.001267353 0.004038 0.008222

Fig. 4. Smooth continuous function.

a difficult task for the standard MFNN. However, the

regions in which the function tendency changes are

generally difficult to get accurate approximations.

The study case is a single variable function which

is given by Eq. (2):

f(x) = 9 sin(6x) + 4 sin(10x) + sin(15x)

x ∈ [0, 2] . (2)

In this case, the points have been uniformly

generated on the interval [0,2]. From them, two

set of 80 input–output points has been randomly

extracted and used as validation and test sets,

respectively. Data are normalized on [0,1].

After several simulations, ten hidden neurons

have been chosen. In this case, 800,000 learning

cycles have been required to get an appropriate mean

square validation error (see Table 2) when the whole

training set is presented to the network. As in the

experimental case 1, the error over the training and

validation sets are measured every learning cycle and

the training is stopped when the validation error is

stabilized. Subsequently, the lazy method has been

used to approximate the new test set of unseen pat-

terns. In Table 2, some statistics of the error of

all the performed experiments are shown both for

traditional and lazy methods. As in the previous

study case, the mean validation error cannot be re-

duced when the complete training data is used even

if more learning cycles are performed. For the lazy

method, a maximum number of learning cycles —

300,000 — is allowed and the training is finished

when one of the three criteria described in Sec. 2 are

reached.
7



´

Fig. 5. Errors for each test sample for the smooth
continuous function.

The error for each test pattern obtained by the

traditional and lazy methods for a typical experiment

are shown in Fig. 5. In this case, the superiority of

the lazy method is not only observed in a few pat-

terns as in the previous study case (Sec. 3.1), but in

most of the test patterns.

3.3. A real problem: Prediction of water

level at Venice Lagoon

Unusually high tides, or sea surges, result from a

combination of chaotic climatic elements in conjunc-

tion with the more normal, periodic, tidal systems

associated with a particular area. The prediction of

such events has always been the subject of intense

interest to mankind, not only from a human point

of view, but also from an economic one. The water

level of Venice Lagoon is a clear example of these

events.24,25 The most famous example of flooding in

the Venice Lagoon occurred in November 1966 when,

driven by strong winds, the Venice Lagoon rose by

nearly 2 m above the normal water level. That

phenomenon is known as “high water” and many ef-

forts have been made in Italy to develop systems for

predicting sea levels in Venice and mainly for the

prediction of the high water phenomenon.26

Different approaches have been developed for the

purpose of predicting the behavior of sea level at

the Lagoon Venice.26–28 Recently, multilayer feed-

forward neural networks have been also used to pre-

dict the water level29 obtaining same advantages over

linear and traditional models. However, prediction

capability of MFNN must be improved, mainly the

predictions of the high water phenomenon.

There is a great amount of data representing the

behavior of the Venice Lagoon time series. However,

the part of data associated to the stable behavior of

the water is very abundant as opposed to the part

associated to high water phenomena. This situation

leads to the following: the MFNN trained with a

complete data set is not very accurate in predictions

of high water phenomena. It seems natural that if

the network is trained with selected patterns, the

predictions will improve.

In this work, a training data set of 3000 points

corresponding to the level of water measured each

hour has been extracted from available data (water

level of Venice Lagoon between 1980 and 1994 sam-

pled every hour). This set has been chosen in such a

way that both stable situations and high water sit-

uations appear represented in the set (see Fig. 6).

High-water situations are considered when the level

of water is no less than 110 cm. Validation and

test samples have also been extracted from the avail-

able data and they represent a situation when the

level of water is higher than 110 cm (see Fig. 7).

Evidently, that situation differs from those appear-

ing in the training set. It is necessary to point out

that when the high water occurs, the time series rep-

resenting the level of water suffers strong variations

that are difficult to predict. Hence, it is interesting

to predict the high water phenomenon but also what

will happen around that phenomenon.

Fig. 6. Water level at Venice Lagoon during four months.

Fig. 7. Water level at Venice Lagoon used as test
samples.

8



Table 3. Performance of different training methods for Venice Lagoon time series.

Average Mean Standard Deviation
Min Max

Square Error

Traditional 68.279195607 3.268950185 65.52579465 73.99644855

Lazy 31.038980871 2.253680115 28.4414382 34.9320421

Since the goal in this work is to predict only the

next sampling time, a nonlinear model using the six

previous sampling times, i.e., data of the six pre-

vious hours, may be appropriate. When a long-

term prediction has to be made, models with a more

extensive information through the input are more

convenient.30 The aim in this context is to observe if

a lazy strategy may help to obtain better predictions

of high water phenomena. Thus, a MFNN with six

input units, 20 hidden neurons and one output neu-

ron representing the level of water at the next instant

has been considered and trained with traditional and

lazy learning strategies.

The MFNN is trained using the complete training

data during 600,000 learning cycles. As in the

previous experimental cases, training is stopped

when the validation error does not suffer changes.

