
J Comput Virol Hack Tech (2016) 12:235–242
DOI 10.1007/s11416-015-0260-0

ORIGINAL PAPER

On normalized compression distance and large malware
Towards a useful definition of normalized compression distance for the classification
of large files

Rebecca Schuller Borbely1

Received: 3 September 2015 / Accepted: 8 December 2015 / Published online: 30 December 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Normalized Compression Distance (NCD) is a
popular tool that uses compression algorithms to cluster
and classify data in a wide range of applications. Existing
discussions of NCD’s theoretical merit rely on certain the-
oretical properties of compression algorithms. However, we
demonstrate that many popular compression algorithms do
not seem to satisfy these theoretical properties. We explore
the relationship between some of these properties and file
size, demonstrate that this theoretical problem is actually
a practical problem for classifying malware with large file
sizes, and propose some variants of NCD that mitigate this
problem.

1 Introduction

In the era of big data, techniques that allow for data under-
standing without domain expertise enable more rapid knowl-
edge discovery in the sciences and beyond. One technique
that holds such promise is the Normalized Compression Dis-
tance (NCD) [14], which is a similaritymeasure that operates
on generic file objects, without regard to their format, struc-
ture, or semantics.

NCDapproximates theNormalized InformationDistance,
which is universal for a broad class of similarity measures.
Specifically, the NCD measures the distance between two
files via the extent to which one can be compressed given
the other, and can be calculated using standard compression
algorithms.

B Rebecca Schuller Borbely
rborbely@cyberpointllc.com

1 CyberPoint International, 621 E. Pratt St., Suite 300,
Baltimore, MD 21202, USA

NCD, and its open source implementation CompLearn [5]
have been widely applied for clustering, genealogy, and clas-
sification in a wide range of application areas. Its creators
originally demonstrated its application in genomics, virol-
ogy, languages, literature, music, character recognition, and
astronomy [7]. Subsequent work has applied it to plagiarism
detection [4], image distinguishability [19], machine trans-
lation evaluation [20], database entity identification [18],
detection of internet worms [22], malware phylogeny [21],
and malware classification [1] to name a few.

Assuming some simple properties of the compression
algorithm used, the NCDhas been shown to be, in fact, a sim-
ilarity metric [7]. However, it remains to be seen whether real
word compression algorithms actually satisfy these proper-
ties, particularly in the domain of large files. As data storage
has become more affordable, large files have become more
common, and the ability to analyze them efficiently has
become imperative. Music recommendation systems work
with MP3s which are typically several megabytes in size,
medical images may be up to 30 MB or more [9], and com-
puter programs are often more than 100 MB in size.

This paper explores the relationship between file size and
the behavior of NCD, and proposes modifications to NCD
to improve its performance on large files; these improve-
ments are demonstrated on two malware classification
problems.

Section 2 provides an introduction to NCD and the com-
pression algorithm axioms that have been used for proving
it to be a similarity metric. Section 3 explores the extent
to which several popular (and not-so-popular) compression
algorithms satisfy these axioms and investigates the impact
of file size on its effectiveness for malware classification.
Finally, Sect. 4 proposes two possible adaptations of the
NCDdefinition, for the purpose of improving its performance
on large files, and demonstrates significant performance

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192192514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-015-0260-0&domain=pdf

236 R. S. Borbely

improvement with several compressors on twomalware clas-
sification problems.

2 NCD Background

The motivating idea behind the Normalized Compression
Distance (NCD) is that the similarity of two objects can be
measured by the ease with which one can be transformed into
the other. This notion is captured formally by the informa-
tion distance, E(X,Y), between two strings, X , Y, which is
the length of the shortest program that can compute Y from
X or X from Y in some fixed programming language. The
information distance generalizes the notion of Kolmogorov
complexity, where K (X) is the length of the shortest pro-
gram that computes X , and intuitively captures a very general
notion of what it means for two objects to be similar.

However, for the purposes of computing similarity, it is
important that distances be relative. Two long strings that
differ in a single character should be considered more sim-
ilar than two short strings that differ in a single character.
This leads to the definition of the Normalized Information
Distance (NID),

NID(X,Y) ≡ E(X,Y)

max(K (X), K (Y))

The NID has several nice features: it satisfies the con-
ditions of a metric up to a finite additive constant, and
it is universal, in the sense that it minorizes every upper
semi-computable similarity distance [7]. However, it is also
incomputable, which is a serious obstacle.

