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Abstract. We present a new formulation of multigrid, the so-called tensor-progiudtigrid method, which can be used to
solve Lyapunov equations. These matrix equations are of considenafdetance in control theory and model reduction.
Since they are formulated on a tensor product space, they are dblgossy large dimension and one needs an efficient
solver like multigrid with optimal chosen components. We show that this catobe by computing the convergence factors
with Local Fourier Analysis adapted for this tensor-product multigrid meth
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LARGE-SCALE LYAPUNOV EQUATIONS

Consider the following linear time-invariant system

dx
cTth = Apzn(t)+ Brun, x,(0) =zj, (1)
with system matrix4;, € R™*™, input matrix B;, € R"*P, state vector; € R™ and input vecton; € RP. In this
paper, matrix4;, will be a finite difference approximation of a system of partlifferential equations (PDE) on a grid
G1,. The mesh-size of this discretization is emphasized byubsipty,.

The controllability Gramian of system (1) can be found asmiarix X;, € R"*" in

AhXh—l—XhAT:Ch, with Ch:BhB}j;. (2)

Matrix equation (2) is called a Lyapunov equation and is ebgimportance in control theory [1] and model reduction
[2]. Let vec(-) be the operator that makes a vector from a matrix by colunsestacking. By means of a tensor
product®, we can write (2) as the linear system

Ap vec(Xh) = vec(C’h), with A, = A, @I + 1, Q Ap, 3)

where we denote the-by-n identity matrix byI},.

The subject of this paper is solving this Lyapunov equationlérge-scale systems by multigrid. Large-scale
Lyapunov equations arise naturally when system (1) is nbthby a semi-discretization of a PDE. Matu, is
then sparse but very large;> 10° is not uncommon. A major challenge when solving (2) for sudhrge-scale
problem is that the2-by-n? matrix X, is almost always dense.

The dimension of a Lyapunov equationii$ which can become very large even for a moderate mesh-widiils. T
shows the need for an efficient iterative method like mulligp solve (2). In fact, for many PDEs, multigrid is known
to be an optimal solver: the amount of work and memory scatesitly with the number of unknowns. In case of a
Lyapunov equation, we will show that the multigrid algonitttan be formulated as an iterative method that operates
on a tensor-product space. In this manner we obtain a seedatisor-product multigrid method.

We can show that the typical multigrid optimality and effiudg caries over for this tensor-product multigrid
method. In [3], this has been proved qualitatively for a #petstance of tensor-product multigrid that solves the
two-dimensional heat equation on a square. By means of [kamaier Analysis, we can show the optimality for more
general formulations of the multigrid algorithm and for adei class of elliptic PDEs. Furthermore, we are able to
compute tight estimates of the convergence factor, botmawise and asymptotically.



TENSOR-PRODUCT MULTIGRID

We will first explain how a tensor-product multigrid methdtht solves (2) can be built from standard multigrid
components. Let us state the following standard two-grédecfor solving Ay z;, = by, see also [4, Ch. 2.2.3].

LL‘}L «— snoot hyl({E%,Ah,bh):Syll‘?L-i-Tbh
dH — I}?(bthhxll,L)

eg < CgC(AH,dH) :Al_ildH

7 — zl+Iten

1’2 «— snoot hVQ(lC}Ql,Ah,bh):Su2l'i+Tbh

The algorithm uses a fine gri@, and a coarse grid’y with H = 2h and is based omw; pre-smoothing steps,
restriction of the defect by, interpolation by’ of the coarse grid correctiafy; andv, post-smoothing steps. In
multi-grid thecgc function is a recursive call to a two-grid cycle on the coagg@ G . The errore® = z;, — 23 after
one total step of the two-grid cycle obeys’|| < || M||||e?|| whereM is the error-amplification matrix of the algorithm
ande® = zj, — x?L.

In order to use this two-grid cycle for the Lyapunov equat{8) we need to elaborate the previous multigrid
components. Based on the observation that a lot of thesearengs are already based on tensor products of lower
dimensional variants, e.g., bilinear interpolation, we specify the previous operations as acting on the tensmtygt
spaceR™ x R™. In the following, we will denote grids and operators thatobg to this tensor-product space by a
calligraphic symbol, e.gGs,.

