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Abstract. We present a new formulation of multigrid, the so-called tensor-productmultigrid method, which can be used to
solve Lyapunov equations. These matrix equations are of considerableimportance in control theory and model reduction.
Since they are formulated on a tensor product space, they are of possibly very large dimension and one needs an efficient
solver like multigrid with optimal chosen components. We show that this can bedone by computing the convergence factors
with Local Fourier Analysis adapted for this tensor-product multigrid method.
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LARGE-SCALE LYAPUNOV EQUATIONS

Consider the following linear time-invariant system

dxh

dt
= Ahxh(t)+Bhuh, xh(0) = x0

h, (1)

with system matrixAh ∈ Rn×n, input matrixBh ∈ Rn×p, state vectorxh ∈ Rn and input vectoruh ∈ Rp. In this
paper, matrixAh will be a finite difference approximation of a system of partial differential equations (PDE) on a grid
Gh. The mesh-size of this discretization is emphasized by the subscripth.

The controllability Gramian of system (1) can be found as thematrixXh ∈ Rn×n in

AhXh +XhAT
h = Ch, with Ch = BhBT

h . (2)

Matrix equation (2) is called a Lyapunov equation and is of great importance in control theory [1] and model reduction
[2]. Let vec(·) be the operator that makes a vector from a matrix by column-wise stacking. By means of a tensor
product⊗, we can write (2) as the linear system

Ah vec(Xh) = vec(Ch), with Ah = Ah ⊗ Ih + Ih ⊗Ah, (3)

where we denote then-by-n identity matrix byIh.
The subject of this paper is solving this Lyapunov equation for large-scale systems by multigrid. Large-scale

Lyapunov equations arise naturally when system (1) is obtained by a semi-discretization of a PDE. MatrixAh is
then sparse but very large;n > 106 is not uncommon. A major challenge when solving (2) for such alarge-scale
problem is that then2-by-n2 matrixXh is almost always dense.

The dimension of a Lyapunov equation isn2 which can become very large even for a moderate mesh-width. This
shows the need for an efficient iterative method like multigrid to solve (2). In fact, for many PDEs, multigrid is known
to be an optimal solver: the amount of work and memory scales linearly with the number of unknowns. In case of a
Lyapunov equation, we will show that the multigrid algorithm can be formulated as an iterative method that operates
on a tensor-product space. In this manner we obtain a so-calledtensor-product multigrid method.

We can show that the typical multigrid optimality and efficiency caries over for this tensor-product multigrid
method. In [3], this has been proved qualitatively for a specific instance of tensor-product multigrid that solves the
two-dimensional heat equation on a square. By means of LocalFourier Analysis, we can show the optimality for more
general formulations of the multigrid algorithm and for a wider class of elliptic PDEs. Furthermore, we are able to
compute tight estimates of the convergence factor, both norm-wise and asymptotically.



TENSOR-PRODUCT MULTIGRID

We will first explain how a tensor-product multigrid method that solves (2) can be built from standard multigrid
components. Let us state the following standard two-grid cycle for solvingAhxh = bh, see also [4, Ch. 2.2.3].

x1
h ← smoothν1(x0

h,Ah, bh) = Sν1x0
h +Tbh

dH ← IH
h (bh −Ahx1

h)
eH ← cgc(AH ,dH) = A−1

H dH

x2
h ← x1

h + Ih
HeH

x3
h ← smoothν2(x2

h,Ah, bh) = Sν2x2
h +Tbh

The algorithm uses a fine gridGh and a coarse gridGH with H = 2h and is based onν1 pre-smoothing steps,
restriction of the defect byIH

h , interpolation byIh
H of the coarse grid correctioneH andν2 post-smoothing steps. In

multi-grid thecgc function is a recursive call to a two-grid cycle on the coarser grid GH . The errore3 = xh−x3
h after

one total step of the two-grid cycle obeys‖e3‖ ≤ ‖M‖‖ei‖ whereM is the error-amplification matrix of the algorithm
ande0 = xh −x0

h.
In order to use this two-grid cycle for the Lyapunov equation(3), we need to elaborate the previous multigrid

components. Based on the observation that a lot of these components are already based on tensor products of lower
dimensional variants, e.g., bilinear interpolation, we can specify the previous operations as acting on the tensor-product
spaceRn ×Rn. In the following, we will denote grids and operators that belong to this tensor-product space by a
calligraphic symbol, e.g.,Gh.

Hierarchy of grids. Multigrid is a cycling between a hierarchy of grids. For the tensor-product multigrid method
we will simply take tensor products of the hierarchy of gridsfrom the original multigrid solver, i.e.Gh = Gh⊗Gh for
all meshesh. It will be convenient to partition a pointx ∈ Gh on the grid asx = x1⊗x2 with x1,x2 ∈ Gh.