Given a compression algorithm, C , E(X,Y) can, in some
sense, be approximated byC(XY), the result of compressing
with C the file consisting of X concatenated with Y , and
NID(X,Y) can, in turn, be approximated by

NCD(X,Y) ≡ |C(XY)| − min(|C(X)|, |C(Y)|)
max(|C(X)|, |C(Y)|)

However, in order to prove that NCD is a similarity metric,
[7] placed several restrictions on the compression algorithm.
A compression algorithm satisfying the conditions below is
said to be a normal compressor.

Normal Compression A normal compressor, C , as defined
in definition 3.1 in [7], is one that satisfies the following, up
to an additive O(log n) term, where n is the largest length of
an element involved in the (in)equality concerned:

– Idempotence: |C(XX)| = |C(X)| and |C(λ)| = 0,
where λ is the empty string.

– Monotonicity: |C(XY)| ≥ |C(X)|.
– Symmetry: |C(XY)| = |C(Y X)|.

– Distributivity:
|C(XY)| + |C(Z)| ≤ |C(X Z)| + |C(Y Z)|.

where C(X) denotes the string X ′ resulting from the appli-
cation of compressorC to string X, XY denotes the concate-
nation of X and Y, and |X | denotes the length of string (or
file) X .

While using these properties to prove that NCD is a sim-
ilarity metric is well beyond the scope of this paper, it may
be worthwhile to shed some intuition on the role they play.
Symmetry and distributivity correspond closely the proper-
ties that comprise the definition of ametric.Most simple is the
property of symmetry: it makes little sense to talk about the
distance between twoobjects if that distance changes depend-
ing which object one starts with. Somewhat less intuitively,
the distributivity property is related to the triangle inequal-
ity, which essentially says that the shortest distance between
two objects is a straight line. The monotonicity property pro-
vides for consistent behavior of compression, assuring that if
you add more data, the compressed size doesn’t decrease.
Finally, the idempotence property says simply that if an
object comprises a simple duplication of a smaller object,
the compression algorithm should be able to take advantage
of that, and come close to compressing it to the size to which
it can compress the smaller object. (E.g., if a file contains the
string “abcdefg.abcdefg.”, one should be able to compress
it in the spirit of “2*abcdefg.”.) While this seems intuitive
enough, we will see that idempotence is not so simple to
achieve in practice.

The question remains whether existing compression algo-
rithms satisfy these axioms, particularly in the domain of
large files. While NCD has apparently been quite successful
in practice, the majority of applications (see Sect. 1) have
been on relatively small files. Notably, music applications
[6,7], used MIDI files rather than the more common, and
much larger, MP3 format.

Previous work [3] explored the NCD distance from a file
to itself (which is closely related to the idempotence axiom)
for bzip, zlib, and PPMZ on the Calgary Corpus [23], com-
prising 14 files, the largest of which is under 1 MB. The
following section explores these axioms on a larger andmore
representative dataset and investigates the practical impact of
deviations from normality.

3 Application of NCD to large files

3.1 Normality of compression algorithms

The definition of a normal compressor deals with asymp-
totic behavior, allowing for an O(log(n)) discrepancy in
the axioms of idempotence, monotonicity, symmetry, and
distributivity. Thus, in theory, experimental validation (or

123

On normalized compression distance and large malware 237

Fig. 1 Idempotence on compression corpora: |C(XX)| − |C(X)| as
compared to log(|XX |) versus |XX |

refutation) of these axioms is not truly feasible – perhaps
the behavior changes when the file size is beyond that of the
largest file in our experiment. Nonetheless, we endeavor to
experimentally explore these axioms more extensively than
has been done in prior work.

Data We combined the traditional Calgary Corpus with the
Large andStandardCanterburyCorpora, aswell as theSilesia
Corpus1. The latter contains files of size ranging from 6 MB
to 51 MB, greatly expanding the size distribution over the
corpus explored in [3].