The average, standard deviation, minimum, and

maximum of the mean square error over the test

samples are shown in Table 3. It is noticed that

the validation error goes steady in the cycle 200,000

for all the experiments. That implies that the

MFNN has converged and it cannot produce better

predictions.

Test samples have also been approximated

using a selection of patterns to train the MFNN.

In this case, the maximum number of learning

cycles for each test pattern is fixed to 100,000, al-

though it is not necessary to reach that number,

because if the derivative of the training error is

near to zero or the answer of the network does not

change, the training is stopped as well. The mean

test error is reduced by the lazy strategy.

Figure 8 shows the error for each test pattern in

both learning methods for a typical experiment. The

errors show that the performance of lazy strategies

is better than traditional learning generalization be-

cause the errors are generally lower. The high water

phenomenon can be predicted more accurately when

Fig. 8. Errors for each test sample for the water level at
Venice Lagoon.

the MFNN is trained with a selection of patterns,

instead of the whole training data.

4. Conclusions

The generalization capabilities of MFNNs depends

not only on the learning methods used but also on

the quality of the data used to train the network.

The use of the whole training data available about

the domain may not be the most efficient way to

obtain the best generalization properties of neural

networks. This is specially true when the data

presents different regimes. The generalization in

those regions in the pattern space that do not

follow the general tendency is distorted by the most

stable regions.

The lazy learning method presented in this work

provides an automatic mechanism to select the most

appropriate training data, by using the novel sam-

ple to focus the selection process. Thus, those re-

gions that do not follow the general tendency are not

ignored by the network, while the rest are equally

considered. The results presented in the previous

sections show that if MFNNs are trained with such

a selection of training patterns, the generalization

performance of the network is improved. The selec-

tion of the most relevant training patterns — closer
9



´

patterns in Euclidean distance terms in this case —

and the replication of those patterns helps MFNN

to obtain better quality on approximation functions

and time series prediction.

Besides, the lazy method makes an automatic

selection of training patterns for each test sample

allowing that the number of patterns to train is

variable. If a k-nearest-neighbors strategy were used,

several troubles would arise: first, the determination

of k, and second, it always selects the same number

(k) of patterns, which might not be appropriate in

all the cases. Those problems are overcome in the

lazy method presented in this work.

However, the proposed method has also some

disadvantages. They are mainly given by the use of

the Euclidean distance to select the most appropriate

patterns. It is well known that in some domains

the Euclidean distance does not provide a good

similarity measure. Evidently, in those cases, the

proposed method will not work in an efficient way.

For instance, some classification domains, in which

similar patterns belong to different classes, the

proposed method will not work. However, the

method is flexible to incorporate other different

similarity measures.

It is also necessary to mention some aspects

related to the computational cost of the lazy learn-

ing method proposed. The method involves stor-

ing the training data, and finding relevant data to

answer a particular test pattern. Thus, the deci-

sion about how to generalize is carried out when a

test pattern needs to be answered constructing local

approximations. That implies a large computa-

tional cost because the network has to been trained

everytime a new sample is presented. However, the

goal of this paper is to improve the generalization

capability even if the computational cost is higher.

Moreover, in applications (for instance, time series

prediction) in which enough time is available be-

tween samples to train the network, the computa-

tional cost required by the method is not a disad-

vantage, as long as the generalization capability is

improved.

Besides, if novel samples arrive incrementally and

it is desired to use those new samples for train-

ing purposes, then lazy methods are not worse than

eager methods, because both have to generate a

network everytime a new pattern arrives. Actually,

in that case, lazy methods are better in terms of

computational cost, because they use fewer patterns

to train the network, hence training time will be

smaller.

References

1. D. Rumelhart, G. Hinton and R. J. Williams 1986,
“Learning internal representations by error propaga-
tion,” in Parallel Distributed Processing (MIT Press,
Cambridge).

2. T. Denoeux and R. Lengelle 1993, “Initializing back
propagation networks using prototypes,” Neural
Networks 6(3), 351–363.

3. X. H. Hu and G. A. Chen 1997, “Efficient back-
propagation learning using optimal learning rate and
momentum,” Neural Networks 10(3), 517–527.

4. C. Schittenkopf, G. Deco and W. Brauer 1997, “Two
strategies to avoid overfitting in feedforward neural
networks,” Neural Networks 10(3), 505–516.

5. R. Battiti 1992, “First and second-order methods
for learning: Between steepest descent and newton’s
methods,” Neural Computation 4, 141–166.

6. B. E. Rosen and J. M. Goodwin 1997,Optimizing
Neural networks using Very fast Simulated Anneal-
ing, Parallel and Scientific Computations.

7. K. Chen, L. Xu and H. Chi 1999, “Improved learn-
ing algorithms for mixture of experts in multiclass
classification,” Neural Networks 12, 1229–1252.

8. M. I. Jordan and R. A. Jacobs 1994, “Hierarchical
mixture of experts and the EM algorithm,” Neural
Computation 6(2), 181–214.