Once the grids are defined, we need a discrete representationof the PDE on these grids. It can be shown that in case
of a finite difference scheme, one obtainsAh = Ah ⊗ Ih + Ih ⊗Ah, like eq. (3). Besides the fine grid operatorAh

we also need a coarse grid operatorAH . We will only consider direct coarsened operatorsAH and the corresponding
tensor-product operatorAH = AH ⊗IH +IH ⊗AH . A Galerkin operator has the disadvantage that the stencilsbecome
larger and it has to be computed recursively, both of which may become problematic in higher dimensions.

Intergrid transfers. Prolongation and restriction for the tensor grid are easilyconstructed as tensor products of
the operators onGh. Indeed, supposeIH

h : Gh → GH thenIH
h ⊗ IH

h defines a suitable restrictionIH
h : Gh ⊗Gh →

GH ⊗GH . Prolongation is analogous. From a practical point of view,these operators can be applied directly to the
matrix, e.g. for the restriction we get

IH
h : uh = vec(Uh) 7→ (R⊗R)vec(Uh) = vec(RUhRT ).

This means we apply the restriction on each column and each row of the matrixUh.
Smoothing. Smoothers in multigrid are often based on a splittingAh = A+

h −A−

h to obtain the relaxationA+

h xi+1

h =

A−

h xi
h + b, possibly combined with partial relaxations on a colored grid. This splitting can be directly carried over on

Gh, which givesA+

h = A+

h ⊗ Ih + Ih ⊗A+

h . From this, we get a smoother onGh with error amplification matrixS.

LOW-RANK TENSOR-PRODUCT MULTIGRID

For Lyapunov equations, then2 unknowns may be too large to store in computer memory. Therefore, one usually
approximates the solution matrixXh itself. A popular choice is approximatingXh by a low-rank matrix of rankk ≪ n,
which only requiresO(n) parameters. In [5], Grasedyck and Hackbusch developed a multigrid solver that solves for
this low-rank matrix directly without ever forming the whole solution matrixXh explicitly. This way, one can combine
multigrid as an optimal solver for PDEs and benefit from the reduced dimension of the low-rank approximation. The
low-rank multigrid solver uses a Jacobi smoother, and standard prolongation and restriction operators.

Now, this low-rank multigrid algorithm can be seen as a perturbation of the tensor-product multigrid method.
After one step of low-rank multigrid, one can show that the error obeys‖e3‖ ≤ ‖M‖‖e0‖+ ǫ with ǫ ≤ ‖Sν1(Ih −
Ih

HA−1

H IH
h Ah)‖ǫs1 + ‖Sν1Ih

HA−1

H IH
h ‖ǫd + ‖Sν1Ih

H‖ǫcs + ‖Sν1‖ǫcc + ǫs2. Theseǫ∗ are (small) errors due to the
low-rank approximations and can be controlled by choosing the rank adaptively in the algorithm. In addition, tight
estimates of the norms of the operators in front of theseǫ∗ can be computed by the analysis of the next section. So, by
keeping the total perturbationǫ small, we are able to recover the efficiency of an unperturbedmultigrid algorithm.



LOCAL FOURIER ANALYSIS

The convergence of a multigrid method can be proved in several ways. One way is by means of Local Fourier Analysis
(LFA) [4, Ch. 4], which assumes that the PDE has constant coefficients and is defined on an infinite domain. We show
how LFA can be used to analyze the tensor-product multigrid method.

Classic LFA

Let us introduce the standard LFA notation [4, 6] adapted to agenerald-dimensional setting. We associate a fixed
mesh widthh = (h1, . . . ,hd) with an infinite gridGh = {x = (x1, . . . ,xd) = κh = (κ1h1, . . . ,κdhd),κ ∈ Z

d}. On this
grid the discrete operatorAh corresponds to a difference stencil[sκ]h, i.e.

Ahwh(x) =
∑

κ

sκ(x+κh).

The formal eigenfunctions or Fourier modes of this operatorare given byϕ(θ,x) = eiθxh = eiθ1x1/h1 · · ·eiθ1xd/hd for
x ∈ Gh with formal eigenvalue or symbol

Ãh(θ) =
∑

κ

sκeiθκ.

The frequencyθ ∈ R
d varies continuously in the analysis withθ ∈ [−π,π)d.

In addition, we assume a coarse gridGH = {x = κH,κ ∈ Z
d}. The mesh-widthH depends on the type of

coarsening, e.g. standard coarsening givesHi = 2hi for all i = 1, . . . ,d. Based on the aliasing on this coarsened
grid, one can classify the Fourier modes into high and low frequency components onGh. This results in a space for
the Fourier modes, called the2h-harmonics, which are indistinguishable on the coarse gridGH .

It is well known that the two-grid cycle is invariant for thisspace of2h-harmonics for a wide range of smoothers,
and restriction and prolongation operators. This results in an error amplification matrixM of the two-grid cycle that
is similar to a block-diagonal matrix̃M with blocksM̃i of size2d. Convergence factors can then be easily computed
by iterating over all the blocks, or equivalently over all the low frequency Fourier modes:

ρ(M) = max
θlow

ρ(M̃(θ)) = max
i

ρ(M̃i) and ‖M‖ = max
θlow

√
ρ(M̃(θ)T M̃(θ)) = max

i

√
ρ(M̃T

i M̃i). (4)

Hereρ(M) denotes the asymptotic convergence factor ofM , or equivalently the spectral radius ofM .

