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Abstract Most photovoltaic modules are planar and as a

result, research on panel layout for photovoltaic systems

typically uses planar panels. However, the increased

availability of thin-film photovoltaic modules opens up

possibilities for the application of flexible solar panels on

irregularly curved surfaces, including the integration of

photovoltaic panels on building roofs with double curva-

ture. In order to efficiently arrange photovoltaic panels on

such surfaces, geometric CAD tools as well as radiation

analysis tools are needed. This paper introduces a method

to generate geometry for flexible photovoltaic modules on

curved surfaces, as well as a method to arrange multiple of

such modules on a surface. By automating the generation

of possible photovoltaic panel arrangements and linking

the geometric tools to solar analysis software, large num-

bers of design options can be analysed in a relatively short

time. This combination of geometry generation and solar

analysis provides data that is important for electrical design

of photovoltaic systems. The merits of the methods we

introduce are illustrated with a case study, for which

hundreds of design configurations have been explored in an

automated manner. Based on analysis of the numeric data

generated for each of the configurations, the effects of

panel dimensions and orientation on solar insolation

potential and panel curvature have been established. The

quantitative and qualitative conclusions resulting from this

analysis have informed the design of the photovoltaic

system in the case study project.

Keywords Flexible photovoltaic modules � Geometry �
Double curvature � Surface rationalisation � Solar analysis

Introduction

Strong cost reductions and increasingly stringent govern-

ment regulations combined with support schemes for

renewable energy in several countries are leading to a rapid

deployment of photovoltaic (PV) systems. Many studies

exist on the topic of placement and orientation of PV

panels on roofs, facades or the ground, but solely taking

into account flat modules on planar surfaces [1–5]. With

the increased availability of flexible thin-film PV panels in

recent years, the application of PV panels on curved sur-

faces becomes feasible, thus broadening the application

potential of photovoltaic modules. Curvature poses some

major challenges related to structural integration, PV

module operation and electrical system design [6, 7].

However, so far no methodology for modeling of flexible

PV modules on curved surfaces exists. In this paper, we

introduce design and analysis methods for the application

of flexible PV panels on irregularly curved surfaces.

The design of buildings that are optimised for structural

efficiency [8] or tailored for digitally informed fabrication

[9, 10] often results in complex geometry [11–13], which

may include roofs and facades featuring double curvature.

Due to their rigidity and shape, most PV panels are difficult

to integrate in surfaces with double curvature. However,

thin-film photovoltaic modules can be applied to thin sheet

metal or flexible polymer substrates, offering more geo-

metric flexibility. Combined with the high efficiency and
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low weight of thin-film PV technologies such as CIGS

(copper indium gallium selenide), this offers new appli-

cation possibilities of PV modules for building integrated

photovoltaics (BIPV) as well as portable PV applications

[14]. With this technique, thin-film photovoltaic modules

could potentially be directly integrated in the building

envelope. As this would remove the need for the sub-

structures that are typically used for PV installations, such

a system could be light-weight and cost-effective.

Flexible sheet metal panels can be applied to surfaces

with single curvature easily and have historically been used

for roofing [15]. However, when applying bendable panels

to surfaces with double curvature, methods to predict the

geometric behaviour of such panels are needed. When

these geometric methods are linked to solar analysis, the

amount of solar insolation can be predicted at any desired

spatial resolution. Such solar insolation data is important

for the electrical design of PV systems: taking shading

conditions into account reduces electrical mismatch and

thus results in significantly higher electricity generation

[16, 17].

Approximation of double-curved surfaces by triangula-

tion was already used in the pre-digital era in the context of

sheet metal working [18], but this process is labour inten-

sive and thus only suitable for lofted surfaces with few

control curves, as shown in Fig. 1 (left). The geometric

methods presented in [19] and [20] approximate a surface

by triangulation and then unfold the triangles into a flat

surface with a shape that is not known in advance. In our

geometric methods, we take the rectangular shape of

unbent panels as a starting point and triangulate them in

order to approximate the original surface. Methods pre-

sented in [21] also create strip-like surfaces, but allow

deviations from exact rectangular shapes that are not per-

missible in the photovoltaic modules we employ.