9. Y. S. Abu-Mostafa 1989, “The Vapnik–Chervonenkis
dimension: Information versus complexity in learn-
ing,” Neural Conputation 1, 312–317.

10. D. Cohn, L. Atlas and R. Ladner 1994, “Improving
generalization with active learning,” Macine Learn-
ing 15, 201–221.

11. S. Vijayakumar and H. Ogawa 1999, “Improving gen-
eralization ability through active learning,” IEICE
Transactions on Information and Sytems E82-D(2),
480–487.

12. K. Huyser and A. M. Horowitz 1988, “Generaliza-
tion in connectionist networks that realise Boolean
functions,” in Proc. 1988 Connectionist Models Sum-
mer School, eds. D. Touretzky, G. Hinton and
T. Sejnowski (Morgan Kaufman, Palo Alto, CA),
pp. 191–200.

13. M. Wann, T. Hediger and N. N. Greenbaun 1990,
“The influence of training sets on generalization in
feed-forward neural netwok,” Proc. of the Interna-
tional Joint Conference on Neural Networks, vol. 3,
San Diego, pp. 137–142.

14. R. Cheung, I. Lusting and A. L. Kornhauser 1992,
“Relative effectiveness of training set patterns for
back propagation,” in Proc. of the IEEE Intrnational
Conference on Neural Networks, vol. 1, San Diego,
pp. 673–678.

10



A Selective Learning Method to Improve Generalization of Multilayer Feedforward Neural Networks 177

15. M. Hasenjager and H. Ritter 1998, “Active learn-
ing with local models,” Neural Processing Letters 7,
107–117.

16. A. P. Engelbrecht and I. Cloete 1998, “Selec-
tive learning using sensitivity analysis,” IEEE
International Conference on Neural Networks,
pp. 1150–1155.

17. C. G. Atkeson, A. W. Moore and S. Schaal 1997,
“Locally weighted learning,” Artificial Intelligence
Review 11, 11–73.

18. D. Wettschereck, D. W. Aha and T. Mohri 1997, “A
review and empirical evaluation of feature weight-
ing methods for a class of lazy learning algorithms,”
Artificial Intelligence Review 11, 273–314.

19. B. V. Dasarathy (ed.) 1991, Nearest Neighbour (NN)
Norms: NN Pattern Classification Techniques (IEEE
Computer Society Press, Los Alamitos, CA).

20. J. D. Kelly and L. Davis 1991, “A hybrid genetic
algorithm for classification,” in Proceedings of the
Twelfth International Joint Conference On Artificial
Intelligence, Sydney, Australia (Morgan Kaufman),
pp. 645–650.

21. D. W. Aha 1992, “Tolerating noisy, irrelevant,
and novel attributes in instance-based learning al-
gorithms,” International Journal of Man-Machine
Studies 36, 267–287.

22. V. Vapnik 1992, “Principles of risk minimization for
learning theory,” in Advances in Neural Infromation
Processing Systems, 4, eds. J. E. Moody, S. J. Hanson
and R. P. Lippman (Morgan Kaufman, San Mateo,
CA), pp. 831–838.

23. V. Vapnik and L. Bottou 1993, “Local algoritms for
pattern recognition and dependencies estimation,”
Neural Computation 5(6), 893–909.

24. E. Moretti and A. Tomasin 1984, “Un contributo
metematico all-elaborazione previsionale dei dati di
marea a Venecia,” Boll. Ocean. Teor. Appl. 1, 45–61.

25. A. Michelato, R. Mosetti and D. Viezzoli 1983,
“Statistical forescasting of strong surges and aplli-
cation to the lagoon of venice,” Boll. Ocean. Teor.
Appl. 1, 67–83.

26. A. Tomasin 1973, “A computer simulation of the
adriact sea for the study of its dynamics and for the
forecasting of floods in the town of Venice,” Comp.
Phys. Comm. 5, 51.

27. G. Vittori 1992, “On the choatic features of tide
elevation in the lagoon Venice,” in Proc. of the
ICCE-92, 23rd International Conference on Coastal
Engineering, 4–9, Venice, pp. 361–362.

28. L. M. Serio Bergamasco, A. R. Osborne and
L. Cavaleri 1995, “Finite correlation dimension and
positive Lyapunov exponents for surface wave data
in the adriatic sea near Venice,” Fractals 3, 55–78.

29. J. M. Zald́ıvar, E. Gutiérrez, I. M. Galván,
F. Strozzi and A. Tomasin 2000, “Forecasting high
waters at Venice Lagoon using chaotic time series
analysis and nonlinear neural networks,” Journal of
Hydroinformatics 2(1), 61–84.

30. I. M. Galván, J. M. Alonso and P. Isasi 2000,
“Improving multi-step time series prediction with
recurrent neural modelling,” New Frontiers in
Computational Intelligence and its Applications,
ed. Masuod Mohammadian (IOS Press).

11