Idempotence Figures 1 and 2, show the difference in the
sizes of C(X) and C(XX), and log(|XX |), for a represen-
tative subset of files X in the dataset, with C ranging over
compression algorithms bzip2 [17], lzma [16], PPMZ [2],
and zlib [10]. Indeed, bz2 and zlib quite apparently fail the
idempotence axiom,with |C(XX)| growingmuch faster than
|C(X)|, with a term of O(log(|XX |)) unable to put a dent
in the difference. While PPMZ and lzma appear significantly
better for smaller file sizes, still, this value growsmuch faster
than log(|XX |), as apparent in Fig. 2. We see that lzma
makes a large jump around 8 MB (but even before that, its
growth is much larger than the log function).

Symmetry Figure 3 shows the magnitude of difference
between |C(XY)| and |C(Y X)|. While in most cases, at this
scale, this was bounded by log(|XY |) (and in all cases by

1 These are standard corpora for the evaluation of compression
algorithms and are available at http://www.data-compression.info/
Corpora/.

Fig. 2 Idempotence on compression corpora: Enlargement of a portion
of the graph in Fig. 1 to more clearly show the behavior for smaller files

Fig. 3 Symmetry: the difference between |C(XY)| and |C(Y X)|, as
compared to log(|XY |)

a small constant factor thereof), the asymptotic behavior is
unclear, as values for all four compressors spike wildly. This
is likely due to the fact that the extent of the symmetry is
dependent on the compressibility, similarity, and/or size dis-
parity of the two files involved. zlib and lzma look quite
promising for symmetry, while the asymptotic behavior of
PPMZ and bz2 is not discernible.

Distributivity Thedifference between |C(XY)|+|C(Z)| and
|C(X Z)| + |C(Y Z)| is shown in Figs. 4 and 5. As required
by the distributivity property, these values are consistently

123

http://www.data-compression.info/Corpora/
http://www.data-compression.info/Corpora/

238 R. S. Borbely

Fig. 4 Distributivity: the difference between |C(XY)| + |C(Z)| and
|C(X Z)| + |C(Y Z)|. If distributivity holds, this value should be non-
negative (or at least within O(log(n) of non-negative

Fig. 5 Distributivity: close-up of the x axis for the difference between
|C(XY)| + |C(Z)| and |C(X Z)| + |C(Y Z)|

non-negative for lzma and zlib. While bz2 and PPMZ go
significantly negative in one or two cases, their asymptotic
behavior is unclear.

Monotonicity As shown in Fig. 6, all four compressors
solidly satisfy the monotonicity property, with |C(XY)| −
|C(X)| > 0 in all cases.

Our experiments have shown serious violation of the idem-
potence axiom that has been used to prove theoretical
properties of NCD, leaving a potential gap between theory
and practice. The next section explores the extent to which
NCD can be useful in spite of this gap.

Fig. 6 Monotonicity: |C(XY)| − |C(X)| ≥ 0

3.2 Classification using NCD with abnormal
compressors

We have demonstrated that none of the compression algo-
rithms we explored satisfy the requirements for normal
compression. The question remains whether this contraindi-
cates their use with NCD. As mentioned above, much
previous work has demonstrated NCD’s utility with some of
these compression algorithms in applications with small file
sizes. However, the compressors’ deviation from normality
grows with file size. Do they remain useful with larger files?

To address this question,we explored the accuracyofNCD
in identifying the malware family of APK files from the
Android Malware Genome Project dataset [24,25]. In par-
ticular, we took a subset of 500 samples from the Geinimi,
DroidKungFu3, DroidKungFu4, and GoldDream families.2

We used the complete raw APK files, without modification,
as our samples. Geinimi samples in this dataset have size up
to 14.1 MB, DroidKungFu3 up to 15.4 MB, DroidKungFu4
up to 11.2 MB, and GoldDream up to 6.4 MB.

We evaluated NCD with the same four compression algo-
rithms as above, using a nearest neighbor classifier [8] with a
single (randomly selected) instance of each malware family
in the reference set.3 Note that we intentionally restricted the
reference set to make the classification problem difficult, in
order to explore the limitations of the compression algorithms
when used with NCD. Results are shown in Fig. 7. In spite
of clearly violating the idempotence property, both lzma and

2 We selected these families due to their containing enough samples
to allow for a meaningful test, and containing large enough files to
challenge the compressors.
3 For readers unfamiliar with nearest neighbor classification, specifi-
cally we classified a “test” sample by looking at the distance between
it and each of the “reference” samples, and selecting the family of the
nearest (i.e. most similar) reference sample.