Hierarchy of grids. Multigrid is a cycling between a hierarchy of grids. For tkador-product multigrid method
we will simply take tensor products of the hierarchy of grfisn the original multigrid solver, i.&;, = G, @ G, for
all meshed. It will be convenient to partition a point € G;, on the grid as = =1 ® zo With 21,25 € Gj,.

Once the grids are defined, we need a discrete represenétivmPDE on these grids. It can be shown that in case
of a finite difference scheme, one obtaidg = A, ® I}, + I, ® A, like eq. (3). Besides the fine grid operatdy,
we also need a coarse grid operathy. We will only consider direct coarsened operatdis and the corresponding
tensor-product operatoty = Ay @ Iy + 15 ® Ay . A Galerkin operator has the disadvantage that the steraiisme
larger and it has to be computed recursively, both of whicl become problematic in higher dimensions.

Intergrid transfers. Prolongation and restriction for the tensor grid are easilgstructed as tensor products of
the operators ol Indeed, supposg!’ : G;, — G thenI! @ I} defines a suitable restrictich’ : G, ® Gj, —

Gy ® Gg. Prolongation is analogous. From a practical point of vidngse operators can be applied directly to the
matrix, e.g. for the restriction we get

T up = vec(Up) — (R® R) vec(Up) = vec(RU, RT).

This means we apply the restriction on each column and eacbfrthe matrixUy,.

Smoothing. Smoothers in multigrid are often based on a splittihg= A;” — A, to obtain the relaxatiod; =} ! =
A; i +b, possibly combined with partial relaxations on a coloreid.gFhis splitting can be directly carried over on
G, which givesA;f = A} ® I}, + I, ® A} From this, we get a smoother gy with error amplification matrixs.

LOW-RANK TENSOR-PRODUCT MULTIGRID

For Lyapunov equations, the? unknowns may be too large to store in computer memory. Thezebne usually
approximates the solution matrk;, itself. A popular choice is approximating;, by a low-rank matrix of rank < n,
which only requiresD(n) parameters. In [5], Grasedyck and Hackbusch developed tgnililsolver that solves for
this low-rank matrix directly without ever forming the wieadolution matrixX;, explicitly. This way, one can combine
multigrid as an optimal solver for PDEs and benefit from tratused dimension of the low-rank approximation. The
low-rank multigrid solver uses a Jacobi smoother, and stahprolongation and restriction operators.

Now, this low-rank multigrid algorithm can be seen as a pbdtion of the tensor-product multigrid method.
After one step of low-rank multigrid, one can show that theeobeys||e3|| < ||M |||’ + € with € < || S1 (I}, —
IRALTEA) lest + IS IHAG T (|ea + ISV TY |lecs + [|S¥t ||€ce + €s2- Thesee, are (small) errors due to the
low-rank approximations and can be controlled by choodegrank adaptively in the algorithm. In addition, tight
estimates of the norms of the operators in front of thesean be computed by the analysis of the next section. So, by
keeping the total perturbatiansmall, we are able to recover the efficiency of an unperturbeltigrid algorithm.



LOCAL FOURIER ANALYSIS

The convergence of a multigrid method can be proved in sewargs. One way is by means of Local Fourier Analysis
(LFA) [4, Ch. 4], which assumes that the PDE has constanficaafts and is defined on an infinite domain. We show
how LFA can be used to analyze the tensor-product multigethad.

Classic LFA

Let us introduce the standard LFA notation [4, 6] adapted gergeraki-dimensional setting. We associate a fixed
mesh widthh = (hy, ..., hy) With an infinite gridG, = {z = (z1,...,74) = kh = (Kk1h1,...,kqhq),k € Z?}. On this
grid the discrete operatot;, corresponds to a difference stereil],, i.e.

Apwp(x) = Z sk (x4 Kh).

K

The formal eigenfunctions or Fourier modes of this operatergiven byp(,z) = ¢'?*" = ¢if121/h1 ... gif17a/ha for
x € G}, with formal eigenvalue or symbol
Ap(9) = Zs,{e'e“.