In a pilot project, the geometric methods we developed

have been used to generate hundreds of configurations of

flexible PV panels on an irregularly curved roof. After

running solar insolation simulations for each configuration,

the influence of panel dimensions and panel orientation on

solar insolation were analysed.

This paper starts by introducing methods to approxi-

mate double-curved geometry using developable strips.

After assessing the validity of these methods, we then

discuss how the resulting geometry can be analysed on a

number of metrics: total surface area, occurrence of

bending, surface approximation accuracy and solar inso-

lation. We then show the application of these methods to a

case study building and discuss the results, focusing on

the influence of various design parameters on the total

solar insolation.

Methods

In this section, we introduce methods to generate strips of

bendable photovoltaic panels by approximating a double-

curved surface using two different triangulation approaches

(2.1–2.3), to efficiently arrange multiple of these strips on a

larger surface (2.4) and to analyse the resulting geometry

with regard to various geometric metrics (2.5) as well as

solar insolation (2.6).

Fig. 1 Left: triangulation method described by Kidder [18]. Right: our method
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Panel generation method A: congruent triangles

Our aim is to generate an approximation of a flexible panel

that is bent over a double-curved surface, following the

surface as closely as possible while remaining developable

and resulting in an exactly rectangular shape when

unrolled.

As triangulated strips are perfectly developable, we

decided to approximate the final shape of the photovoltaic

panels by a series of triangles, of which all corner points lie

exactly on the roof surface. The method to generate this

geometry is shown in Fig. 2.

The following sequence of steps results in a regularly

triangulated surface that approximates the base surface:

1. Create two points (P0, P1) on the base surface, such

that the distance between them is the desired panel

width (w) and the direction is perpendicular to the

desired panel direction. Connect the points with a line

(L0).

2. Create a circle with radius R0 around point P1, using a

plane perpendicular to line L0. Create a point (P2) at

the intersection of this circle with the base surface.

3. Create two lines (L1, L2) connecting point P2 to points

P0 and P1, thus creating triangle T0 with angle a at P0.

4. Create a point (P3) on L2 at distance w � cos að Þ from
P2, then create a circle perpendicular to L2 around P3

using radius w � sin að Þ. Intersect this circle with the

base surface, creating point P4.

5. Connect P4 with two lines to points P0 and P2,

creating triangle T1. Note that triangles T0 and T1 are

congruent.

6. Repeat steps 2–5 as many times as necessary.

Panel generation method B: adaptive triangles

Although the method described in ‘‘Panel generation

method A: congruent triangle shapes’’ does work for strips

with changing curvature direction, it deals better with

curvature along the length of the strip than with curvature

perpendicular to that direction. In order to minimise the

surface deviation of the triangulated strips, we tested a

second triangulation method that deals better with situa-

tions where the main surface curvature direction is close to

perpendicular to the panel’s length direction. This method

is shown in Fig. 3.

The following sequence of steps results in an irregularly

triangulated surface that approximates the base surface and

exactly unfolds into a rectangle:

1. Create two points (P0, P1) on the base surface, such

that the distance between them is the desired panel

width (w) and the direction is perpendicular to the

desired panel direction. Connect the points with a line.

2. Create a series of lines starting at P0 and ending at

points on the surface with distance n � d from P1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � dð Þ2þw2

q

from P0, where n is the number of lines

and d is a distance that can be chosen at will. Create a

second series of lines starting at point P1. Select the

line that has the smallest distance between its midpoint

and the base surface and call the endpoint of this line

P2.

3. Draw a triangle using points P0, P1 and P2.

4. Continue creating triangles by repeating steps 2 and 3.

Note that in some cases, more than two diagonal lines

meet in one point, such as point 5 in Fig. 3.

Fig. 2 Surface approximation

using congruent triangles

(method A)
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5. The end of the strip is a special case: if an exact strip

length is desired, the value for distance d in step 2

should be set to the remaining edge length divided by

an integer (which may be chosen at will). Once one of

the corner points of the strip has been reached,

potential end points can be created on the panel’s

short edge.