123

On normalized compression distance and large malware 239

Fig. 7 Accuracy ofNCD in identifyingAndroidmalware family, using
a 1-NN classifier

Fig. 8 Effect of file size on accuracy of NCD in identifying Android
malware family, using a 1-NN classifier

PPMZ performed significantly better than random guessing.
In line with their relative normality, lzma performed best at,
59.7%withPPMZupnext at 44.4%.Althoughbz2 is slightly
closer to satisfying the idempotence property than zlib, zlib
actually outperformed bz2, albeit not by much, with accura-
cies of 33.3 and 29.8%, respectively, with neither performing
much better than random guessing.

To demonstrate the relevance of file size, we performed
the same test with one slight change, this time using only
reference samples smaller than 200 KB. We saw drastic
improvement with bz2 (now 75.4 %), lzma (82.5 %), and
PPMZ (66.7 %), while zlib’s performance actually got worse
(29.2 %).

Finally, looking only at files smaller than 200 KB yielded
improved performance by bz2 (89.7 %), zlib (37.9 %), and
PPMZ (75.9 %), but lzma actually performed slightly worse
(75.9%). The latter suggests that file size is not the only factor
that can inhibit the performance of a compression algorithm
with NCD. Notably, bz2 outperformed lzma on these files.
These results are shown in Fig. 8.

4 Adapting NCD to handle large files

We saw in Sect. 3.2 that NCD has widely varying per-
formance on large files, depending on the compression

algorithm used. The memory limitations of the algorithm are
key here. The major hurdle is to effectively use information
from string X for the compression of string Y in computing
C(XY). Algorithms like bz2 and zlib have an explicit block
size as a limiting factor; if |X | > block_size, then there is
no hope of benefiting from any similarity between X and Y .
In contrast, lzma doesn’t have a block size limitation, but
instead has a finite dictionary size; as it processes its input,
the dictionary grows. Once the dictionary is full, it is erased
and the algorithm starts with an empty dictionary at what-
ever point it has reached in its input. Again, if this occurs
before reaching the start of Y , hope of detecting any similar-
ity between X and Y is lost. Likewise, even if X is small, but
Y is large, with the portion of Y that is similar to X appearing
well into Y , the similarity can’t be detected.

Thus, it seems logical that we could improve the effec-
tiveness of NCD by bringing similar parts of X and Y in
closer proximity of one another; rather than computing NCD
usingC(XY),wepropose usingC(J (X,Y))where J is some
method of combining strings X and Y. So, we define

NCDC,J = |C(J (X,Y))| − min(|C(X)|, |C(Y)|)
max(|C(X)|, |C(Y)|) .

In the original definition of NCD, J is simply concatenation.
In an ideal world, J would locate similar chunks of X and Y
and place them adjacently. However, if J is too destructive of
the original strings, much of the original compression of X
and Y individually will be lost, resulting in a higher overall
value forNCDC,J (X,Y). Thus,wewant these similar chunks
to be as large as possible so as to still allow both chunks to
fit within the block size, or to allow processing of them both
within the same dictionary. There are some simple ways to
achieve this.

One approach would be to apply a string alignment algo-
rithm to X and Y , and combine the two strings so that aligned
segments are located in sufficient proximity. However, while
Hirschberg’s algorithm [13] allows for such alignment to be
performed in linear space, thus eliminating memory issues,
it takes time proportional to the product of the file sizes
and is thus quite slow with large files. Further, this is lim-
ited to finding a very specific type of similarity, which is
order-dependent.However,we propose two other approaches
inspired by this notion.
Interleaving The simplest approach is to assume that similar
parts of x and y are similarly located, and just weave them
together in chunks of size b. Say X = x1x2, . . . , xn and
Y = y1y2, . . . , ym , where |xi | = |y j | = b for 1 ≤ i ≤ n − 1
and 1 ≤ j ≤ m − 1, 0 ≤ |xn| < b, and 0 ≤ |ym | < b. Then
define

Jb(x, y) =
{
x1y1x2y2 . . . xn yn yn+1...ym if n < m

x1y1x2y2 . . . xm ymxm+1...xn otherwise

123

240 R. S. Borbely

NCD-shuffle Another approach is to split both strings into
chunks of the desired size (selected to be appropriate for the
compression algorithm) and apply the traditional NCD to
determine the similarity of each chunk of X to each chunk of
Y , and align them accordingly, with the most similar chunks
from the two strings adjacent.