The frequency € R varies continuously in the analysis withe [, 7).

In addition, we assume a coarse gty = {z = kH,x € Z%}. The mesh-widthH/ depends on the type of
coarsening, e.g. standard coarsening gikfes= 2h; for all i = 1,...,d. Based on the aliasing on this coarsened
grid, one can classify the Fourier modes into high and lowudency components afd,. This results in a space for
the Fourier modes, called ti2é-harmonics, which are indistinguishable on the coarse@rid

It is well known that the two-grid cycle is invariant for thépace oRh-harmonics for a wide range of smoothers,
and restriction and prolongation operators. This resualtn error amplification matri®/ of the two-grid cycle that
is similar to a block-diagonal matrix/ with blocksM; of size2?. Convergence factors can then be easily computed
by iterating over all the blocks, or equivalently over ak flow frequency Fourier modes:

p(M) =max p(M (0)) = maxp(M;) - and || M || = max/ p(M(6)TM(0)) = max/ p(MI M) (4)

Herep(M) denotes the asymptotic convergence factabfor equivalently the spectral radius bf.

L FA for tensor-product multigrid

The Fourier modes on the tensor-product gfigl are simply the tensor product of the Fourier modesn
©0(0,z) = ¢(01,71)p(02,72), where have used the partitioh= 6, ® 0, with 6 € [-7,7)>? and 6,0, € [—7,m)<.
Since the components of the tensor-product multigrid areaeproducts of the corresponding components of a classic
multigrid, one can compute the Fourier symbols accordirgty for the Fourier symbol ofl;, we get

Anp(0,7) = {Z%@thl + K«h)} p(02,72) + (01, 21) {ZSMP(@%W + “h)}

= (A0 + A4(02)) 1 (01,21)2(02,72) = A (0)p(0,)

The other tensor-product multigrid operators, i.e., theatimer, prolongation and restriction, are analogous. \Weark
that the Fourier symbols of a smoother on a colored grid,RBeGS, are slightly more tedious to compute. However,
there is a systematic way of deriving the symbols which cainfpgemented in a symbolic software package like
Maple.

The space ath-harmonics o1}, is again the tensor product of that 6 . As a result, the error amplification matrix
M of the two-grid cycle is similar to a block-diagonal matriX with blocks of size22¢ instead ore. Convergence
factors are computed similarly to (4). Note however, thateb € [—7, )¢ the total work to compute these estimates
is squared compared to that of (4).
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FIGURE 1. Smoothing factom, convergence factgs(M) and spectral nornf M || of the two-grid cycle with respect to the
dampening factow. Left 1 step pre-smoothing and no post smoothing, right 1 step pcepast-smoothing.

Results

We present a typical result of LFA for a Lyapunov equation gagrfrom an isotropic Poisson operator. For this
kind of operators, Red-Black Gauss-Seidel (RB-GS) turrtstmibe a very cost-effective smoother. It was pointed
out in [7] that for higher dimensional systems, RB-GS withawer-relaxation parameter can greatly benefit the
smoothing factor, much more than for classic two- or thrieeethsional systems. However, these results only consider
the smoothing factor and they lack a complete analysis dfitbegrid cycle.

In Figure 1 we present the convergence factors in functighisfparametew for a 4-dimensional system resulting
from LFA with RB-GS, full weighting and bilinear interpolah. This 4-dimensional system was obtained as a
Lyapunov equation with a two-dimensional Poisson oper#t@ clear that while the smoothing factor gives indeed
a good indication of the asymptotic convergence fap{d ), this is not so for the norm-wise reductidid/||. The
reduction factor| M|| is considerably larger than the smoothing fagtoand they both have a different minimizer
for w. Remark that for some choices ©f we have that|1/| > 1, which means that the error can grow after one
iteration of multigrid. Since thasymptotic convergence factqs( M) is smaller than one, this is normally not an issue
for classic multigrid. However, for low-rank multigrid,éttruncation errors due to the low-rank approximation sthoul
stay small. Wher| M || > 1, the total truncation error can possibly blow up, which mayder convergence.
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