Assessment of panel triangulation methods

In order to assess the extent to which triangulation methods

A and B reflect actual bending behaviour of sheet metal,

we created a physical model. Additionally, we studied the

effect of changing the diagonal direction in method A, and

we compared the geometric differences between methods

A and B (Fig. 4).

In a test of 46 triangulated strip segments generated with

method A, the median lateral deviation between strips

using different diagonal directions turned out to be 0.14 %

of the strip length. In the most extreme case, the lateral

deviation was 2.1 %.

Comparing method A with method B, the median lateral

deviation on our test geometry is 0.20 %. The most

extreme deviation occurring is 3.7 %.

Two scale models were created to test the sheet metal

strip behaviour: one supported by elements perpendicular

to the strip direction (generated with method A), and one

supported by elements oriented roughly along the main

curvature direction (using a subset of edges generated

using method B).

Once mounted, the metal strip follows the predicted tra-

jectory accurately in both models, as shown in Fig. 5.

Deviations turned out to be smaller than the thickness of the

supporting material, which suggests that the digital approx-

imation is a good representation of the bending behaviour of

sheet metal strips that are locally fixed along their edges.

An observation relevant to the fixation method of the

panels is that perpendicular supports visibly deform the

metal surface in areas of concave curvature, except when

the main curvature direction is aligned with the strip. To

avoid this visible deformation, the supports for the panels

can be aligned to the local curvature direction of the strips.

Fig. 3 Surface approximation

using adaptive triangles

(method B)

Fig. 4 Comparison of triangulation methods A (dashed, dotted) and

B (solid line)

Fig. 5 Scale model showing metal strips bent over edges created

with methods A (bottom) and B (top)
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Geometric method for strip arrangement

The methods shown above can be used to generate single

strips, but in order to cover a larger area, a method to

arrange multiple strips is needed. To maximise solar

insolation, we are looking for a solution that fits as many

panels as possible. As an additional architectural con-

straint, we choose to only look at solutions where multiple

panels are arranged in long strips.

On a surface with double curvature, strips that are par-

allel to each other at one position will diverge or overlap

elsewhere. We aim to avoid overlapping and to keep strips

roughly parallel to each other, so that the unused area

between panels is minimised. However, in order to facili-

tate the installation process, a certain minimum distance

between the panels is defined.

At any point along the length of a strip, a parallel strip

can be created by taking the direction of the closest point in

the existing strip as the start direction, as illustrated in

Fig. 6. In order to pick the best panel out of the generated

options, we use a formula favouring long neighbour strips

and small differences between the gap sizes near the ends

of the panels:

Suitability ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c�min d1; d2ð Þ=max d1; d2ð Þ
p ð1Þ

In this equation, L is the length of the new strip and d1

and d2 are distances between two strips at both ends (see

Fig. 7). Constant c should be larger than one, as otherwise

very short strips would be favoured over significantly

longer, but slightly less parallel strips. For this analysis, we

set the value of c to 1.1.

By applying this method iteratively until the roof edge

has been reached, large irregular surfaces can be covered

with strip geometry, as illustrated in Fig. 8.

Calculation of bending and of surface

approximation accuracy

The amount of module bending and the accuracy of surface

approximation are important metrics as they strongly

influence buildability, detail design and visual appearance.

We calculate approximate panel bending radii at every

point along the strip edges by determining the angles

between sets of three consecutive edge points, which in the

examples in Fig. 9 are 15 cm apart. Radii that are close to

or shorter than a user defined minimum radius are marked

in the graphical output (see Fig. 9, left).

In order to get an estimate of the geometric deviations

between the original surface and the generated strips, we

measure the distance between various points of the strip

geometry and the nearest points on the original surface. As

all points on both sides of the generated strips lie exactly on

the base surface, the points with the largest surface devi-

ation typically lie very close to the centre line of the strips.

As with the bending radii, this surface approximation

accuracy is exported both graphically (see Fig. 9, right)

and numerically.