4.1 NCD adaptation results in malware classification

Using the original classification problem from Sect. 3.2, we
applied the interleaving (IL) and NCD-shuffle (NS) file com-
bination techniques with various block sizes with each of the
compression algorithms. As shown in Table 1 and Fig. 9, in
all cases, one or both techniques yielded a better performance
than the traditional NCD. Figure 9 also includes the accuracy
when 5 representatives from each family are used for com-
parison (with the exclusion of PPMZ, which was too slow

Table 1 Comparison of performance of different combining functions
with NCD in a 1-NN classifier for Android malware family identifica-
tion, with varying block sizes (block sizes in thousands of KB)

Concat IL 1 IL 10 IL 100 IL 1000

bz2 0.298 0.464 0.462 0.456 0.308

zlib 0.333 0.19 0.194 0.131 0.317

lzma 0.597 0.637 0.643 0.635 0.603

PPMZ 0.444 0.357 0.484 0.438 0.442

Concat NS 10 NS 100 NS 1000

bz2 0.298 0.522 0.423 0.325

zlib 0.333 0.433 0.200 0.325

lzma 0.597 0.641 0.643 0.627

PPMZ 0.444 0.371 0.438 0.435

Bold values indicate the most accurate of the combining functions com-
pared (for each compression algorithm.)

Table 2 Comparison of performance of different combining functions
with NCD in a 1-NN classifier for Windows malware family identifica-
tion, with varying block sizes (block sizes in thousands of KB)

Concat IL 10 IL 100 IL 1000 IL 2000

bz2 0.922 0.895 0.895 0.553 0.431

zlib 0.505 0.835 0.519 0.565 0.485

lzma 0.907 0.877 0.871 0.905 0.909

PPMZ 0.891 0.893 0.893 0.891 0.883

Concat NS 10 NS 100 NS 1000

bz2 0.922 0.887 0.889 0.887

zlib 0.505 0.839 0.704 0.565

lzma 0.907 0.843 0.911 0.907

PPMZ 0.891 – 0.895 0.891

Bold values indicate the most accurate of the combining functions com-
pared (for each compression algorithm.)

Fig. 9 Traditional NCD compared to the best of the alternative com-
biners we explored for Android malware family identification

Fig. 10 Traditional NCD compared to the best of the alternative com-
biners we explored for Windows malware family identification. (Note
that the y axis has been truncated to allow small differences to be visi-
ble.) While hard to see, slight improvement was shown with lzma and
PPMZ. Because these malware files are small, only zlib showed signif-
icant improvement

for this experiment). Most notably, these techniques boosted
bz2 from 29.8 % accuracy to 52.2 % accuracy with a sin-
gle training sample, and from 55.2 to 75.2 % with 5 training
samples, and boosted zlib from 30 to 74.8 % with 5 training
samples.

We repeated this experiment with 500 samples from
the Lollipop, Kelihos_ver3, and Gatak Windows malware
families, from Microsoft’s kaggle BIG 2015 Malware Clas-
sification Challenge dataset4 [15]. These samples consisted
of Windows binaries with their headers removed. (We did
not use the disassembly files that were also included in the
data set.) Note that these files, all under 4 MB, are not as
large as the Android malware files. As shown in Fig. 10 and
Table 2, our techniques boosted zlib from 50.5 % accuracy
to 83.9 %, PPMZ from 89.1 to 89.5 %, and lzma from 90.7
to 90.9 %, but offered no improvement with bz2. (Note that
the y-axis in Fig. 10 has been truncated in an attempt to
allow small differences to be visible.) With the smaller size

4 Although use of kaggle datasets is normally restricted to the corre-
sponding competition,Microsoft has granted permission for this dataset
to be used for academic work.

123

On normalized compression distance and large malware 241

Fig. 11 Traditional NCD compared to the best of the alternative com-
biners we explored for music artist/composer identification

of these files, and with all but zlib doing reasonably well
with the standard NCD to begin with, it is not surprising that
these improvements are less dramatic than the results with
the larger Android malware files.