LFA for tensor-product multigrid

The Fourier modes on the tensor-product gridGh are simply the tensor product of the Fourier modes onGh,
ϕ(θ,x) = ϕ(θ1,x1)ϕ(θ2,x2), where have used the partitionθ = θ1 ⊗ θ2 with θ ∈ [−π,π)2d andθ1,θ2 ∈ [−π,π)d.
Since the components of the tensor-product multigrid are tensor products of the corresponding components of a classic
multigrid, one can compute the Fourier symbols accordingly. So, for the Fourier symbol ofAh we get

Ahϕ(θ,x) =

{
∑

κ

sκϕ(θ1,x1 +κh)

}
ϕ(θ2,x2)+ϕ(θ1,x1)

{
∑

κ

sκϕ(θ2,x2 +κh)

}

=
(
Ãh(θ1)+ Ãh(θ2)

)
ϕ1(θ1,x1)ϕ2(θ2,x2) = Ãh(θ)ϕ(θ,x)

The other tensor-product multigrid operators, i.e., the smoother, prolongation and restriction, are analogous. We remark
that the Fourier symbols of a smoother on a colored grid, likeRB-GS, are slightly more tedious to compute. However,
there is a systematic way of deriving the symbols which can beimplemented in a symbolic software package like
Maple.

The space of2h-harmonics onGh is again the tensor product of that onGh. As a result, the error amplification matrix
M of the two-grid cycle is similar to a block-diagonal matrix̃M with blocks of size22d instead on2d. Convergence
factors are computed similarly to (4). Note however, that sinceθ ∈ [−π,π)2d the total work to compute these estimates
is squared compared to that of (4).
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FIGURE 1. Smoothing factorµ, convergence factorρ(M) and spectral norm‖M‖ of the two-grid cycle with respect to the
dampening factorω. Left 1 step pre-smoothing and no post smoothing, right 1 step pre- and post-smoothing.

Results

We present a typical result of LFA for a Lyapunov equation coming from an isotropic Poisson operator. For this
kind of operators, Red-Black Gauss-Seidel (RB-GS) turns out to be a very cost-effective smoother. It was pointed
out in [7] that for higher dimensional systems, RB-GS with anover-relaxation parameterω can greatly benefit the
smoothing factor, much more than for classic two- or three-dimensional systems. However, these results only consider
the smoothing factor and they lack a complete analysis of thetwo-grid cycle.

In Figure 1 we present the convergence factors in function ofthis parameterω for a 4-dimensional system resulting
from LFA with RB-GS, full weighting and bilinear interpolation. This 4-dimensional system was obtained as a
Lyapunov equation with a two-dimensional Poisson operator. It is clear that while the smoothing factor gives indeed
a good indication of the asymptotic convergence factorρ(M), this is not so for the norm-wise reduction‖M‖. The
reduction factor‖M‖ is considerably larger than the smoothing factorµ and they both have a different minimizer
for ω. Remark that for some choices ofω, we have that‖M‖ > 1, which means that the error can grow after one
iteration of multigrid. Since theasymptotic convergence factorρ(M) is smaller than one, this is normally not an issue
for classic multigrid. However, for low-rank multigrid, the truncation errors due to the low-rank approximation should
stay small. When‖M‖ > 1, the total truncation error can possibly blow up, which may hinder convergence.

ACKNOWLEDGMENTS

Bart Vandereycken is a Research Assistant of the Research Foundation–Flanders (FWO). Both authors have been
partially supported by the Research Council K.U. Leuven, CoE EF/05/006 Optimization in Engineering (OPTEC)
and present results of the Belgian Network DYSCO (DynamicalSystems, Control, and Optimization), funded by
the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific
responsibility rests with its authors.

REFERENCES

1. P. Benner,Control Theory, Handbook of Linear Algebra, Chapman & Hall/CRC, 2006.
2. A. C. Antoulas,Approximation of Large-Scale Dynamical Systems, Adv. Des. Control, SIAM, Philadelphia, 2005.
3. T. Penzl, A Multi-Grid Method for Generalized Lyapunov Equations, Tech. Rep. SFB393/97-24, Technische Universität

Chemnitz (1997).
4. U. Trottenberg, C. Oosterlee, and A. Schüller,Multigrid, Academic Press, 2001.
5. L. Grasedyck, and W. Hackbusch,SIAM J. Numer. Anal. 29, 870–894 (2006).
6. R. Wienands, and W. Joppich,Practical Fourier Analysis for Multigrid Methods, CRC-Press, 2004.
7. I. Yavneh,SIAM J. Numer. Anal. 32, 1126–1138 (1995).