Calculation of solar insolation

The solar insolation of all generated panel configurations

has been analysed using the EnergyPlus building energy

simulation software [22], which we accessed through the

Ladybug [23] plugin for Grasshopper [24], which is a

parametric modelling and programming environment for

the 3d modelling program Rhinoceros [25]. Using Ener-

gyPlus weather files with hourly resolution, Ladybug cal-

culates irradiance on the modules with the cumulative sky

approach [26, 27]. For the analysis presented in this work,
Fig. 6 A series of potential neighbour panels (above) for an existing

panel (below)

Fig. 7 A potential neighbour panel. The length of the new panel and

the distances d1 and d2 are used to determine the new panel’s

suitability

Fig. 8 A series of strips approximating a hyperboloid surface
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the spatial resolution of the strip-like panels is ten trian-

gular faces per stretching meter.

As weather data source, we used IWEC weather data for

Geneva [28], covering one calendar year at one hour

intervals. Using custom C# scripts, both graphical and

numerical output were generated. Sun paths generated with

the DIVA [29] plugin for Grasshopper were then used to

visually study shadow occurrence on the roof, using the

physically based render engine LuxRender [30].

The curved geometry leads to varying irradiance on the

modules, which in turn induces electrical mismatch

between cells and modules [31, 32]. Though not investi-

gated in this paper, coupling module irradiance with an

electrical model can be used to predict PV module power-

voltage characteristics. This is important for efficient sys-

tem design such as the development of advanced maximum

power point tracking methods [31, 32] or distributed power

electronics [33].

Results

The methods presented above have been applied in the

context of the design of the NEST Hilo building at EMPA

Dübendorf, which is a test bed for novel building tech-

nology [34]. The building features a double-curved roof,

the shape of which is defined by structural considerations

and a scaffolding process using textile formwork [35].

Photovoltaic cells mounted on thin, bendable metal plates

will be placed on top of this roof, arranged in long parallel

strips as shown in Fig. 10. Our first aim is to assess the

solar insolation of various shell shapes and thus provide

design feedback on the energy production potential. Our

second aim is to define panel dimensions and a panel

arrangement on the final roof shell in a way that results in a

high PV solar insolation, while in parallel fulfilling archi-

tectural and technical requirements.

Comparative analysis of various roof shell shapes

When comparing a series of seventeen roof shapes, the

solar insolation per square meter varied by about 8 %

between the best and the worst roof shape. The highest

insolation was achieved with shapes that are mostly flat and

concentrate any necessary steep geometry in small areas of

the roof surface. Roof shapes with larger, less steep valley

areas did less well; the lower solar insolation is the result of

more self-shading. This is illustrated in Fig. 11.

Analysis of design parameters, as applied to case

study roof

Using the methods described in the methods section, we

assessed the impact of relevant design parameters (panel

dimensions and strip orientation) on solar insolation, panel

bending and surface deviation of strips. This was done by

evaluating the relevant metrics for every combination of

the following parameters:

Fig. 9 Left: graphical display of bending radii. Right: graphical display of surface deviation at the centre curve of the strips

Fig. 10 Model of a series of bent photovoltaic panels placed on the

Hilo building roof
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Panel width 0.30, 0.45, 0.60, 0.75 and 0.90 m

Panel length 1.2, 1.6, 2.0, 2.4 and 2.8 m

Strip orientation 13 angles, at 15� intervals

In total, this resulted in data for 325 design alternatives.

A detailed analysis of this data applied to one specific roof

shape is presented in the following sections.

Surface area as a function of panel dimensions

The dimensions of the panels have a clear influence on the

solar insolation:

• The available length for a strip is rarely an exact

multiple of the panel length, so part of the available

area will not be used. The size of the unused area

depends on the angle between the panel and the edge,

and on the panel length. On average, more than half a

panel length of potential space is lost on each strip.

Using shorter panels helps reduce these losses.

• The effect of panel width on active surface area is clear:

the use of wider panels results in a smaller loss of

potential roof area, as there are fewer gaps between

panels.

• In practice, photovoltaic panels often have an inactive

edge area. The losses caused by these edges are

relatively strong for narrow and/or short panels. Still,

for common panel sizes, short, wide panels result in the

largest active PV surface in our case study, as can be

seen in Fig. 12.