Note that we also performed smaller experiments (shown
in theAppendix) with these techniques onmusic andmedical
image files, and also saw improvements there, so we expect
these techniques to offer improvement not just in malware
classification, but in all domains where large files are preva-
lent.

5 Conclusion and future directions

We have demonstrated that several compression algorithms,
lzma, bz2, zlib, and PPMZ, apparently fail to satisfy the
properties of a normal compressor, and explored the implica-
tions of this on their capabilities for classifyingmalware with
NCD.More generally, we have shown that file size is a factor
that hampers the performance of NCD with these compres-
sion algorithms. Specifically, we found that lzma performs
best on this classification task when files are large (at least in
the range we explored), but that bz2 performs best when files
are sufficiently small. We have also found zlib to generally
not be useful for this task. PPMZ, in spite of being the top
performer in terms of idempotence, did not come close to
the most accurate compressor in any case. Finally, we intro-
duced two simple file combination techniques that improve
the performance of NCD on large files with each of these
compression algorithms.

However, the challenges of choosing the optimal com-
pression algorithm and the optimal combination technique
(and parameters therefor) remain. For supervised classifica-
tion applications, it is easy enough to use a test set to aid in the
selection of the technique and block size parameter for the
relevant domain. However, for clustering or genealogy tasks,
the burden remains to study several resulting clusterings or
hierarchies to determine which is most appropriate.

It remains for future work to better understand what prop-
erties of a data set make it more or less amenable to the
different compression algorithms and different combination
techniques and parameters.

Nonetheless, these techniques offer enhanced NCD per-
formance in malware classification (as well as other tasks)
with large files, and suggest that further research in this direc-
tion is worth pursuing.

Acknowledgments The author thanks her colleagues at CyberPoint
Labs, Mark Raugas, Mike West, Charlie Cabot, James Ulrich, David
Ritch, Elizabeth Hughes, and Ian Blumenfeld, for their enthusiastic
support and helpful input at various stages of this work.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: NCD adaptations on music and medical
image data

To demonstrate the generality of our approach, we include
some NCD improvement results on non-malware files.

We first performed a small experiment, analogous to the
ones in Sect. 4.1, in identifying the artist/composer of music
MP3 files. We took a set of 20 MP3 files, with sizes ranging
from 2 to 10 MB, with the goal of identifying the content
as Bach, Handel, Telemann, or the Yes Tones. As before,
we randomly selected one reference sample from each artist.
Again, we saw significant improvement with our approach.
As shown in Fig. 11, zlib improved from 43.8 to 75 % accu-
racy, bz2 from 68.8 to 75 %, lzma from 56.3 to 68.8 %.
(PPMZ showed no improvement.) Interleaving and NCD-
shuffle performed comparably on these files.

Fig. 12 Traditional NCD compared to the best of the alternative com-
biners we explored for cancer detection

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

242 R. S. Borbely

We then performed a slightly larger experiment with med-
ical image files. We repeated the previous experiment, this
time with 68 mammography LJPEG images from DDSM
[11,12], with sizes ranging from 6 to 67MB. The goal was to
determine which images were cancerous, and we attempted
this using a single reference cancerous image and a single
benign one. Results are shown in Fig. 12. There were dra-
matic improvements with zlib and bz2: zlib improved from
31.3 % accuracy to 54.7 % accuracy in identifying cancer-
ous images, and bz2 improved from 26.6 to 62.5 % accuracy.
However, lzma, which achieved a solid 82.5 % with the tra-
ditional NCD definition, saw no improvement. (We do not
have results for PPMZ, as it was excessively slow on these
files.) Interleaving with a block size of 100 KB was the best
approach we tried for bz2, while NCD-shuffle with a block
size of 10MB was the best for zlib.

While these experiments were small-scale, they provide
strong evidence that our NCD adaptations are beneficial in a
wide range of classification problems with large file sizes.