Active panel surface area as a function of panel strip

orientation

Certain strip orientations result in a denser arrangement of

strips and thus in a larger active surface area than other

orientations, as can be seen in Fig. 13. Long strips typically

result in more variation in the width of gaps between

panels, which may be due to the longer distances over

which the gaps can accumulate. The strength of this effect

depends on the base geometry.

In our case study, the best results were achieved when

orienting strips mostly perpendicularly to the longest roof

Fig. 11 Two of the seventeen alternative roof shapes (left) and graphic display of solar insolation over a year on these shells (right). Due to self-

shading and a less favourable orientation, roof B has significantly lower solar insolation than roof A
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edges (see Fig. 13, right). As Fig. 14 shows, the difference

between various orientations is significant: almost 14 %.

Strip bending as a function of strip orientation

On the topic of bending, considering the possible arrange-

ments of strips on a cylinder shows that the strip orientation

can have a large impact on the amount of bending within the

strips as it can range from 0 (following the direction of the

cylinder) to totally curved (following the circumference of

the cylinder). The same thought experiment suggests that the

width of the strips does not affect the amount of bending in

the length direction of the strips.

Analysis of the amount of bending occurring for various

strip widths and orientations on our roof shape confirms the

expected behaviour: the strip width does not significantly

affect the amount of panel bending, but as shown in

Fig. 15, the orientation of the panels does.

Effect of panel dimensions on surface approximation

accuracy

Strip width logically affects the accuracy with which the

original surface can be approached. Using strips of 0.30 m

wide, the distance between the original surface and the

generated strips is less than 5 mm for most of the area and

never larger than 20 mm. However, as can be seen in

Fig. 16, the surface approximation is much less accurate

when using wider panels. This has aesthetic consequences

but may also affect the panel mounting system.

Solar insolation

For the roof geometry we studied, the starting direction of

the strips on the roof has only a small effect on the average

orientation of the strips: the average normal direction

between various configurations varies less than three

degrees. As can be seen in Fig. 17, the starting direction of

the strips also has very little influence on the average

irradiance on the roof strips. Therefore, the total annual

insolation is mostly dependent on the total surface area of

the PV strips and the results discussed in ‘‘Surface area as a

function of panel dimensions’’ and ‘‘Active panel surface

Fig. 13 Strip arrangements using various starting angles. From left to right: 90�, -30� and 15�
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area as a function of panel strip orientation’’ directly apply

to solar insolation as well.

Conclusions

In this paper, we introduce methods to design and analyse

photovoltaic systems using flexible panels, which facili-

tates the application of photovoltaic systems on curved

surfaces where other photovoltaic systems would not be

suitable. Thanks to the systematic generation of flexible

panel geometry, we were able to identify the influence of

various geometric parameters (including panel dimensions

and panel arrangement) on the potential surface area of

photovoltaic panels on a double-curved roof, as well as on

the expected solar irradiation on such panels.

We have introduced geometric methods to approximate

double-curved geometry using triangulated strips, as well

as methods to organise such strips efficiently on a surface.

By combining these methods with solar insolation analysis

software, we analysed the solar insolation potential of

various roof shell geometries in a case study project. We

also studied the impact of various geometric parameters on

solar insolation, module curvature and the size of the gaps

between the flexible panels and the roof surface.

For the roof geometry we studied, the solar insolation is

almost perfectly linearly dependent on the panel surface

area. Short and wide panels that are oriented mostly per-

pendicularly to the longest edges of the roof resulted in the

largest effective PV area and in the highest solar insolation.

On the other hand, narrow panels result in less geometric

deviation between the flexible panels and the roof surface.

The methods we introduced proved to work reliably and

efficiently in our case study, despite the geometric
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complexity of the roof. This suggests that the methods

work for a wide range of shapes. Because the strip geom-

etry generation and irradiance analysis are automated and

take little time to calculate, the system described in this

paper could potentially be linked to other computational

design tools. Data generated using the presented method

could be used to inform the electrical design of photo-

voltaic systems.
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