References

1. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F.,
Nazario, J.: Automated classification and analysis of internet mal-
ware. In: Recent advances in intrusion detection, pp. 178–197.
Springer (2007)

2. Bloom, C.: PPMZ: High compression markov predictive coder.
http://www.cbloom.com/src/ppmz.html. Accessed: 2015–04-14

3. Cebrian, M., Alfonseca, M., Ortega, A., et al.: Common pitfalls
using the normalized compression distance: what to watch out for
in a compressor. Commun. Inf. Syst. 5(4), 367–384 (2005)

4. Chen, X., Francia, B., Li, M., Mckinnon, B., Seker, A.: Shared
information and program plagiarism detection. IEEE Trans. Inf.
Theory 50(7), 1545–1551 (2004)

5. Cilibrasi, R., Cruz, A.L., de Rooij, S., Keijzer, M.: Complearn.
http://www.complearn.org. Accessed: 2015–04-15

6. Cilibrasi, R., Vitanyi, P., De Wolf, R.: Algorithmic clustering of
music. In: Web Delivering of Music, 2004. WEDELMUSIC 2004.
Proceedings of the Fourth International Conference on, pp. 110–
117. IEEE (2004)

7. Cilibrasi, R., Vitányi, P.M.: Clustering by compression. IEEE
Trans. Inf. Theory 51(4), 1523–1545 (2005)

8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE
Trans. Inf. Theory 13(1), 21–27 (1967)

9. Dandu, R.V.: Storage media for computers in radiology. Indian J.
Radiol. Imaging 18(4), 287 (2008)

10. Gailly, J.L., Adler, M.: zlib: A massively spiffy yet delicately
unobtrusive compression library. http://www.zlib.net. Accessed:
2015–04-14

11. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr, P., Moore,
R., Chang, K., Munishkumaran, S.: Current status of the digital
database for screening mammography. In: Digital mammography,
pp. 457–460. Springer (1998)

12. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.:
The digital database for screening mammography. In: Proceedings
of the 5th International Workshop on Digital Mammography, pp.
212–218 (2000)

13. Hirschberg, D.S.: A linear space algorithm for computing maximal
common subsequences. Commun. ACM 18(6), 341–343 (1975)

14. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.: The similarity
metric. IEEE Trans. Inf. Theory 50(12), 3250–3264 (2004)

15. Microsoft malware classification challenge (BIG 2015). https://
www.kaggle.com/c/malware-classification/data. Accessed: 2015–
10-27

16. Pavlov, I.: 7-zip. http://www.7-zip.org. Accessed 14 Apr 2015
17. Seward, J.: bzip2: Home. http://www.bzip.org. Accessed 14 Apr

2015
18. Thom, D., Heidemann, G.: The normalized compression distance

as a distance measure in entity identification (2010)
19. Tran, N.: The normalized compression distance and image distin-

guishability. In: Electronic Imaging 2007, pp. 64,921D–64,921D.
International Society for Optics and Photonics (2007)

20. Väyrynen, J.J., Tapiovaara, T., Kettunen, K., Dobrinkat, M.: Nor-
malized compression distance as an automatic mt evaluation
metric. Proc. MT 25, 21–22 (2010)

21. Walenstein, A., Hayes, M., Lakhotia, A.: Phylogenetic compar-
isons of malware. In: Virus Bulletin Conference, vol. 39, p. 41
(2007)

22. Wehner, S.: Analyzing worms and network traffic using compres-
sion. J. Computer Secur. 15(3), 303–320 (2007)

23. Witten, I., Bell, T., Cleary, J.: The calgary corpus. http://corpus.
canterbury.ac.nz/descriptions/#calgary. Accessed 15 Apr 2015

24. Zhou, Y., Jiang, X.: Android malware genome project. http://www.
malgenomeproject.org. Accessed 15 Apr 2015

25. Zhou, Y., Jiang, X.: Dissecting android malware: characterization
and evolution. In: IEEE Symposium on Security and Privacy (SP),
2012, pp. 95–109. IEEE (2012)

123

http://www.cbloom.com/src/ppmz.html
http://www.complearn.org
http://www.zlib.net
https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
http://www.7-zip.org
http://www.bzip.org
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://www.malgenomeproject.org
http://www.malgenomeproject.org

	On normalized compression distance and large malware
	Towards a useful definition of normalized compression distance for the classification of large files
	Abstract
	1 Introduction
	2 NCD Background
	3 Application of NCD to large files
	3.1 Normality of compression algorithms
	3.2 Classification using NCD with abnormal compressors

	4 Adapting NCD to handle large files
	4.1 NCD adaptation results in malware classification

	5 Conclusion and future directions
	Acknowledgments
	Appendix: NCD adaptations on music and medical image data
	References

